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ABSTRACT

Deep learning techniques have significantly ad-
vanced the field of protein structure predic-
tion. LOMETS3 (https://zhanglab.ccmb.med.umich.
edu/LOMETS/) is a new generation meta-server ap-
proach to template-based protein structure predic-
tion and function annotation, which integrates newly
developed deep learning threading methods. For the
first time, we have extended LOMETS3 to handle
multi-domain proteins and to construct full-length
models with gradient-based optimizations. Start-
ing from a FASTA-formatted sequence, LOMETS3
performs four steps of domain boundary predic-
tion, domain-level template identification, full-length
template/model assembly and structure-based func-
tion prediction. The output of LOMETS3 contains (i)
top-ranked templates from LOMETS3 and its compo-
nent threading programs, (ii) up to 5 full-length struc-
ture models constructed by L-BFGS (limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm) opti-
mization, (iii) the 10 closest Protein Data Bank (PDB)
structures to the target, (iv) structure-based func-
tional predictions, (v) domain partition and assem-
bly results, and (vi) the domain-level threading re-
sults, including items (i)–(iii) for each identified do-
main. LOMETS3 was tested in large-scale bench-
marks and the blind CASP14 (14th Critical Assess-
ment of Structure Prediction) experiment, where the
overall template recognition and function prediction
accuracy is significantly beyond its predecessors
and other state-of-the-art threading approaches, es-
pecially for hard targets without homologous tem-
plates in the PDB. Based on the improved develop-

ments, LOMETS3 should help significantly advance
the capability of broader biomedical community for
template-based protein structure and function mod-
elling.

GRAPHICAL ABSTRACT

INTRODUCTION

The rapid progress of deep learning-based protein structure
prediction (1–4), especially the recently developed end-to-
end training by AlphaFold2 (5), has dramatically advanced
the field of protein structure prediction (6). Nevertheless,
the template-based modelling (TBM) (7–9), which builds
models from homologous structures identified from the
Protein Data Bank (PDB) and has dominated the field for
many decades (10), remains an important approach to pro-
tein structure prediction. Compared to the deep learning-
based approaches, which are built on models that are largely
a black box to both users and developers, one advantage
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of TBM is that the modelling procedure is transparent with
clear template resource and sequence–structure alignments,
which are important for users to interpret the modelling
results and extract functional insights from them. Mean-
while, for many targets with reliable template alignments
from the PDB, TBM can build models of comparable and
even higher accuracy than the deep learning approaches
(11). For this reason, TBM is still contained as a necessary
module in many state-of-the-art deep learning approaches
and shows important effects on improving the accuracy of
final models based on such pipelines (4,5,12). On the other
hand, deep learning has also been integrated in many of the
threading approaches to increase template recognition and
alignment accuracy (13–16).

Given the ongoing importance of the TBM, we developed
a meta-threading approach, LOMETS (17), which collects
and combines template alignments from multiple individ-
ual threading programs for TBM-based protein structure
prediction. Since it takes advantages of pooled and comple-
mentary information from multiple threading algorithms,
LOMETS outperforms individual threading programs in
both alignment accuracy and template coverage. Due to
the robustness of the results and user-friendly server design,
LOMETS has been widely used and successfully completed
over 30 000 modelling requests submitted by around 15 000
users between 2007 and 2018. As an improved version,
LOMETS2 (18) integrated profiles from deep multiple se-
quence alignment (MSA) with a new deep learning contact-
based threading approach, CEthreader (13), and generated
much more accurate templates and models than the previ-
ous LOMETS server. Consequently, the number of com-
pleted jobs per year by LOMETS2 has increased by 69%,
compared with the previous version of server. Given the
rapid development of deep learning techniques in the field,
however, the previous LOMETS and LOMETS2 servers
no longer represent the state of the art, because a num-
ber of newly developed, advanced deep learning threading
algorithms have yet to be incorporated. In addition, the
template ranking and selection in LOMETS/LOMETS2
were mainly based on consensus, which may not work well
when combining alignments from different profile and deep
learning threading approaches. Third, all existing threading
methods, including LOMETS and LOMETS2, are unable
to effectively handle multi-domain proteins, although many
submitted sequences from the community contain multiple
domains. Therefore, an upgraded version of the server inte-
grating new deep learning technology and with the ability
to model multi-domain sequences is urgently needed.

In this work, we developed a significantly improved
server, LOMETS3, which introduces five major extensions:
(i) a new set of deep learning threading approaches is inte-
grated with advanced profile-based threading programs that
constitute a comprehensive set of state-of-the-art thread-
ing programs; (ii) a new deep learning program, DeepPo-
tential (19), is extended to generate multiple geometric de-
scriptor predictions and used to assist ranking and selec-
tion of templates; (iii) the server now adopts a newly de-
veloped domain partition/assembly module for modelling
multi-domain protein sequences; (iv) a limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm-based (L-

BFGS) protein folding system has been introduced to cre-
ate models guided by DeepPotential and threading template
spatial restraints; and (v) the COFACTOR (20) pipeline
in combination with LOMETS3 threading templates and
structural analogues is applied to predict protein functions.
Large-scale benchmark and blind tests showed that these
new developments have significantly improved the overall
accuracy for template detection, structure modelling and
function prediction, relative to earlier LOMETS versions
or other comparable structure prediction servers.

MATERIALS AND METHODS

Pipeline of LOMETS3 server

LOMETS3 is an automated meta-threading protein struc-
ture prediction pipeline for both single- and multi-domain
proteins (Figure 1). For a full-length target (Figure 1A),
deep MSAs are generated by iterative sequence homology
searches through multiple metagenome sequence databases
(see Supplementary Text S1 for details). Then, the MSAs
are fed into DeepPotential (see Supplementary Text S1 for
details) to predict contact map, and into the threading
pipeline to detect full-length templates. FUpred (21) and
ThreaDom (22) are used for domain boundary prediction
based on the predicted contact map and threading tem-
plates, respectively (see Supplementary Text S2 for details).
Next, following the domain splitting process, the domain-
level sequences are passed into DeepPotential and the basic
threading unit again for domain-level threading and model
construction. Individual domain-level templates and mod-
els are then assembled into ‘full-length’ templates and full-
length models by DEMO2 (23) using the deep learning-
predicted inter-domain distance restraints from DeepPo-
tential (see Supplementary Text S2 for details). FG-MD
(24) and FASPR (25) are used to refine the global topology
and re-pack the side-chain conformation for both domain-
level models and full-length models. Finally, structural ana-
logues are detected by TM-align (26) by matching the first
LOMETS3 model to all structures in the PDB library,
where functional insights [including Gene Ontology (GO)
term, Enzyme Commission (EC) number and ligand bind-
ing interaction] are derived from the BioLiP (27) database
based on the structural analogues. Furthermore, COFAC-
TOR is extended by integrating the LOMETS3 threading
templates associated with structural analogues to predict
protein functions (see Supplementary Text S3 for details).

In Figure 1B, we display in detail the basic threading unit
that is designed for modelling single-domain proteins or iso-
lated domains segmented from multi-domain proteins. In
this unit, the deep MSAs are feed into five contact-based
[CEthreader (13), DisCovER (14), EigenTHREADER
(15), Hybrid-CEthreader (13) and MapAlign (16)] and
six profile-based [FFAS3D (28), HHpred (29), HHsearch
(8), MRFsearch (30), MUSTER (9) and SparksX (31)]
threading programs (see Supplementary Text S4 for de-
tails) to identify structural templates from the PDB li-
brary. The MSAs are also used by DeepPotential to pre-
dict residue–residue contacts, distances and hydrogen bond
restraints. These predicted spatial restraints along with the
profile alignment score from original threading programs
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Figure 1. Flowchart of the LOMETS3 server pipeline for protein structure and function prediction. (A) Procedure for automated multi-domain threading,
domain-level structure assembly and function prediction. (B) Fundamental threading unit for template detection and function annotation of a single-
domain target (embedded as needed in multi-domain threading, as shown).

are used to re-rank the templates detected by the six profile-
based threading programs (see Equation S9 in Supplemen-
tary Text S5). The top-ranked templates from each thread-
ing programs are pooled and sorted by a new scoring func-
tion that combines the alignment Z-score, program-specific
confidence scores and the sequence identity to the query
(Equation S17 in Supplementary Text S5), for template
output. In addition, up to five full-length models are con-
structed by L-BFGS optimization using the distance re-
straints predicted by DeepPotential and calculated from top
threading template alignments (see Supplementary Text S6
for details).

New developments in LOMETS3

Compared to the previous LOMETS servers, the following
major updates have been made.

Extension of MSA construction. An updated deep
MSA approach, DeepMSA2, was developed to create
deep sequence profiles from more extensive metagenome
sequence databases than the previous MSA pipeline (Sup-
plementary Figure S1). The deep profiles are then used in
all component threading methods.

Updating of contact-based and profile-based threading meth-
ods. More than half of the threading programs in the
previous LOMETS2 server were renewed and/or replaced
by state-of-the-art methods, including deep learning tech-
niques (Supplementary Text S4). Furthermore, a new scor-
ing function, which combines residue–residue distances,
contacts and hydrogen bond geometries predicted from

DeepPotential, as well as profile alignment scores, is used
to re-rank the templates for profile-based threading meth-
ods.

Introduction of an L-BFGS system for full-length structure
modelling. An L-BFGS folding system is introduced to
quickly construct full-length structure models for target se-
quences based on spatial restraints predicted by DeepPo-
tential and deduced from top threading templates. Further-
more, a new refinement pipeline based on FG-MD and
FASPR is used to refine and re-pack the side-chain confor-
mation of the models.

Addition of domain partition and assembly module.
FUpred and ThreaDom are used for domain bound-
ary prediction based on the predicted contact map and
threading template alignments, respectively. The individual
domain-level models and templates are then assembled
into full-length models and templates by DEMO2 using
deep learning-predicted inter-domain distance restraints.

Inclusion of function annotation and prediction. Structure-
based function annotations (including GO term, EC num-
ber and ligand binding information), derived from the top
LOMETS3 threading templates and protein structure ana-
logues with the closest structural similarity to LOMETS3
models, are reported. Furthermore, COFACTOR is ex-
tended by integrating the LOMETS3 threading templates
associated with structural analogues to predict three cate-
gories of protein functions. Given the newly developed com-
ponents, the output page of the LOMETS3 server is com-
pletely redesigned to facilitate the display of function anno-
tations and predictions.
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Benchmark datasets

Three benchmark datasets have been constructed for testing
the performance of LOMETS3.

Dataset-1: single-domain protein dataset. Six hundred
fourteen non-redundant single-domain proteins were col-
lected from the PDB with pairwise sequence identity <30%.
Based on the quality of final threading templates and the
consensuses of component threading templates (see details
in Supplementary Text S5), the dataset can be classified into
two groups: 403 easy targets and 211 hard targets.

Dataset-2: multi-domain protein dataset. The multi-
domain dataset contains 408 non-redundant multi-domain
proteins. Based on the domain types, this dataset can be
further divided into 348 continuous domain proteins and
60 discontinuous domain proteins. Here, a discontinuous
domain is defined as containing two or more segments
from separate regions of the query sequence, while a
continuous domain contains only one continuous segment.
Based on the number of domains, our dataset contains
334 two-domain proteins, 50 three-domain proteins and 24
multi-domain proteins with more than three domains.
Here, we take the SCOPe (32) domain boundary definition
for those proteins as ground truth when assessing the
domain partition accuracy. Based on the target types, 321
of these proteins are classified as easy targets and 87 as
hard targets.

Dataset-3: function annotation dataset. In order to assess
the performance of LOMETS3-driven function predictions,
we extracted all ground truth function annotation informa-
tion for 614 single-domain targets and 408 multi-domain
targets from BioLiP database. In total, there are 688 pro-
teins containing at least one type of function annotations,
where 573 proteins are annotated with a total of 4061 GO
terms [507 proteins have 1728 molecular function (MF)
terms, 468 proteins have 1550 biological process (BP) terms
and 302 proteins have 783 cellular component (CC) terms],
659 proteins are annotated with four-digit EC numbers and
296 proteins have annotated binding to 403 ligands.

During benchmarking of our threading method, a se-
quence identity cut-off (<30%) between the query protein
and template sequences was enforced to remove any poten-
tial bias caused by homologous templates.

RESULTS

Comparison between LOMETS3 and LOMETS2 on single-
domain proteins

In Supplementary Table S1, we list a comparison of thread-
ing results obtained by LOMETS3 and LOMETS2 for
the 614 single-domain proteins from Dataset-1. Overall,
the average TM-scores of the first templates identified by
LOMETS3 were 0.656, 0.725 and 0.525 for all, easy and
hard targets, which are 5%, 2% and 14% higher than those
of the first templates from LOMETS2, corresponding to
P-values of 1.7E−28, 6.9E−10 and 2.3E−19, respectively
(one-tailed Student’s t-test). Figure 2A shows a head-to-
head TM-score comparison of the full-length models by

the two servers, where LOMETS3 generates higher TM-
score models in 550 out of 614 cases (90%). On average, the
TM-scores of the LOMETS3 full-length models are 0.814,
0.837 and 0.768, which were 22%, 11% and 55% higher
than those by LOMETS2, corresponding to P-values of
4.3E−86, 6.6E−48 and 9.7E−36, for all, easy and hard tar-
gets, respectively (one-tailed Student’s t-test). Furthermore,
LOMETS2 only generated 105 correct models with TM-
score >0.5 (33) for the 211 hard targets, while LOMETS3
can construct nearly twice the correct models (202), achiev-
ing success for nearly all targets in this category.

Several factors have contributed to the significant im-
provements of LOMETS3 over LOMETS2. First, five state-
of-the-art contact-based threading methods have been inte-
grated into LOMETS3, while LOMETS2 was dominated by
profile-based programs with only one contact-based thread-
ing program, CEthreader, included. As shown in Supple-
mentary Figure S2, the contact-based threading group gen-
erally performed better than the profile-based threading
group on template identification, especially on the 211 hard
targets, where the Hybrid-CEthreader program, which uses
a hierarchical procedure to speed up the eigendecompo-
sition and alignment process of CEthreader (Supplemen-
tary Text S4), shows the highest performance for both easy
and hard targets. Thus, the integration of the contact-based
threading methods is particularly important to improve the
overall template recognition ability of LOMETS3.

Second, a new scoring function combining profile infor-
mation and spatial restraints from deep learning has been
utilized to re-rank the templates for profile-based thread-
ing methods, which can significantly improve the quality
of the top templates selected for these programs. As shown
in Supplementary Table S2, the TM-score of the first tem-
plates after re-ranking is generally higher than that of the
original templates obtained by the profile-based thread-
ing programs, where the difference is particularly promi-
nent for the hard targets, with TM-score improved by 18–
44%. Here, one concern for template re-ranking is that
it may reduce the complementariness of the profile-based
programs with contact-based program, since both have
now used DeepPotential restraints. As shown in Supple-
mentary Table S3, however, the average TM-score of the
first templates identified by LOMETS3 was significantly
higher than that by the best component threading method,
Hybrid-CEthreader, with a P-value of 3.8E−13 (one-tailed
Student’s t-test), demonstrating that the template rank-
ing scheme in LOMETS3 is able to take advantage of the
complementation between contact-based and profile-based
component threading programs.

Finally, the newly developed L-BFGS folding system fur-
ther improved the quality of the full-length models by in-
tegrating spatial restraints from DeepPotential with the
threading templates. As shown in Supplementary Table
S4, even using the same set of templates, LOMETS3 with
L-BFGS generated models with TM-score (0.814) 17.1%
higher than that for models built on MODELLER (34), an
approach used in LOMETS2 that did not use deep learn-
ing restraints. Meanwhile, the results showed that the tem-
plate alignment information also helps in the full-length
model construction, where the models by L-BFGS with
DeepPotential but without using templates have the TM-
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Figure 2. Comparison between LOMETS3 and LOMETS2 on the 614 single-domain and 408 multi-domain proteins of our benchmarking datasets.
(A) TM-scores of the full-length models from LOMETS3 versus those from LOMETS2 on single-domain proteins, where red crosses and blue circles
correspond to hard and easy targets, respectively. (B) An illustrative example from pertussis toxin subunit 4 (PDB ID: 1prtD), showing models by L-BFGS,
MODELLER and LOMETS3 (blue) overlaid with the experimental structure (yellow). (C) TM-scores of the final assembled models by LOMETS3 versus
those built by MODELLER based on the full-chain threading templates. (D) An illustrative example from bifunctional polynucleotide phosphatase (PDB
ID: 3zvmA), showing the structure superposition of the LOMETS3 template/model of domain 1 (red) and domain 2 (cyan) with the experimental structure
(yellow). The dashed lines are the unaligned regions of the templates.

score (0.797) significantly lower than that with using tem-
plates, with P-value = 6.6E−55. In Figure 2B, we showed
an illustrative example from pertussis toxin subunit 4 (PDB
ID: 1prtD), where L-BFGS + DeepPotential generated a
model with a poor TM-score of 0.34, due to an incor-
rect distance map prediction from DeepPotential (Supple-
mentary Figure S3A). However, the model built by MOD-
ELLER with threading information had an improved TM-
score of 0.61, indicating that better spatial restraints can be
extracted from the LOMETS3 threading templates. As a re-
sult, the LOMETS3 server generates the best model with a
TM-score of 0.69, due to optimal combination of spatial re-
straints from deep learning and threading alignments (Sup-
plementary Figure S3B).

Performance of LOMETS3 on multi-domain proteins

A new domain partition and assembly module has been de-
veloped and optimized for LOMETS3, which allows the
server to deal effectively with the threading and domain as-
sembly of multi-domain proteins for the first time. As shown
in Figure 1, the multi-domain modelling procedure consists
of three steps of domain boundary prediction, domain-level
template recognition, and full-length model construction
and assembly.

First, we examine the domain boundary prediction ac-
curacy of LOMETS3, which is a combination of two com-
plementary predictors: FUpred and ThreaDom. As shown
in Supplementary Figure S4, the average domain boundary
distance score (35) of LOMETS3, which is defined based
on the distance between the predicted and the true domain
boundaries along the sequence, was 8% and 16% higher
than those of FUpred and ThreaDom, and 76% and 191%
higher than those of two third-party deep learning-based
domain partition methods, ConDo (36) and DoBo (37), re-
spectively. To examine the effect of domain-level template
recognitions, we list in Supplementary Table S5 a TM-score
comparison of the full-chain threading templates versus
the templates assembled from the domain-level threading
templates. It is shown that the average TM-scores of the
assembled templates are 0.65 and 0.55 for individual do-
main and full-chain sequence, respectively, which are 30%
and 8% higher than those obtained by the traditional full-
chain threading approaches, demonstrating the utility of the
domain-level threading and assembly procedure for multi-
domain proteins.

In Figure 2C, we list a head-to-head TM-score compari-
son of the full-length models obtained by LOMETS3 based
on domain partition and assembly versus that obtained by
MODELLER built on the full-chain threading templates,
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a protocol similar to LOMETS2 but using LOMETS3
threading programs. Out of the 408 cases, the domain-based
threading/assembly approach achieved a higher TM-score
in 341 cases, while the full-chain threading did so only in 67
cases. Overall, the average TM-score of the domain-based
assembled models is 23% higher than that by full-chain
threading (P-values = 5.4E−45, one-tailed Student’s t-test).

Figure 2D shows an example from bifunctional polynu-
cleotide phosphatase (PDB ID: 3zvmA), which is a two-
domain protein. For full-chain threading, the first tem-
plate has a poor TM-score of 0.29, whereas the full-
length model built by MODELLER has a TM-score
of 0.33. When using the domain threading/assembly ap-
proach, the full-chain template assembled from the domain-
level templates has a TM-score = 0.66. After the L-
BFGS simulation, LOMETS3 obtained a final model
of TM-score = 0.91. Thus, we see that both domain
split/assembly and DeepPotential-guided structural simu-
lations contribute to the significantly improved model qual-
ity for the multi-domain protein structure modelling.

Comparison between LOMETS3 and other structure mod-
elling servers

To examine the quality of LOMETS3 with other ap-
proaches, we compared LOMETS3 with two widely used
protein structure modelling servers, including a threading-
based method, HHpred (29), and a deep learning-based
method, trRosetta (38). We note that the comparison with
other fully automated servers is essential to fairly test the
performance that is likely to be achieved by LOMETS3 and
other comparable methods for average, non-expert users.
For LOMETS3 and HHpred, the same sequence identity
cut-off (<30%) between the query protein and template se-
quences was utilized to exclude the homologous templates.
Figure 3A and B shows the TM-score of the three methods
on the 614 single-domain and 408 multi-domain proteins of
our Dataset-1 and Dataset-2, respectively. Overall, the aver-
age TM-score of LOMETS3 was 8% (10%) and 26% (17%)
higher than those of trRosetta and HHpred on the single-
domain (multi-domain) targets, respectively. Notably, for
the 211 single-domain hard targets (87 multi-domain hard
targets), LOMETS3 performed 8% (12%) better than tr-
Rosetta, although trRosetta was designed for deep learning-
based template-free modelling. These results demonstrated
the advancement of the hybrid TBM and deep learning ap-
proached adopted by the LOMETS3 server.

In a recent study, DeepMind released AlphaFold2 (5),
which was found to be the highest-performing structure pre-
diction method in the 14th Critical Assessment of Struc-
ture Prediction (CASP14) experiment. On the 614 single-
domain and 408 multi-domain proteins of our Dataset-
1 and Dataset-2, AlphaFold2 achieved impressive TM-
scores of 0.921 and 0.841, respectively. These are con-
siderably higher than those of LOMETS3 that has av-
erage TM-scores of 0.814 and 0.669, respectively, after
excluding close homologous templates. Interestingly, we
found that AlphaFold2 has 4% targets with a lower TM-
score than LOMETS3 on the 1022 benchmark proteins in
our dataset (see examples in Supplementary Figure S5).
However, without experimental structures, it is uncertain
in which cases LOMETS3 can perform better than Al-

phaFold2. Thus, how to identify those cases in practice to
allow the user to pick a LOMETS3 model instead of an
AlphaFold2 model is the subject of future research. Note
that the AlphaFold2 algorithm also includes a threading
component based on HHsearch. To examine the effective-
ness of LOMETS3, we modified AlphaFold2 by replacing
the threading component with LOMETS3, and compared
it with default AlphaFold2 based on HHsearch thread-
ing. As shown in Supplementary Table S6, we found that
the AlphaFold2 with LOMETS3 had a consistently higher
TM-score than AlphaFold2 using the default HHsearch on
the 614 single-domain proteins, showing a consistent im-
provement (P-value = 4.5E−18, Student’s t-test). These re-
sults demonstrate the usefulness and complementarity of
the LOMETS3 compared to the state-of-the-art end-to-end
deep learning algorithm, both in terms of providing better
predictions for some targets and in terms of improving Al-
phafold2 performance over an even wider variety of struc-
tures.

An early version of LOMETS3, which did not contain
the automated domain partition/assembly module and
template re-ranking algorithm, participated (as ‘Zhang-
TBM’) in the CASP14 experiment. It was ranked as
the fifth structure prediction algorithm (Supplementary
Figure S6), following three other Zhang Lab servers and
‘BAKER-ROSETTASERVER’ in the automated server
section of CASP14 (https://www.predictioncenter.org/
casp14/zscores final.cgi?gr type=server only). Figure 3C
presents four representative targets for which LOMETS3
generated a better model than all other servers, exclud-
ing the ‘Zhang-Server’ and ‘QUARK’ servers (both of
which used LOMETS3 as a component module). These
four targets belong to ‘FM’, ‘FM/TBM’ or ‘TBM-hard’
categories, which are roughly consistent with hard targets
defined by LOMETS3. The highlighted areas represent the
regions where LOMETS3 models are closer to the native
structure than the second-best server models, which result
in the overall higher TM-score. These results demonstrated
again the advantage of LOMETS3 on modelling the
non-homologous targets when coupling TBM with deep
learning potentials.

Performance of LOMETS3 on protein function prediction

Protein functions in LOMETS3 are predicted by an ex-
tended version of the COFACTOR (20) pipeline, which in-
tegrates LOMETS3 threading templates and structural ana-
logues that searched through the BioLiP protein function
database for identifying functional information. Function
annotations provided by LOMETS3 include GO, EC and
ligand binding sites (LBS), where GO is further categorized
into three sub-aspects of MF, BP and CC.

To examine the quality of LOMETS3 function predic-
tion, we compared LOMETS3 with an AlphaFold2-based
function annotation pipeline, which detects functional tem-
plates by structurally matching the AlphaFold2 model to
all proteins in the PDB/BioLiP library based on TM-align
search, and derives functional annotations from the BioLiP
database based on the structural analogues. The function
prediction performance is assessed by the F1-score, which
is defined as the harmonic average between precision and
recall.
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Figure 3. The comparison between LOMETS3 and other structural modelling servers. The TM-scores of full-length models predicted by LOMETS3,
HHpred and trRosetta for (A) single- and (B) multi-domain proteins for our benchmarking datasets. (C) Case study of four targets for which LOMETS3
generated better models than other servers in CASP14, where the LOMETS3 models (blue) and the second-best server models (red) are overlaid with the
experimental structures (yellow).

Figure 4A shows the F1-scores of the two methods on the
1728 MF, 1550 BP and 783 CC GO terms of our Dataset-
3. When calculating the F1-score for GO terms, all parent
terms of the annotated GO terms are also considered as an-
notations for each target. We found that the extended com-
bination of LOMETS3 and COFACTOR outperforms Al-
phaFold2 on all three sub-aspects of GO terms. Similarly,
Figure 4B lists the comparison results on the 659 EC num-
bers of Dataset-3. Each EC number is a code of four num-
bers, where the first digit defines the general type of reac-
tion catalysed by the enzyme and ranges from 1 to 6, and
each subsequent digit indicates a subclass of the previous
digit. The data again show a significant advantage of the
LOMETS3 over the AlphaFold2 EC annotation. In par-
ticular, the F1-score for the first digit of EC number for
LOMETS3 is 0.98, while that for AlphaFold2 is just 0.88.
In Figure 4C, we compare the two methods on 403 bind-
ing ligands of Dataset-3. The F1-score of LOMETS3 is also
considerably higher than that of AlphaFold2 (0.28 versus
0.20). These results suggest that LOMETS3 can provide
high-quality function predictions beyond those obtained
even from the highest accuracy available structural models,
probably because of the combination of multiple sources of
functional modelling pipelines in LOMETS3/COFACTOR
(see Supplementary Text S3).

WEB SERVER

Server input

The input to the LOMETS3 server is a single-chain amino
acid sequence in FASTA format. After making a submis-
sion, a URL link with a random job ID will be created

and allows the user to check the results and keep the data
privacy. The user is encouraged (but not required) to pro-
vide an email address when submitting a job. LOMETS3
server will automatically send a notification email with a
link to the Results page upon job completion. Three ad-
vanced options are provided to allow users to (i) either
keep all templates or remove the homologous templates (se-
quence identity >30%) for benchmarking, (ii) either use the
automated domain partition or not, and (iii) either predict
protein functions or not. Here, the second option is mainly
designed in case the user knows that the input sequence is a
single-domain protein. By selecting ‘run threading without
domain partition’ option, the system will ignore the domain
partition step and only run one-round full-chain threading,
which can avoid false-positive domain prediction and make
the job complete faster. If the third option (‘function pre-
diction’) is selected, the job will need an additional 1–10 h
to finish.

Server output

The user will receive the results within 24 h after sub-
mitting a job if the length of deposited sequence is <350
residues (Supplementary Figure S7). Generally, a larger
protein takes longer time, and a multi-domain protein usu-
ally require twice the runtime of a single-domain protein
with the same protein size. Additionally, the actual server
response time is equal to the sum of the job pending time
and running time. Thus, if too many sequences are accumu-
lated in the queue, the job pending time may be longer.

The LOMETS3 Results page consists of nine sections, in-
cluding (i) summary of the user input, including sequence
and predicted secondary structure and solvent accessibil-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/W

1/W
454/6568492 by guest on 25 July 2022



Nucleic Acids Research, 2022, Vol. 50, Web Server issue W461

Figure 4. Comparison between LOMETS3 and AlphaFold2 on the function prediction. (A) The F1-scores of the two methods on the 1728 MF, 1550
BP and 783 CC GO terms of Dataset-3. (B) The F1-scores of the two methods on the 659 EC numbers of Dataset-3. Each EC number is a code of four
numbers, where the first digit defines the general type of reaction catalysed by the enzyme and ranges from 1 to 6, and each subsequent digit indicates a
subclass of the previous digit. (C) The F1-scores of the two methods on 403 binding ligands of Dataset-3.

ity (Supplementary Figure S8A), (ii) spatial restraints pre-
dicted by the deep learning method DeepPotential (Sup-
plementary Figure S8B), (iii) domain partition results and
summary of individual domain threading results (Figure
5A), (iv) summary of the top 10 domain-level assembled
template alignments (Figure 5B), (v) summary of the top 10
full-chain threading templates (Figure 5C), (vi) up to 5 full-
length models (Figure 5D), (vii) the top 10 closest structural
analogues identified from the PDB, along with the associ-
ated function annotations (Figure 5E), (viii) function pre-
dictions by COFACTOR with LOMETS3 threading tem-
plates and structural analogues (Figure 5F), and (ix) the
top templates from the component threading programs and
the associated function annotations (Supplementary Fig-
ure S9). In the following, we go into some details on sec-
tions (iii)–(ix), which are new additions to the LOMETS3
server. The example presented in Figure 5 and Supplemen-
tary Figure S9 comes from the bifunctional polynucleotide
phosphatase (PDB ID: 3zvmA) run with ‘remove templates
sharing >30% sequence identity with target’ and ‘run do-
main partition and assembly’ options selected.

Figure 5A shows the domain partition results of FUpred
and LOMETS3 (section iii). Three images, including con-
tact map associated with the predicted domain boundary,
FUpred continuous domain scoring function and discon-
tinuous domain scoring function, are listed in the FUpred
results panel. In particular, the different domains are de-
picted by different colours in the contact map in order to
highlight the domain partition results. Following that, a
table that summarizes the LOMETS3 domain partition is
shown, and the table contains the number of domains, the
boundary and length of each domain, and the sequence of
each domain. In each row, users can click the image or the
hyperlink of the domain to check the modelling results of
each domain in an additional output page, which contains
sections (i), (ii), (v)–(vii) and (ix). Section (iii) is optional for
multi-domain proteins. If the target is defined as ‘easy’ and
the alignment coverages of top five ranked templates are all
>0.8, the target will be modelled without domain partition
since the full-chain threading can generate reliable models
directly.

Figure 5B and C lists the top 10 assembled templates (sec-
tion iv) and full-chain threading templates (section v) iden-

tified by LOMETS3, respectively. Here, the presented tem-
plates are assembled from the top-ranked domain-level tem-
plates by DEMO2, and thus section (iv) is only available for
multi-domain targets. For each template in sections (iv) and
(v), the left panel displays the template’s PDB ID (only in
section v), contact map overlapping score (CMO), mean ab-
solute distance error (MAE), sequence identity to the query,
alignment coverage, normalized Z-score and the thread-
ing algorithm. Two PDB IDs and corresponding hyperlinks
are provided, where the domain-level PDBs are templates
used in the LOMETS3 library, and the full-length PDBs
are linked to the original RCSB PDB. CMO is the contact
map overlapping score (see Equation S13 in Supplemen-
tary Data) between template contact map and predicted
query contact map, and MAE is the mean absolute dis-
tance error (see Equation S11 in Supplementary Data) be-
tween template distance map and predicted query distance
map. The normalized Z-score (see Equation S9 in Supple-
mentary Data) shows the significance of the template align-
ment, where the normalized Z-score ≥1 indicates a good
alignment by the corresponding threading program. The
right panel of sections (iv) and (v) shows query–template
alignments by LOMETS3 associated with the predicted sec-
ondary structure and solvent accessibility. In the bottom of
section (v), 3D structures of the templates, together with the
threading methods, are provided.

Figure 5D shows up to five full-length models generated
by LOMETS3 (section vi). The user can drag, rotate or
zoom in on the structure showed in the figures, and the
PDB-formatted files storing the model coordinates can be
downloaded from the links under the figures.

Figure 5E presents the top 10 closest protein structures
in the PDB to the LOMETS3 first model, along with func-
tional annotations derived from those structures (section
vii). The table provides detailed information on the struc-
tural analogues identified by TM-align, including the tem-
plate ID, TM-score, root-mean-square deviation (RMSD),
sequence identity and alignment coverage. In addition, links
for downloading the superposed structures and pairwise se-
quence alignments are provided in the same table. Below the
table, the function annotations for those aligned structural
analogues are shown, where the functions obtained from the
BioLiP database (27) include three aspects: GO terms, EC
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Figure 5. Illustration of the LOMETS3 server output, including (A) domain partition results and summary of individual domain threading results, (B)
summary of the top 10 domain-level assembled template alignments, (C) summary of the top 10 full-chain threading template alignments identified by
LOMETS3, (D) up to 5 full-length models, (E) top 10 closest structure analogues in PDB and the associated function annotations, and (F) function
predictions from COFACTOR with LOMETS3 threading templates and structural analogues.

numbers and LBS. In detail, MF, BP, CC GO terms, four-
digit EC number, three-letter ligand code and the LBS infor-
mation are listed in this table, and hyperlinked to QuickGO
(39) Gene Ontology, the ExPASy (40) ENZYME database
or the BioLiP database, as appropriate. We note that the re-
sults of section (vii) can be different from those of sections
(iv) and (v), because the structural analogues in section (vii)
are detected based on predicted model structures through
TM-align, while the templates in sections (iv) and (v) are de-
tected based only on the query sequence via the LOMETS3
threading unit.

Figure 5F provides an example of the results of function
predictions by the LOMETS3 built on the extended CO-
FACTOR pipeline (section viii). The first three panels show

the consensus GO prediction results in three aspects of the
MF, BP and CC. The predicted GO terms are displayed to-
gether with their parent terms as a directed acyclic graph,
where each GO term is highlighted with purple through
red colours representing CscoreGO values on a scale from
0.4–0.5 to 0.9–1.0, respectively. Only the GO terms with
CscoreGO ≥ 0.4 are displayed, although the full prediction
result is available for download from a link in the right ta-
ble. Furthermore, the right table lists predicted GO terms,
along with CscoreGO and common names for those terms.
The fourth panel shows the top five EC number prediction
results, each displayed alongside the template structure with
predicted active sites. The right table lists the predicted EC
number, CscoreEC, PDB ID, TM-score, RMSD, sequence
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identity, coverage and predicted active sites, respectively.
The last panel shows the ligand binding prediction results.
For each template, the positions of the LBS residues are
highlighted. The right table lists the three-digit ligand code
and predicted binding site, together with CscoreLB, PDB
ID, TM-score, RMSD, sequence identity, coverage and lo-
cal similarity score. The predicted ligand binding complex
can be downloaded from the links in the right table.

Supplementary Figure S9 displays the templates and
corresponding function annotations from the component
threading programs (section ix). In each program, up to 10
templates associated with the pairwise alignment informa-
tion (template ID, CMO, MAE, Z-score, etc.) and the func-
tion annotations (GO, EC and LBS) are displayed.

CONCLUSION

We have proposed LOMETS3 as a significant exten-
sion of the previous LOMETS2 meta-threading server
for template-based protein structure prediction and func-
tion annotation. In LOMETS3, a balanced set of start-
of-the-art threading programs, including five deep learning
contact-based and six profile-based methods, is integrated
for multiple template identifications, and a new deep learn-
ing method, DeepPotential, was extended to create high-
quality contact maps to guide the deep learning threading
alignments. Meanwhile, the entire set of spatial potentials,
including contact and distance maps and hydrogen-bonding
potential, is used to re-rank and select templates from the
profile-based threading alignments, in order to improve the
accuracy of the later programs. To provide atomic models,
which are usually needed for detailed function annotation
and virtual screening, a gradient-based L-BFGS folding
system has been developed to construct atomic full-length
models guided by the restraints from deep learning mod-
els and threading alignments. In addition, protein functions
are predicted from COFACTOR using a combination of
LOMETS3 threading templates and structural analogues.
For the first time, a domain split and assembly protocol was
introduced to allow for the LOMETS3 server to effectively
handle multi-domain protein structure prediction.

Large-scale benchmark tests indicated that the new im-
plementations have significantly improved the quality and
functionality of the LOMETS3 server relative to earlier
LOMETS versions. On the 614 single-domain proteins in
our benchmarking dataset, for example, the average TM-
scores for the first template/full-length model are 5%/22%
higher than those obtained by the previous LOMETS2.
The new LOMETS3 server also outperforms the widely
used third-party servers HHpred and trRosetta, with a
TM-score increase by 26% and 8%, respectively; this ad-
vantage is mainly attributed to the efficient coupling of
multiple template recognition and deep learning poten-
tials in LOMETS3. Although LOMETS3 underperforms
the record-holding method AlphaFold2, there are cases for
which LOMETS3 generated higher TM-scores than Al-
phaFold2 (Supplementary Figure S5). Meanwhile, the in-
corporation of LOMETS3 threading alignments into Al-
phaFold2 can further improve the performance, indicat-
ing the usefulness and complementarity of LOMETS3 with
the state-of-the-art deep learning approaches. For multi-
domain proteins, the domain-level template threading and

assembly process generated full-length models with a TM-
score 23% higher than the traditional full-chain thread-
ing, demonstrating the effectiveness of the new protocol for
multi-domain protein structure modelling. A former ver-
sion of LOMETS3 was also tested (as ‘Zhang-TBM’) in the
CASP14 and ranked as the second-best server, after exclud-
ing the other Zhang Lab servers that used the LOMETS3
models as the starting point in their pipelines. Furthermore,
we tested the quality of LOMETS3 function predictions by
comparing with an AlphaFold2-based function annotation
pipeline. The benchmark results indicate that LOMETS3
outperforms AlphaFold2 model-based pipeline on protein
function predictions, in terms of GO term, EC number and
LBS prediction.

As an online server, in addition to high-quality mod-
elling results, it is also important to consider the conve-
nience of use, transparency of modelling process and ease
of interpretability of the modelling results. In this regard,
we have optimized the server interface that includes mul-
tiple advanced options to control homology cut-off and
domain partition and assembly process. The output page
contains now nine carefully designed sections to display
detailed modelling results ranging from domain boundary
prediction, deep learning potentials, domain- and chain-
level threading alignments, and atomic full-length atomic
models, as well as structure-based function annotations
and predictions, including GO, EC and LBS predictions.
These new web interface and output designs help signifi-
cantly improve the transparency and interpretability of the
LOMETS3 modelling results.

Despite the success, there is still room for further im-
provement of LOMETS3 in the future. For instance, the
current deep learning information is mainly derived from
DeepPotential, which was trained on a residual convolu-
tional neural network system, and may not work well for
the targets with few homologous sequences. A new ap-
proach utilizing attention-based MSA transformer coupled
with microbiome-targeted metagenome MSA collections
(41) might help in modelling such targets. Meanwhile, im-
proved deep learning models will also help improve the ac-
curacy of domain splitting and domain orientation assem-
bly for large multi-domain proteins (e.g. >1000 residues),
which are still challenging to LOMETS3 when the targets
lack full-length template structures. Efforts along these lines
will continue to enhance LOMETS as one of the most ro-
bust and useful TBM platforms to serve the broader biolog-
ical community.
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