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Supporting Tables 
 

Table S1: Impact of the different components of the DeepFold energy function on the structure 

modeling accuracy in terms of the average TM-score and the percent of correctly folded models 

(TM-scores ≥0.5) for the 221 benchmark proteins. The p-values were calculated using paired, two-

sided Student’s t-tests.  

 

Energy Function TM-score (p-value) Correct Folds 

GE 0.184 (8.4E-127) 0.0% 

GE+Cont 0.263 (1.3E-118) 1.8% 

GE+Cont+Dist 0.677 (1.9E-14) 76.0% 

GE+Cont+Dist+Orien 0.751 (*) 92.3% 

 

 

Table S2: Mean absolute error (MAE) between the distance maps predicted by DeepPotential and 

the distance maps of the 3D models built without (GE+Cont+Dist) and with 

(GE+Cont+Dist+Orien) inter-residue orientations. Here, the top n*L long-range distance restraints 

were sorted by their DeepPotential confidence scores. The p-values were calculated using paired, 

two-sided Student’s t-tests. 

 

Method L/2 (p-value) L (p-value) 2L (p-value) 5L (p-value) 10L (p-value) 

GE+Cont+Dist 0.692 (2.3E-09) 0.707 (5.9E-10) 0.738 (1.0E-10) 0.857 (9.1E-10) 1.074 (1.5E-06) 

GE+Cont+Dist+Orien 0.562 (*) 0.577 (*) 0.606 (*) 0.704 (*) 0.887 (*) 

 

 

Table S3: DeepFold results on the 38 β-proteins in the test set with and without orientation 

restraints in terms of the average TM-score/RMSD and the percent of correctly folded models 

(TM-scores ≥0.5) for the 221 benchmark proteins. The p-values were calculated using paired, two-

sided Student’s t-tests. 

 

Method TM-score (p-value) RMSD (p-value) Correct Folds 

GE+Cont+Dist 0.590 (1.5E-04) 8.42 (3.4E-04) 60.5% 

GE+Cont+Dist+Orien 0.706 (*) 6.12 (*) 86.8% 

 

 

Table S4: Impact of the general energy (GE) function on DeepFold’s modeling performance. 

Specifically, the table presents the effect of GE on the secondary structure SOV score, number of 

Ramachandran outliers, the MolProbity clash score, and the overall MolProbity score on the 

overall dataset and those targets with poor physical model quality. 

 
Target Type  

(# of Proteins) 

DeepFold  

Energy Function 
SS SOV 

Rama 

Outliers 

Clash 

Score 
MP-score 

All Targets  

(221) 

w/o General Energy 79.68% 6.52 3.61 1.735 

with General Energy 79.71% 5.92 3.13 1.692 

MP-score <50th 

Percentile (16) 

w/o General Energy 58.41% 13.00 17.54 2.882 

with General Energy 61.44% 9.81 8.58 2.308 



Table S5: Results on the 221 benchmark proteins in terms of the median TM-scores and RMSDs, 

where the p-values were calculated using two-sided, non-parametric Wilcoxon signed rank tests. 

 

Method Median TM-score (p-value) Median RMSD (p-value) 

I-TASSER 0.357 (3.1E-37) 14.10 (1.2E-35) 

C-I-TASSER 0.607 (1.9E-35) 7.00 (6.7E-27) 

DMPfold 0.710 (2.0E-34) 5.96 (4.4E-23) 

trRosetta 0.749 (1.6E-26) 4.59 (3.3E-16) 

DeepFold 0.800 3.94 

 

 

Table S6: MAEs of the top n*L long-range distances by different distance predictors on the 221 

test proteins. The p-values were calculated using paired, two-sided Student’s t-tests between the 

DeepPotential results and the control methods. 

 

Method L/2 (p-value) L (p-value) 2L (p-value) 5L (p-value) 10L (p-value) 

DeepPotential 0.974 (*) 1.018 (*) 1.090 (*) 1.302 (*) 1.613 (*) 

trRosetta 1.050 (4.9E-02) 1.154 (5.9E-04) 1.328 (2.8E-06) 1.730 (2.0E-07) 2.241 (1.4E-11) 

DMPfold 1.779 (1.4E-15) 1.930 (7.6E-22) 2.184 (7.5E-28) 2.695 (1.6E-33) 3.488 (1.1E-41) 

 

 

Table S7: Modeling results for trRosetta using DeepPotential’s spatial restraints vs DeepFold, 

where the p-value for the mean TM-score was calculated using a paired, two-sided Student’s t-

tests, while the p-value for the median TM-score were calculated using a two-sided, non-

parametric Wilcoxon signed rank tests. 

 

Method 
Mean TM-score  

(p-value) 

Median TM-score 

 (p-value) 
Correct Folds 

trRosetta+DeepPotential 0.735 (3.9E-09) 0.787 (4.2E-13) 90.5% 

DeepFold 0.751 (*) 0.800 (*) 92.3% 

 

 

  



Table S8: Results on the 90 proteins that were non-redundant to the training set of DeepPotential. 

For the mean TM-scores, the p-values were calculated using paired, two-sided Student’s t-tests, 

while the p-values for the median TM-scores were calculated using two-sided, non-parametric 

Wilcoxon signed rank tests. 

 

Method 
Mean TM-score 

(p-value) 

Median TM-score 

(p-value) 
Correct Folds*  TMDeepFold > 

TMMethod
‡  

I-TASSER 0.384 (8.5E-31) 0.346 (4.7E-16) 28.9% 93.3% 

C-I-TASSER 0.580 (3.0E-20) 0.605 (7.7E-15) 66.7% 93.3% 

DMPfold 0.643 (6.4E-16) 0.700 (2.6E-15) 76.7% 90.0% 

trRosetta 0.688 (7.5E-09) 0.719 (2.6E-09) 87.8% 83.3% 

DeepFold 0.730 0.778 90.0% - 
* This column represents the percent of proteins with TM-scores ≥0.5. 

‡ This column indicates the percent of test proteins for which DeepFold generated a model with a higher TM-score than the 

control method. 
 

 

Table S9: Modeling results for DeepFold and AlphaFold on the 31 CASP13 FM targets which the 

AlphaFold team submitted models for, where the p-values for the mean/median TM-scores were 

calculated using a paired, two-sided Student’s t-tests and a two-sided Wilcoxon signed rank test, 

respectively. 

 

Method 
Mean TM-score 

(p-value) 

Median TM-score 

(p-value) 
Correct Folds 

AlphaFold 0.589 (0.025) 0.641 (0.044) 64.5% 

DeepFold 0.636 0.672 80.6% 

 

 

Table S10: Modeling results of DeepFold using the DeepPotential restraints vs 

RosettaFold/AlphaFold2 on the 221 test proteins. For the mean TM-scores, the p-values were 

calculated using paired, two-sided Student’s t-tests, while the p-values for the median TM-scores 

were calculated using two-sided, non-parametric Wilcoxon signed rank tests. 

 

Method 
Mean TM-score  

(p-value) 

Median TM-score 

(p-value) 

Correct 

Folds* 

RosettaFold (End-to-End) 0.812 (3.6E-10) 0.872 (3.8E-12) 93.7% 

RosettaFold (Pyrosetta) 0.838 (8.0E-22) 0.884 (1.5E-27) 95.5% 

AlphaFold2 0.903 (1.4E-49) 0.951 (4.1E-35) 95.0% 

DeepFold 0.751 0.800 92.3% 
* This column represents the percent of proteins with TM-scores ≥0.5. 

 

 

  



Table S11: Modeling results of DeepFold using the combined RosettaFold/DeepPotential 

restraints vs RosettaFold/AlphaFold2 on the 221 test proteins. For the mean TM-scores, the p-

values were calculated using paired, two-sided Student’s t-tests, while the p-values for the median 

TM-scores were calculated using two-sided, non-parametric Wilcoxon signed rank tests. 
 

Method 
Mean TM-score  

(p-value) 

Median TM-score 

(p-value) 

Correct 

Folds* 

RosettaFold (End-to-End) 0.812 (2.4E-11) 0.872 (1.2E-11) 14.3% 

RosettaFold (Pyrosetta) 0.838 (1.2E-02) 0.884 (8.9E-02) 95.5% 

AlphaFold2 0.903 (4.1E-11) 0.951 (6.3E-25) 95.0% 

DeepFold 0.844 0.889 96.4% 
* This column represents the percent of proteins with TM-scores ≥0.5. 

 

 

Table S12: Selection of the first well width (db) in the contact potential for various protein lengths 

(L in AA). 

 
 L<100 L in [100,120] L in [120,200] L>200 

Start of 1st well 8 8 8 8 

Width of 1st well, db 6 8 10 12 

End of 1st & start of 2nd well, D=(8+db) 14 16 18 20 

Width of 2nd well, (80-D) 66 64 62 60 

  



Supporting Figures 
 

 

 
 

Figure S1. DeepMSA2 pipeline, which contains three major steps: (A) dMSA, (B) qMSA, and 

(C) MSA selection.  

  



 
Figure S2. Case study from two targets, d1ltrd (A-D) and d1nova (E-H), for which I-TASSER/C-

I-TASSER outperformed DeepFold. A) LOMETS template (blue) superposed with the native 

structure for d1ltrd (yellow); B) I-TASSER model (blue) superposed with the native structure 

(yellow); C) C-I-TASSER model (blue) superposed with the native structure (yellow); D) 

DeepFold model (blue) superposed with the native structure (yellow); E) LOMETS template (blue) 

superposed with the native structure for d1nova (yellow); F) I-TASSER model (blue) superposed 

with the native structure (yellow); G) C-I-TASSER model (blue) superposed with the native 

structure (yellow); H) DeepFold model (blue) superposed with the native structure (yellow); 

 

  



 

 
 

Figure S3. Model TM-score vs. the logarithm of the MSA Neff value for DeepFold, trRosetta, and 

DMPfold, where the fitted models were obtained by linear regression with Pearson’s Correlation 

Coefficients of 0.615, 0.712, and 0.675 for DeepFold, trRosetta, and DMPfold, respectively. 

 



 
 

 

Figure S4. Head-to-head TM-score comparisons between DeepFold using the restraints from 

DeepPotential (A-C) or the combined restraints from RosettaFold and DeepPotential (D-F) with 

other protein structure prediction methods on the 221 Hard benchmark proteins: A/D) RosettaFold 

(End-to-End); B/E) RosettaFold (Pyrosetta); C/F) AlphaFold2.  

  



 

 
 

Figure S5. Case study from two proteins (d1a34a and d1s2xa) for which DeepFold significantly 

outperformed AlphaFold2. The DeepFold/AlphaFold2 models are shown in blue superposed with 

the native structures in yellow. 

 

 

  



 

 
Figure S6. Histogram distribution of the number of times each of the 7 MSAs were selected by 

DeepMSA2 for the 221 benchmark targets. The MSA numbers correspond to those depicted in 

Fig. S1. 

 

  



 

 

 
 

Figure S7. Definition of the inter-residue orientations predicted by DeepPotential, where Ω and 𝜃 

are inter-residue torsion angles formed by the four indicated atoms and 𝜑 is an inter-residue angle 

formed by three atoms.  

 

  



 
Figure S8. Depiction of the reduced model used to represent protein conformations during the 

DeepFold folding simulations, including the backbone atoms (N, H, Cα, C, and O) as well as the 

Cβ atoms and side-chain centers of mass for each amino acid type.  

  

  



Supporting Texts 
 

Text S1: Calculation of the MSA Neff value. 

In order to quantify the quality of an MSA, we define the number of effective sequences (Neff) 

as follows: 

 

𝑁𝑒𝑓𝑓 =
1

√𝐿
∑

1

1 +∑ 𝐼[𝑆𝑚,𝑛 ≥ 0.8]
𝑁
𝑚=1,𝑚≠𝑛

𝑁

𝑛=1
 

 

where L is the length of a query protein, N is the number of sequences in the MSA, Sm,n is the 

sequence identity between the m-th and n-th sequences, and I[ ] represents the Iverson bracket, 

which means 𝐼[𝑆𝑚,𝑛≥0.8] = 1 if 𝑆𝑚,𝑛 ≥ 0.8 or 0 otherwise. 

 

 

Text S2: DeepFold energy function. 

The energy function used to guide the DeepFold simulations is a combination of 10 energy 

terms: 

 
𝐸𝐷𝑒𝑒𝑝𝐹𝑜𝑙𝑑 = (𝐸𝐶𝛽𝑑𝑖𝑠𝑡 + 𝐸𝐶𝛼𝑑𝑖𝑠𝑡 + 𝐸𝐶𝛽𝑐𝑜𝑛𝑡 + 𝐸𝐶𝛼𝑐𝑜𝑛𝑡 + 𝐸Ω +𝐸𝜃 + 𝐸𝜑) + (𝐸ℎ𝑏 + 𝐸𝑣𝑑𝑤 +𝐸𝑡𝑜𝑟)           (1) 

 

where 𝐸𝐶𝛽𝑑𝑖𝑠𝑡, 𝐸𝐶𝛼𝑑𝑖𝑠𝑡, 𝐸𝐶𝛽𝑐𝑜𝑛𝑡, and 𝐸𝐶𝛼𝑐𝑜𝑛𝑡 are the predicted Cβ–Cβ distances, Cα–Cα distances, 

Cβ–Cβ contacts, and Cα–Cα contacts generated by DeepPotential; 𝐸Ω , 𝐸𝜃 , and 𝐸𝜑  are the 

predicted inter-residue orientations by DeepPotential as defined in Fig. S7; and 𝐸ℎ𝑏 , 𝐸𝑣𝑑𝑤, and 

𝐸𝑡𝑜𝑟 are the hydrogen bonding, van der Waals and backbone torsion angle potentials. All of the 

energy terms are based on pairwise interactions between residues i and j in a protein molecule, 

with the exception of  𝐸𝑡𝑜𝑟 , which is a single-body potential. Thus, the cumulative terms are 

derived from the summation over all residue pairs i and j as follows: 

 

𝐸𝐶𝛽𝑑𝑖𝑠𝑡 =∑𝑤1𝐸𝑑𝑖𝑗(𝑖, 𝑗)

𝑖,𝑗

                                                                (2) 

 

𝐸𝐶𝛼𝑑𝑖𝑠𝑡 =∑𝑤2𝐸𝑑𝑖𝑗(𝑖, 𝑗)

𝑖,𝑗

                                                                (3) 

 

𝐸𝐶𝛽𝑐𝑜𝑛𝑡 =∑𝑤3𝐸𝑐𝑜𝑛𝑖𝑗(𝑖, 𝑗)

𝑖,𝑗

                                                           (4) 

 

𝐸𝐶𝛼𝑐𝑜𝑛𝑡 =∑𝑤3𝐸𝑐𝑜𝑛𝑖𝑗(𝑖, 𝑗)

𝑖,𝑗

                                                          (5) 

 

𝐸Ω =∑𝑤4𝐸Ω𝑖𝑗(𝑖, 𝑗)

𝑖,𝑗

                                                                      (6) 

 



𝐸𝜃 =∑𝑤5𝐸𝜃𝑖𝑗(𝑖, 𝑗)

𝑖,𝑗

+∑𝑤5𝐸𝜃𝑗𝑖(𝑗, 𝑖)

𝑗,𝑖

                                     (7) 

 

𝐸𝜑 =∑𝑤6𝐸𝜑𝑖𝑗(𝑖, 𝑗)

𝑖,𝑗

+∑𝑤6𝐸𝜑𝑗𝑖(𝑗, 𝑖)

𝑗,𝑖

                                   (8) 

 

𝐸hb =∑𝑤7𝐸ℎ𝑏𝑖𝑗(𝑖, 𝑗)

𝑖,𝑗

                                                                  (9) 

 

𝐸𝑣𝑑𝑤 =∑∑𝑤8𝐸𝑣𝑑𝑤(𝑖, 𝑗, 𝑖𝑖, 𝑗𝑗)

𝑖𝑖,𝑗𝑗𝑖,𝑗

                                              (10) 

 

𝐸tor =∑𝑤9𝐸𝜙𝑖(𝑖) + 𝑤9𝐸ψ𝑖(𝑖)

𝑖

                                                 (11) 

 

Note, the inter-residue 𝜃 and 𝜑 orientations are not symmetric, thus they must be summed over 

residues pairs i, j as well as the opposite direction j, i. Furthermore, the van der Waals potential 

also involves the interactions between each atom ii and jj from residues i and j. The detailed 

description of each energy term is described below. 

 

𝐸𝑑𝑖𝑗(𝑖, 𝑗) = {
− log (

𝑃(𝑑𝑖𝑗) + 𝜖

𝑃(𝑑𝑐𝑢𝑡) + 𝜖
) , 𝑑𝑖𝑗 < 𝑑𝑐𝑢𝑡

0, 𝑑𝑖𝑗 ≥ 𝑑𝑐𝑢𝑡

                                    (12) 

 

where 𝑑𝑖𝑗 is the distance between two Cβ atoms for the Cβ distance restraints or two Cα atoms for 

the Cα distance restraints from residues i and j, 𝑃(𝑑𝑖𝑗)  is the predicted probability by 

DeepPotential associated with the distance 𝑑𝑖𝑗, and 𝑃(𝑑𝑐𝑢𝑡) is the probability for the final distance 

bin which corresponds to a distance between 19.5Å and 20Å. The pseudo count 𝜖 = 1𝐸 − 4 is 

used to avoid issues when 𝑃(𝑑𝑐𝑢𝑡) is small. Cubic spline interpolation is used to interpolate 

between the energy at the different distance bins in order to make the potential differentiable for 

L-BFGS optimization.  

 

𝐸𝑐𝑜𝑛𝑖𝑗(i, j) =

{
 
 
 

 
 
 
−𝑈𝑖𝑗 ,                                                 𝑑𝑖𝑗 < 8Å

−
1

2
𝑈𝑖𝑗 [1 − 𝑠𝑖𝑛 (

𝑑𝑖𝑗−(
8+𝐷

2
)

𝑑𝑏
𝜋)] , 8Å ≤ 𝑑𝑖𝑗 < 𝐷

1

2
𝑈𝑖𝑗 [1 + 𝑠𝑖𝑛 (

𝑑𝑖𝑗−(
𝐷+80

2
)

(80−𝐷)
𝜋)] ,   𝐷 ≤ 𝑑𝑖𝑗 ≤ 80Å

𝑈𝑖𝑗 ,                                                   𝑑𝑖𝑗 > 80Å

            (13) 

 

where 𝑑𝑖𝑗 is the Cβ or Cα distance between the residue pair i and j. The depth of the potential, 𝑈𝑖𝑗, 

is the predicted contact probability by DeepPotential. Overall, the potential is centered with a 

negative well at an 8 Å cutoff, with a strong force from 8 Å to 𝐷 (=8 Å + 𝑑𝑏), followed by a 



weaker force from 𝐷 to 80 Å, which is used to push the target residue pairs towards the well when 

they are far apart. Here, the gradient width (𝑑𝑏) of the contact well is the only free parameter of 

the potential, which depends on the protein size and determines the convergence speed and 

satisfaction rate of the contact maps. As shown in Table S12, 𝑑𝑏 is typically narrow, e.g., 6 Å, 

when the length of the target is relatively small, e.g. < 100 residues. On the other hand, the well 

width increases to 12 Å when the length is >200 amino acids, since residue pairs from larger 

proteins are more difficult to draw together, a wider well is used to draw the candidate residue 

pairs that are further apart in distance close together. It is important that the contact potential is 

designed in a way that the potential curve is continuous and smooth (with 𝜕𝐸/𝜕𝑑 = 0) at all three 

transition points of 𝑑𝑖𝑗 = 8, 𝐷 and 80 Å, so that the contact restraints can guide the gradient-based 

folding simulations. 

 

𝐸Ω𝑖𝑗(𝑖, 𝑗) = {− log(𝑃(Ω𝑖𝑗) + 𝜖)                                                                        (14) 

 

𝐸𝜃𝑖𝑗(𝑖, 𝑗) = {− log(𝑃(𝜃𝑖𝑗) + 𝜖)                                                                        (15) 

 

𝐸𝜃𝑗𝑖(𝑗, 𝑖) = {− log(𝑃(𝜃𝑗𝑖) + 𝜖)                                                                        (16) 

 

𝐸𝜑𝑖𝑗(𝑖, 𝑗) = {− log(𝑃(𝜑𝑖𝑗) + 𝜖)                                                                        (17) 

 

𝐸𝜑𝑗𝑖(𝑗, 𝑖) = {− log(𝑃(𝜑𝑗𝑖) + 𝜖)                                                                        (18) 

 

where Ω𝑖𝑗 , 𝜃𝑖𝑗 , and 𝜑𝑖𝑗  are the inter-residue orientations predicted by DeepPotential between 

residues i and j defined in Figure S3. Furthermore, given that 𝜃 and 𝜑 are not symmetric for a 

residue pair, 𝜃𝑗𝑖, and 𝜑𝑗𝑖 are the inter-residue orientations between residues j and i. The pseudo 

count 𝜖 = 1𝐸 − 4 is used to avoid issues when the predicted probability is small. Cubic spline 

interpolation is used to interpolate between the energy at the different orientation bins in order to 

make the potential differentiable for L-BFGS optimization. 

𝐸ℎ𝑏(𝑖, 𝑗) was adapted from EvoEF1 and is used to calculate the hydrogen-bonding interactions 

between potential hydrogen bond donor/acceptor pairs for atoms 𝑖 and 𝑗, one of which should be 

a polar hydrogen. 𝐸ℎ𝑏(𝑖, 𝑗) is a linear combination of three energy terms that depend on the 

hydrogen-acceptor distance (𝑑𝑖𝑗
𝐻𝐴), the angle between the donor atom, hydrogen and acceptor 

(𝜃𝑖𝑗
𝐷𝐻𝐴), and the angle between the hydrogen, acceptor and base atom (φij

𝐻𝐴𝐵): 

 

𝐸ℎ𝑏(𝑖, 𝑗) = 𝑤𝑑𝐻𝐴𝐸(𝑑𝑖𝑗
𝐻𝐴) + 𝑤𝜃𝐷𝐻𝐴𝐸(𝜃𝑖𝑗

𝐷𝐻𝐴) + 𝑤𝜑𝐻𝐴𝐵𝐸(𝜑𝑖𝑗
𝐻𝐴𝐵)          (19) 

 

where: 

 



{
  
 

  
 
𝐸(𝑑𝑖𝑗

𝐻𝐴) = {

−𝑐𝑜𝑠 [
𝜋

2
(𝑑𝑖𝑗

𝐻𝐴 − 1.9) (1.9 − 𝑑𝑚𝑖𝑛)⁄ ] , 𝑑𝑚𝑖𝑛 ≤ 𝑑𝐻𝐴 ≤ 1.9                

−0.5 𝑐𝑜𝑠[𝜋 (𝑑𝑖𝑗
𝐻𝐴 − 1.9) (𝑑𝑚𝑎𝑥 − 1.9)⁄ ] − 0.5,   1.9 Å <  𝑑𝐻𝐴 ≤ 𝑑𝑚𝑎𝑥

0                                                        ,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

    

𝐸(𝜃𝑖𝑗
𝐷𝐻𝐴) = − 𝑐𝑜𝑠4(𝜃𝑖𝑗

𝐷𝐻𝐴),   𝜃𝑖𝑗
𝐷𝐻𝐴  ≥ 90°

𝐸(𝜑𝑖𝑗
𝐻𝐴𝐵) = − 𝑐𝑜𝑠4(𝜑𝑖𝑗

𝐻𝐴𝐵 − 150°),     𝜑𝑖𝑗
𝐻𝐴𝐵 ≥ 80°

        (20) 

 

 

𝐸𝑣𝑑𝑤(𝑖, 𝑗, 𝑖𝑖, 𝑗𝑗) = {
(𝑣𝑑𝑤(𝑖𝑖) + 𝑣𝑑𝑤(𝑗𝑗))2 − 𝑑𝑖𝑗,𝑖𝑖,𝑗𝑗

2, 𝑖𝑓 𝑑𝑖𝑗,𝑖𝑖,𝑗𝑗 < 𝑣𝑑𝑤(𝑖𝑖) + 𝑣𝑑𝑤(𝑗𝑗) 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (21) 

 

Here, 𝐸𝑣𝑑𝑤(𝑖, 𝑗, 𝑖𝑖, 𝑗𝑗) is the van der Waals energy between atoms ii and jj from residues i and j, 

respectively, where 𝑣𝑑𝑤(𝑖𝑖) and 𝑣𝑑𝑤(𝑗𝑗) are the van der Waals radii of atoms ii and jj and 

𝑑𝑖𝑗,𝑖𝑖,𝑗𝑗 is the distance between atoms ii and jj from residues i and j, respectively. The atoms ii/jj 

that are accounted for are the backbone atoms (N, Cα, C, and O) and the Cβ atoms/side-chain 

centers of mass. 

 

𝐸𝜙𝑖(𝑖) = 1 − cos(𝜙𝑖 −𝜙𝑖,𝑝𝑟𝑒𝑑)  𝑎𝑛𝑑 𝐸ψ𝑖(𝑖) = 1 − cos(𝜓𝑖 − 𝜓𝑖,𝑝𝑟𝑒𝑑)                    (22) 

  
𝐸𝜙𝑖(𝑖) and 𝐸ψ𝑖(𝑖) are the energy for the backbone torsion angles, where 𝜙𝑖 and ψ𝑖 are the phi/psi 

torsion angles at residue i and  𝜙𝑖,𝑝𝑟𝑒𝑑 and ψ𝑖,𝑝𝑟𝑒𝑑  are the predicted torsion angles by Anglor2.  

Overall, the DeepFold force field consists of 24 weighting parameters, where the weights given 

to each of the deep learning restraints were separated into short (|𝑖 − 𝑗| > 1 and |𝑖 − 𝑗| ≤ 11, 

where 𝑖  is the residue index for residue 𝑖  and 𝑗  is the residue index for residue 𝑗 ), medium 

(|𝑖 − 𝑗| > 11 and |𝑖 − 𝑗| ≤ 23) and long-range (|𝑖 − 𝑗| > 23) weights, which were determined by 

maximizing the TM-score on the training set of 257 non-redundant, Hard threading targets 

collected from the PDB that shared <30% sequence identity to the test proteins. Briefly, all the 

weights were initialized to 0, then the weight for each individual energy term was increased one-

at-a-time and the DeepFold folding simulation were run using the new weights. Following this 

initial optimization, the weights were carefully fine-tuned by adjusting their values using a grid-

searching technique around the optimized values. 
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