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Structural comparison and alignment of biomacromolecules, 
including protein, RNA and DNA, are of fundamental impor-
tance in structural biology studies. Apart from providing intu-

itive visualizations of the shape comparisons, structure alignment is 
needed for structure-based protein function annotation1–3, model-
ing mutation effects4, rational protein design5,6 and protein struc-
ture classification7. Recent applications have also been seen in the 
use of templates identified by structure alignment for interdomain 
structural assembly8 and template-based protein–RNA docking9.

Different methods have been developed for comparing different 
types of molecules. For example, Dali10 and TM-align11 are typical 
algorithms to align protein monomer structures by maximizing 
both alignment accuracy and coverage (the portion of aligned 
residues divided by the sequence length). Similarly, RNA-align12, 
RMalign13, STAR3D14 and ARTS15 were designed for aligning RNA 
and DNA molecules, while MM-align16 was proposed to compare 
multichain protein complex structures. Recently, algorithms such 
as mTM-align17, Matt18 and MUSTANG19 were proposed for align-
ing several protein structures. Despite their usefulness, choosing 
an algorithm suitable for a specific molecular alignment task can 
be confusing for biological users. Meanwhile, the use of different 
assessment matrices for different methods makes the mutual struc-
tural comparisons of different molecule types difficult.

The most widely used structural comparison matrix is the root 
mean square deviation (RMSD)20 of two molecule structures. It is, 
however, not suitable for structure alignment because minimizing 
RMSD of structurally aligned regions often results in low alignment 
coverage. GDT21 and MaxSub22 were later proposed to optimize 
alignment accuracy and coverage simultaneously. However, both 
GDT and MaxSub scores are sequence length dependent, as the aver-
age score for random structure pairs has a power-law dependence 
on the sequence length23, which renders the absolute magnitude of 
these scores meaningless. To address these issues, TM-score was 

proposed as the first size-independent metric by the introduction 
of a length-dependent scale d0 = 1.24 3√L− 15− 1.8 to normalize 

the residue distance23,24, that is, TM-score = 1/L
Lali∑

i=1
1/(1+ d2i /d20), 

where L is the length of the target structure; Lali is the number of 
aligned residue pairs; and di is the distance between the Cα atoms 
of the ith pair of aligned residues. The TM-score was recently 
extended to TM-scoreRNA for nucleic acid structure comparison12 
(see Supplementary Text 1 for a complete discussion on TM-score 
and TM-scoreRNA). The unification of scoring function provides the 
potential to unify the structural comparison of different molecules 
and molecular complexes.

In this work, we developed a Universal Structure Alignment 
(US-align) platform, which performs three-dimensional (3D) struc-
ture alignments for monomeric and complex protein and nucleic 
acid structures, built on the well-established TM-score and heuristic 
structural alignment algorithms. The universal strategy to address 
all macromolecular structure alignments makes the alignments of 
heterogeneous complexes (such as protein–RNA complexes) fea-
sible. Meanwhile, the extensive optimization of a uniform scoring 
metric enables the algorithm to generate faster and more accurate 
alignments compared with the state-of-the-art methods developed 
for specific structural alignment tasks. The source code and the 
online server of US-align are freely available at https://zhanggroup.
org/US-align/, which accepts both legacy Protein Data Bank (PDB) 
and mmCIF/PDBx formats25 and automatically recognizes and 
selects the optimized algorithms for different input structure types.

Results
US-align is a versatile structural alignment program that performs 
four different modes of alignments, each of which can handle struc-
tures of proteins, RNAs and DNAs (Fig. 1): (1) the monomeric struc-
ture alignment mode establishes the residue-level correspondences  
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with optimal superimposition between a pair of monomeric chains 
(Fig. 1a); (2) the oligomeric alignment mode establishes both 
chain-level and residue-level correspondences between a pair of 
oligomeric structures, each with two or more chains (Fig. 1b); (3) the 
multiple structure alignment (MSTA) mode constructs a consensus 
alignment from three or more monomeric structures (Fig. 1c) and 
(4) the template-based docking mode assembles two or more indi-
vidual chains together by matching them to an oligomer template 
(Fig. 1d). The core idea of US-align is built on the construction of 
multiple heuristic alignments that cover different initial postures to 
avoid the trap of a specific local minimum—an issue suffered by 
many structural alignment methods. The follow-up rapid dynamic 
programming iterations help improve both accuracy and speed of 
the alignment procedures. The following sections benchmark the 
performance of US-align on the four different alignment tasks.

Oligomeric structure alignment. We first benchmarked US-align 
against two open-source programs for oligomeric structure align-
ments, MM-align16 and MICAN26, for oligomeric structure align-
ments. Whereas MM-align generates structure alignments by 
exhaustive combination of TM-align alignments for each indi-
vidual chain pair, MICAN is built on a hierarchical strategy of 
secondary structure element (SSE) and residue-level alignments. 
The three programs were benchmarked on a set of 1,123 protein 
complex structures collected from the PDB that are nonredundant 
at a pairwise sequence identity cutoff of 30%. The dataset includes 
200 dimers, 200 trimers, 200 tetramers, 129 pentamers, 200 hex-
amers, 60 heptamers and 134 octamers (described in detail in 
Supplementary Text 2).

Figure 2 summarizes the performance of the three oligomeric 
alignment programs in terms of TM-score, RMSD, alignment cov-
erage and execution time for all-against-all alignments among the 
structures with the same number of chains. As TM-score and cov-
erage for the alignment of the same pair of structures could differ 
depending on whether the TM-score and coverage were normalized 
by the longer or the shorter structure, we reported the TM-score 
and coverage normalized by the shorter structure for the remainder 
of this manuscript, unless mentioned otherwise.

The data show that US-align consistently outperformed both 
MM-align and MICAN on TM-score, coverage and execution time. 
However, it does seem in Fig. 2b that MICAN has a lower RMSD 
compared with US-align and MM-align. This is because MICAN 
alignment covers a much smaller portion of the full structure than 
the other methods (Fig. 2c), which is also the reason for the low 
TM-score of MICAN due to the lack of balance between alignment 

accuracy and coverage. The average TM-score of US-align across 
all types of oligomers (0.243) is 8.6% and 13.1% higher than those 
of MM-align (0.224) and MICAN (0.215), which correspond to  
P values of less than 1 × 10–303 by Student’s t-test.

The performance of a structural alignment method usually relies 
on both the alignment search engine and the objective function. The 
difference shown here is apparently not caused by the scoring func-
tions, as US-align, MM-align and MICAN in this benchmark all use 
TM-score as the objective function. Therefore, these data highlight 
the efficiency of the heuristic searching process in US-align, which 
covers larger and more important spaces of chain assignments and 
structural alignments in a limited amount of CPU time. This differ-
ence was particularly evident for oligomers with more chains. For 
example, the average TM-score of US-align was only 2.2% higher 
than MM-align for the dimers but 20.6% higher than MM-align for 
the octamers (Supplementary Table 1). One reason for these per-
formance differences for larger oligomers was the better ability of 
US-align to identify correct chain correspondences, especially for 
oligomers with high symmetry. If we count all 134 octamers that are 
the octamers of the highest number of chains in our test dataset, for 
example, US-align generated alignments containing, on average, 6.8 
aligned chain pairs, which was 25.9% and 13.3% higher than those 
from MM-align (5.4) and MICAN (6.0), respectively. Figure 2e–g 
shows an example of the octamers from the mandelate racemase/
muconate lactonizing enzyme (PDB 4JHM) and the SP_1775 pro-
tein (PDB 4IAJ) with D4 symmetry. The optimal alignment, derived 
by US-align with TM-score = 0.540, aligned each of the eight chains 
in 4JHM to one chain in 4IAJ (Fig. 2e). On the other hand, MM-align 
(Fig. 2f) and MICAN (Fig. 2g) only aligned five and three out of the 
eight chains, respectively, leading to much lower TM-scores of 0.239 
and 0.289, respectively. Although US-align generates on average 
more accurate oligomeric structural alignments, it could still gen-
erate suboptimal chain assignments for 2% of the cases in our test 
set, where one example is given in Supplementary Fig. 1 for which 
US-align underperforms MM-align. This is mainly because the ini-
tial chain assignment by US-align is generated by a heuristic search 
algorithm: the Enhanced Greedy Search (EGS; Methods). Although 
EGS greatly improves the speed of chain assignment with little com-
promise in accuracy in general, it may still very occasionally miss 
the best chain assignments that could otherwise be detected by an 
exhaustive search, such as that implemented by MM-align.

As a unique advantage of the universal structure alignment 
approach, US-align can perform oligomeric alignments for nucleic 
acid–nucleic acid or protein–nucleic acid complexes, whereas both 
MM-align and MICAN could deal only with protein–protein com-
plexes. In Fig. 3, we present a case study of structure alignments 
between two protein–RNA complexes from two different bacteria. 
Since the protein components of both complexes (PDB 1Y39 chain 
A and PDB 2ZJR chain F) are 50S ribosomal proteins L11, they share 
a high structural similarity (TM-score = 0.784; Fig. 3a). Similarly, 
the RNA components of the two complexes (PDB 1Y39 chain C and 
2ZJR chain X) are fragment and full-length 23S rRNAs, respectively, 
and share a high similarity (TM-score = 0.785; Fig. 3b). When com-
bining them together, US-align creates an alignment with an even 
higher similarity (TM-score = 0.861; Fig. 3c) due to the cooperative 
optimization of the complex alignments. In Supplementary Fig. 2, 
we show another example where the hetero-oligomeric alignment 
by US-align between a protein–DNA complex and a protein–RNA 
complex revealed a similar mode of interaction with a significant 
TM-score of 0.467, which could not otherwise be captured by 
monomeric alignments (TM-score = 0.301 and 0.157, respectively, 
both below the statistical significance threshold).

Monomeric structure alignment. Structural alignments on 
single-chain monomer structures are a fundamental compo-
nent of US-align. To examine the effectiveness of RNA monomer 
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Fig. 1 | Four different structure alignment modes of US-align. a, Pairwise 
monomeric structure alignment. b, Pairwise oligomeric structure 
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structure comparisons, we first used CD-HIT-EST27 to cluster the 
sequences of all 3,724 unique RNA chains from the PDB, resulting 
in 637 chains with sequence length of 30 nucleotides (nt) or more 
and pairwise sequence identity of less than 80%. We then ran an 
all-against-all pairwise alignment of these 637 chains by US-align, 
together with four other programs: RMalign13, STAR3D14, ARTS15 
and Rclick28. The data in Fig. 4a–d and Supplementary Table 2 show 
that US-align outperforms all four control RNA structure alignment 
programs, with a TM-scoreRNA 5.8% higher than RMalign, 27.5% 
higher than STAR3D, 34.5% higher than ARTS and 38.6% higher 
than Rclick, where the difference corresponds to P < 1 × 10–303 for 
all TM-score comparisons. Furthermore, US-align is 9.6, 31.6, 2.0 
and 45.7 times faster than the four control programs, respectively.

In Fig. 4e, we ran the RNA structural alignment programs to 
match a short rRNA-IV (PDB ID 4V8M with 135 nt) with a large 
28S rRNA (PDB ID 6Y2L chain L5, 3,613 nt). Only US-align could 
identify the correct alignment with a TM-score = 0.595, which is 2.3 
to 4.6 times higher than that identified by the other four programs. 
This example highlights the ability of US-align to handle RNA 
structure pairs with complex topologies and low sequence identities 
(20% in this example).

In Supplementary Fig. 3, we summarized the comparison results 
of US-align with four state-of-the-art monomeric protein structure 
alignment methods: SPalign29, Dali10, MICAN26 and SSM30. On the 

31,951 pairs of protein structures, which were collected from the 
all-to-all pairing of a subset of 1,000 proteins from the SCOPe data-
base31 2.06, US-align creates alignments with a reasonable combi-
nation of RMSD (4.546 Å) and coverage (68.9%), resulting in the 
highest TM-score (0.447), which is 2.1%, 8.2%, 13.2% and 21.5% 
higher than that achieved by SPalign, Dali, MICAN and SSM, 
respectively, with P ≤ 3.4 × 10–26 in all comparisons (Supplementary 
Table 3). If we count the number of the alignments with a TM-score 
of at least 0.5 (ref. 24), US-align identified 8,119 pairs of similar 
global folds, which is 6.0%, 34.0%, 72.0% and 148.4% higher than 
that by SPalign (7,661), Dali (6,050), MICAN (4,720) and SSM 
(3,268), respectively (Supplementary Table 4). Meanwhile, the CPU 
time of US-align is 2.7, 6.2, 3.0 and 1.6 times lower than the bench-
mark programs (Supplementary Fig. 3d).

US-align also has good performance when evaluated on the 
objective functions from other programs, such as Q-score and 
Dali Z-score, which are unique to the SSM30 and Dali10 programs, 
respectively (see Supplementary Text 3). On the same nonredun-
dant SCOPe dataset, US-align achieves the highest average Q-score 
of 0.105 (Supplementary Fig. 3e), which is 38.1%, 118.7%, 22.1% 
and 98.1% higher than those of SPalign, Dali, MICAN and SSM, 
respectively, with P values ≤ 5.93 × 10–242 for all comparisons 
(Supplementary Table 4). Similarly, US-align achieves the sec-
ond highest Dali Z-score (0.910), which is lower than MICAN 
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Fig. 2 | Performance of three oligomeric alignment programs. a–d, Performance of oligomeric protein structure alignment by US-align, MM-align and 
MICAN in terms of average TM-score (a), rMSD (b), alignment coverage (c) and running time (d) for complex structures in different oligomeric states 
(x axis) for n = 200 dimers, 200 trimers, 200 tetramers, 129 pentamers, 200 hexamers, 60 heptamers and 134 octamers. The s.e.m. values for all metrics 
are comparable across different methods and very small (Supplementary Table 1). Therefore, the error bars for s.e.m. are invisible. e–g, Octamer alignment 
between PDB 4JHM (semi-transparent cartoon) and PDB 4IAJ (ribbon) by US-align (e), MM-align (f) and MICAN (g). each chain of the oligomer is 
shown in a different color.
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(1.593) but significantly higher (P ≤ 7.48 × 10–55; Supplementary 
Table 4) than SPalign (0.375), Dali (−1.894) and SSM (−3.175) 
(Supplementary Fig. 3f). The reason for the higher Dali Z-score by 
MICAN is that MICAN tends to generate alignments with lower 
coverage than US-align (by 19.2%). Since Dali Z-score is more sen-
sitive to local variations than TM-score and Q-score, the sacrifice of 
alignment coverage for a smaller distance deviation at the aligned 
region results in a more favorable Dali Z-score by MICAN. Overall, 
the good performance of US-align on a broad range of scoring met-
rics reinforces the above observations that US-align has not been 
over-optimized for its own objective function and that its efficient 
alignment search engine allows it to derive reasonable alignments 
in a generic sense.

As an alternative assessment on the alignment performance, 
we calculated the agreements of manually created pairwise protein 
alignments from the MALIDUP dataset32 and those from automatic 
protein structure alignment (Supplementary Figs. 4 and 5). Here, to 
avoid overfitting, we excluded MICAN, because this program was 
partially trained on the MALIDUP dataset26. The result shows that, 
although US-align was not optimized to resemble manual align-
ments, it achieves a reasonable agreement with manual alignments 
with an F1-score 0.782, which is 3.3%, 10.3% and 27.2% higher than 
those achieved by SPalign (0.757), Dali (0.709) and SSM (0.615), 
respectively. This probably reflects that the TM-score, which was 
designed to optimize the alignment accuracy and coverage simul-
taneously, has naturally captured the overall topological similar-
ity of structures that is essential for the function and evolution of 
macromolecules.

Multiple structure alignment. MSTA matches several (three or 
more) monomeric structures with similar topology into a single 
alignment matrix. To examine the ability of US-align for RNA 
MSTA, we collected a benchmark dataset by clustering the 637 
structures from the RNA monomer alignment dataset used above 
by our inhouse qTMclust algorithm (Supplementary Text 4 and 
Supplementary Fig. 5) at a TM-scoreRNA cutoff of 0.45. This resulted 
in 275, 39 and 31 clusters with one, two and more than three chains, 
respectively. The 31 groups with at least three structures per group 
were used as the MSTA benchmark dataset in which several RNA 
alignments were performed within each cluster.

Figure 5 shows the average performance of US-align in com-
parison with two third-party programs18,19, which were extended 
from protein structure alignment tools (Supplementary Text 
5). The comparison was based on a subset of 29 groups of RNAs 
for which all programs could generate results, since MUSTANG 
was not able to complete MSTA for two groups of long RNAs as 

explained in Supplementary Fig. 6. The performance on the full 
set of all 31 RNA groups is shown in Supplementary Fig. 6 and 
Supplementary Table 6. US-align outperformed the two MSTA pro-
grams (Matt and MUSTANG) by achieving 4.8% and 3.5% higher 
TM-scoreRNA as well as 15.5% and 63.9% lower RMSD, respectively. 
Here, TM-scoreRNA, RMSD and coverage were all calculated from 
the pairwise alignments extracted from the MTSA. The result also 
shows that US-align was much faster than the control programs, 
with average times 15.0- and 1,650.3-fold shorter than Matt and 
MUSTANG, respectively.

As a case study, Fig. 5e shows the MTSA for a group of three 
RNAs: a pri-miRNA (PDB 6V5B chain D), a pre-mRNA (PDB 
2L3J chain B) and a double-stranded (ds)RNA being processed 
by RNase III (PDB 2NUE chain C). Although all three structures 
have a simple topology (a single helix), MUSTANG failed to derive 
the correct correspondence between nucleotides of different struc-
tures, resulting in poor RMSD > 13 Å. Both US-align and Matt 
created correct alignments with RMSD ~3 Å, but US-align aligns 
more nucleotides and results in a higher coverage and TM-scoreRNA  
(Fig. 4e).

In Supplementary Fig. 7, we further test the ability of US-align 
on protein MTSA in control with four state-of-the-art methods: 
PROMALS3D33, Matt18, MAMMOTH-mult34 and MUSTANG19. 
The benchmark dataset consists of 803 protein structures from 
92 SCOPe fold families, where each fold family contains 3 to 42 
structures that share the same fold but from different superfami-
lies31. Among the methods, US-align achieves the lowest pairwise 
RMSD (3.9 Å) with the second highest alignment coverage (68.7%). 
The average TM-score is 36.9–43.3% higher than other control 
methods, where the TM-score difference is statistically significant, 
with P < 1.3 × 10–12 for all comparisons (Supplementary Table 7). 
Meanwhile, the speed of US-align is, on average, 199.6, 24.6, 1.1 and 
30.7 times faster than PROMALS3D, Matt, MAMMOTH-mult and 
MUSTANG, respectively.

RNA–protein docking. Given the ability of US-align for both 
protein and nucleic acid structure alignments, we constructed 
a template-based RNA–protein docking pipeline by separately 
matching the query RNA and protein chains to a library of known 
RNA–protein complex structures, with the final models sorted by 
the root mean square of TM-scores of the RNA and protein struc-
tural alignments.

In Fig. 6a–c, we present a summary of performance of US-align 
on a set of 439 nonredundant RNA–protein complexes, in com-
parison with two state-of-the-art RNA–protein docking meth-
ods 3dRPC35 and PRIME9, which perform template-free and 

a b c

Fig. 3 | Structure alignments between two protein–RNA complexes from two different bacteria. a–c US-align alignment of protein components (a), rNAs (b) 
and full protein–rNA complexes (c) between PDB 1Y39 (blue, chain A; red, chain C) and PDB 2ZJr (cyan, chain F; yellow, chain X). Since the full 2ZJr chain X 
has 2,686 residues and is too large to show in the figure, b and c only show residues 1,063 to 1,119, which correspond to the region aligned to 1Y39 chain C.
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template-based docking, respectively (Supplementary Text 6). 
It was shown that US-align achieved a much lower median 
RNA RMSD than 3dRPC (by 15.5%) and PRIME (by 22.8%). If 
we define a successful case as one with RNA RMSD < 10 Å, the 
success rate of US-align is 45.6% higher than 3dRPC and 13.8% 
higher than PRIME. Importantly, the average running time of 
US-align (19.89 min) is 28 times faster than 3dRPC (559.86 min) 
and 6 times faster than PRIME (118.49 min). In Fig. 6d, we pres-
ent an illustrative example from the complex between a ribosomal 
protein and an mRNA (PDB ID 2VPL), where US-align created a 
model with a notably lower RMSD (1.0 Å) than 3dRPC (29.3 Å) 
or PRIME (8.9 Å). Although PRIME and US-align recognized 
the same template (PDB ID 1MZP), the US-align model is much 
closer to the native structure due to more precise RNA and protein 
structure alignments.

discussion and conclusion
We developed US-align, a universal protocol for monomeric 
and oligomeric structural alignment of protein, RNA and DNA 
molecules, built on the coupling of a uniform TM-score objec-
tive function and the heuristic iterative searching algorithm. 
Large-scale benchmarks show that US-align outperforms 
state-of-the-art programs in terms of both alignment accu-
racy and speed for a wide range of structural comparison tasks, 
including oligomeric structural alignment, RNA and protein 
MSTA, and template-based protein–RNA docking. Given the 
fundamental importance of structure comparisons in molecu-
lar biology, the high efficiency of a uniform structural align-
ment tool should greatly facilitate the related structural 
biology and function annotation studies across different types of  
biomolecules.
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Despite the efficiency, US-align is essentially a tool for 
sequence-order dependent rigid structural alignments, which 
may not be sufficient for some specific applications. For example, 
sequence-order independent alignment is often preferred for com-
paring the binding pockets of ligand–receptor interactions in vir-
tual screening studies. Meanwhile, flexible structure alignment may 
be needed for aligning multidomain structures with alternative 
interdomain orientations or for comparing multichain complexes 
with large conformational changes. Future developments will focus 
on extension of US-align for sequence-order independent and flex-
ible alignments.
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Methods
Monomeric structure alignment. To structurally align a pair of chains in 
US-align, it was necessary to derive the optimal alignment (that is, the residue-level 
equivalence) between the two chains that maximizes the TM-score of structural 
superimpositions. For this, US-align starts with five sets of initial alignments:

 (1) Alignments from gapless sliding of one chain against another; the alignment 
with the best TM-score was selected.

 (2) Alignment of the secondary structures of the two chains by 
Needleman-Wunsch (NW) dynamic programming36, using a gap penalty of 
–1, a match score of 1, and a mismatch score of 0.

 (3) Alignment based on NW dynamic programming, but the matching score is 
a half-half combination of secondary structure match and the residue-level 
TM-score calculated based on the superposition from initial alignment (1):

TM-scoreij =
1

1 +
(

dij/d0
)2 (1)

where dij is the distance between ith on the first structure and jth residue on the 
second structure.
 (4) Alignments based on the superimposition of fragments with length 

Lmin/2 and Lmin/3, where Lmin is the minimal length between the two query 
chains. To save time, a fragment is taken only every njump residues, where 
njump = min(45, L/3).

 (5) Alignment based on gapless sliding of all continuous fragments. For 
proteins, a fragment is ‘continuous’ if it has at least four residues and all 
Cα–Cα distances between adjacent residues are less than 4.25 Å. For nucleic 
acids, any 4 nt adjacent in the sequence are considered a piece of continuous 
fragments.

Each of the initial alignments is followed by a heuristic iteration alignment 
process, in which we first rotate the structures by TM-score rotation matrix based 
on the aligned residues in the initial alignment. Next, a new alignment is derived 
using NW dynamic programming, based on the residue-level matching score 
(equation 1, calculated from the new superposition) with a gap penalty of −0.6. 
The new alignment will result in a newer superposition that will be used to create 
a newer alignment. The process is repeated until convergence, where the structural 
alignment with the highest TM-score is returned. The overall procedure of 
monomeric structure alignment is illustrated by Supplementary Fig. 8.

Oligomeric structure alignment. One challenge to oligomer complex alignment 
is chain equivalence assignment, that is, finding the correct chain-level 
correspondence. In the simplest scenario of aligning two dimers, US-align 
needs two separate structural alignments: one for aligning chains A and B from 
dimer 1 to chains A and B in dimer 2, respectively; and another for aligning 
chains A and B from dimer 1 to chains B and A in dimer 2, respectively. More 
generally, when aligning an oligomer with C1 chains to another oligomer with C2 
chains where C1 ≥ C2, US-align needs to determine the best chain assignment 
with the highest TM-score out of all C1!/ (C1 − C2)! possible chain assignment 
combinations. For example, alignment of a pair of octamers requires consideration 
of 8!/ (8 − 8)! = 40, 320 possible chain assignments. This makes the exhaustive 
search approach, such as that used by MM-align16, extremely time consuming.

Therefore, when aligning oligomers with three or more chains, US-align 
employs a light-weighted chain assignment method. First, all-against-all 
chain-to-chain alignments are performed between all chains in oligomer 1 and all 
chains in oligomer 2 using fTM-align37—a fast version of TM-align. Compared 
with the standard TM-align, fTM-align decreases the number of iterations, thereby 
greatly reducing the required computing time while maintaining TM-scores highly 
correlated with those from standard TM-align37, especially for very large structures 
(Supplementary Fig. 9). The TM-scores from fTM-align are then used for initial 
chain assignment using the EGS38 algorithm, by maximizing the sum of the 
TM-scores for all assigned chain pairs (Supplementary Fig. 10).

Once an initial chain assignment is decided, US-align will perform a 
TM-score superimposition of the two oligomers according to the interoligomer 
residue-level alignments generated in the previous step (Supplementary Fig. 11). 
Next, based on the TM-score superimposition matrix (equation 1), a new optimal 
structure alignment will be obtained by a modified NW dynamics program that 
ignores the regions of unassigned chains (Supplementary Fig. 12). Given the 
new structural alignment, the chain-to-chain TM-scores will be computed for all 
interchain pairs and used by EGS to determine a new set of chain assignments 
(Supplementary Fig. 10), which will be returned to the last step for oligomer 
alignment iterations. This iteration will be repeated until convergence, where 
the structural alignment with the highest TM-score encountered during the 
iteration will be returned as the final structural alignment of the input oligomers 
(Supplementary Fig. 11).

Multiple structure alignment. To create a uniform alignment for several 
structures, US-align first performs all-against-all alignments among all input 
structures to obtain the pairwise TM-scores. Next, a structure-based guide tree is 
constructed based on the TM-scores using the extended unweighted pair group 

method with arithmetic mean (UPGMA) algorithm39 (Supplementary Fig. 13). 
Finally, the pairwise alignments from the first step are progressively merged into a 
single MSTA according to the branching order of the UPGMA tree. To merge an 
alignment with M structures to another alignment with N structures, NW dynamic 
programming is performed using a generalized version of the residue-level 
TM-score from equation (1):

TM-score(M,N)ij =
M
∑

m=1

N
∑

n=1

1

1 +
(

dij(m,n)
d0

)2 (2)

where dij(m,n) is the distance of ith residue position of the mth structure in the 
first alignment and jth residue position of the nth structure from the second 
alignment after the superposition. The overall workflow of MSTA is illustrated by 
Supplementary Fig. 14.

Template-based docking. To perform template-based docking, US-align 
implements a subroutine to align several query chains to one complex template. 
In this subroutine, each query chain is aligned to every chain of the complex 
template to calculate the TM-score. Based on the TM-scores, each query chain is 
then superimposed to one of the template chains so that no more than one query 
chain is assigned to the same template chain and the overall docking TM-score is 
maximized:

TM-scoredock =

√

√

√

√

1
2K

K
∑

k=1

(

TM2
k,query + TM2

k,template

)

(3)

where K is the total number of query chains; TMk,query and TMk,template are the 
TM-score (or TM-scoreRNA) for aligning the kth query chain, as normalized by the 
chain length of query and template, respectively.

When several templates were available, we ran US-align template-based 
docking on each complex template, and the template with the highest TM-scoredock 
was used to generate the final docking result.

Statistics. All P values are calculated by two-tailed paired Student’s t-test 
implemented by SciPy v.1.2.1, NumPy v.1.16.6 and Python v.2.7.18.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
All data needed to reproduce this work are available at https://doi.org/10.6084/
m9.figshare.16725745 under CC BY v.4.0. Source data are provided with this paper.

Code availability
An online webserver and the standalone program of US-align are available at 
https://zhanggroup.org/US-align. The latest source code of US-align is also 
available at https://github.com/pylelab/USalign, while the source code for US-align 
version 20220227 used by this manuscript is included in Supplementary Software. 
The code was tested on Linux, Windows and Mac OS, where no notable differences 
in speed across different operating systems were found (Supplementary Fig. 15).
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