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SUMMARY

Ab initio protein structure prediction has been vastly boosted by themodeling of
inter-residue contact/distance maps in recent years. We developed a new deep
learning model, DeepPotential, which accurately predicts the distribution of a
complementary set of geometric descriptors including a novel hydrogen-bonding
potential defined by C-alpha atom coordinates. On 154 Free-Modeling/Hard tar-
gets from the CASP and CAMEO experiments, DeepPotential demonstrated
significant advantage on both geometrical feature prediction and full-length
structure construction, with Top-L/5 contact accuracy and TM-score of full-length
models 4.1% and 6.7% higher than the best of other deep-learning restraint
prediction approaches. Detail analyses showed that the major contributions to
the TM-score/contact-map improvements come from the employment of multi-
tasking network architecture and metagenome-based MSA collection assisted
with confidence-based MSA selection, where hydrogen-bonding and inter-
residue orientation predictions help improve hydrogen-bonding network and
secondary structure packing. These results demonstrated new progress in the
deep-learning restraint-guided ab initio protein structure prediction.

INTRODUCTION

Despite significant efforts and progress, ab initio protein structure prediction, which aims to construct 3D

models from the sequence alone, remains an important unsolved problem in computational biology

(Zhang, 2008). A variety of methods have been proposed for ab initio structure prediction, based on frag-

ment assembly simulations coupled with knowledge-based potentials (Simons et al., 1997; Xu and Zhang,

2012; Zhang and Skolnick, 2004a) or built on hybrid deep machine learning techniques (Senior et al., 2020;

Yang et al., 2020; Zheng et al., 2021b).

The recent community-wide critical assessment of protein structure prediction (CASP) experiments

demonstrated dominant advantages of deep-learning-based approaches in ab initio structure predictions

(Abriata et al., 2019; Pereira et al., 2021). Because deep-learning-based approaches can predict abundant

information on the probability distributions of geometrical characteristics of protein structures (Yang et al.,

2020; Li et al., 2021a; Xu et al., 2021), using them as constraints can result in more accurate full-length struc-

ture models than that built from the classical knowledge-based potentials which are derived from simple

statistics of the PDB. Inter-residue contacts were first utilized as a critical geometrical term to encode

invariant interactions between protein atoms, where the contact models were initially predicted by the

assumption of coevolution in multiple sequence alignment (MSA) (Korber et al., 1993; Morcos et al.,

2011; Jones et al., 2012; Ekeberg et al., 2013). Later, the coevolution analysis data were further used as input

features of machine learning models for improving the contact prediction accuracy (Wang et al., 2017;

Li et al., 2019, 2021a). With the development of the deep learning algorithms, more detailed inter-residue

geometrical terms, including distance (Senior et al., 2020; Xu, 2019) and torsion angle orientation (Yang

et al., 2020), have been introduced and accurately predicted. These terms, when used as restraints for

potential construction, have proven to be useful for further improving protein structure prediction

(Ju et al., 2021; Xu et al., 2021; Yang et al., 2020; Zheng et al., 2021a; Mortuza et al., 2021).

Most recently, an end-to-end protein structure prediction protocol, AlphFold2 (Jumper et al., 2021a), was

proposed and implemented through self-attention networks combined with 3D-equivariant structure
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transformation. AlphaFold2 participated in CASP14 and was able to construct correct fold for nearly all sin-

gle domain protein targets. However, the training of such giant and complicated neural networks requires a

high amount of computational resource which is unattainable for most academic groups. Alternatively,

another end-to-end model, RoseTTAFold (Baek et al., 2021), was later proposed based on SE(3)-trans-

former. Based on the predicted geometry distributions, injected with the information from and end-to-

end loss function, RoseTTAFold showed promising structure prediction results with less resource. Interest-

ingly, models constructed from geometry restraints clearly outperformed those directly derived from the

end-to-end training by RoseTTAFold (Baek et al., 2021), suggesting the advantage and usefulness of spatial

restraints on high-accuracy protein structure prediction. Nevertheless, many of the critical procedures

associated with the geometry-assisted 3D structure modeling, including network design, coevolutionary

feature extraction, and geometrical term selection, remain to be optimized for maximizing the overall per-

formance of ab initio structure predictions.

In this study, we developed a new deep learning architecture, DeepPotential, for protein structural geom-

etry prediction, with the focus on systematically examining the impact of feature representation, neural

network design, and effective geometrical term selection on spatial restraints and 3Dmodel constructions.

To enhance the modeling accuracy, multiple unary and pairwise features are trained through a hierarchical

deep residual neural network (He et al., 2016) featured with parallel 1D and 2D network blocks followed by

a set of sequential residual blocks, which can be practically trained with limited computation resources,

i.e., single GPU with 10GB memory, to predict distance, torsion angles, and H-bond terms by a multi-

tasking strategy, where the H-bond terms are the novel terms introduced for the first time to help

recognize and refine the secondary structure patterns from Ca atoms. By integrating a newly constructed

gradient-descent-based folding algorithm that can handle various kinds of restraint potentials powered by

autograd mechanics in PyTorch, large-scale benchmark results demonstrated a significant advantage of

DeepPotential over other state-of-the-art deep learning approaches on both geometrical feature predic-

tion and full-length ab initio protein structure construction. The novel findings in this research could be

easily extended, e.g., the H-bond terms could be considered as additional standard geometry terms for

better H-bonding network modeling and the subsequent structural folding program could integrate arbi-

trary smooth potentials for protein structure prediction. The online server and standalone package of the

DeepPotential program are freely accessible at https://zhanggroup.org/DeepPotential.

RESULTS

DeepPotential starts with the collection of MSAs by searching the query throughmultiple whole- andmeta-

genome protein sequence databases (Zhang et al., 2020). Two complementary sets of coevolutionary

features, pseudo-likelihood maximization (PLM) (Ekeberg et al., 2013; Balakrishnan et al., 2011) and mutual

information (MI)(Korber et al., 1993), are then extracted from the MSAs and fed into a hierarchical neural

network, which is composed of 1D and 2D residual blocks, to generate four sets of complementary local

structural descriptor models, including distance maps, inter-residue angles, dihedral orientation angles,

and backbone hydrogen-bonding networks. Full-length models are finally constructed from the structural

descriptors using the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) algorithm

(Zhu et al., 1997) (see STAR Methods and Figure 1).

To test the performance of DeepPotential, three sets of proteins are collected. The first and second contain

27 and 22 Free-Modeling (FM) domains collected from CASP13 and CASP14 respectively, while the third

set contains 127 Hard targets from continuous automated model evaluation (CAMEO) (Haas et al.,

2013). For all datasets, targets with a sequence identity >30% to any of the DeepPotential training datasets

have been excluded.

Contact and distance map predictions

Table 1 summarizes the results of DeepPotential for the long-range (ji � jj> 23) contact prediction under

different cutoffs (L/5, L/2, and L, with L being the sequence length) on the CASP13 and CAMEO datasets, in

control with three state-of-the-art algorithms of trRosetta (Yang et al., 2020), CopulaNet (Ju et al., 2021),

and RaptorX (Xu et al., 2021). Because DeepPotential does not generate contact model specifically, the

predicted probability for a residue pair being in contact is calculated by summing the probabilities of all

distance bins <8 Å for Cb atoms and sorted for top contact model output. Here, DeepPotential and the con-

trol methods used the same inputMSAs created by deepMSA (Zhang et al., 2020). On both the CASP13 and

CAMEO datasets, DeepPotential achieves the best accuracy under all cutoffs. Taking Top-L long-range
2 iScience 25, 104425, June 17, 2022
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Figure 1. The overview of the DeepPotential pipeline

The pipeline extracts evolutionary features from MSA using statistical models as the input. The outputs contain various geometric predictions which can be

subsequently converted to potentials for ab initio protein structure prediction.
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contacts as an example, DeepPotential achieves precisions of 0.608 and 0.687 on two datasets, respec-

tively, which are 5.2% and 7.0% higher than the second-best method by the most recent version of RaptorX

(Xu et al., 2021). Despite the relatively small dataset, the corresponding p-values are 3.9 3 10�2 and

3.4 3 10�16, respectively, showing a statistically significant superiority for contact map prediction by

DeepPotential. AlphaFold1 (Senior et al., 2020) was not considered here because the program was not

publicly available. Nevertheless, the Top-L precision of AlphaFold1 on CASP13 FM targets was reported

as 45.5%, lower than the 60.8% obtained by DeepPotential. Because all methods in this comparison use

the same MSAs collected by deepMSA, the data in Table 1 highlight the advantage of the multi-task neural

network design and the specific two-level unary and pairwise feature extractions in DeepPotential.

In Figures 2A and 2B, we listed a mean absolute error (MAE) of distance maps at different cutoffs (N), which

is calculated by MAE = 1=N
PN
i = 1

����di � d0
i

����, where di is the estimated distance from the predicted distribu-

tion of ith residue pair as ranked by the total probability of the distance less than 20 Å, and d0
i is the distance

of the corresponding residue pair on the target structure.While theMAE of Top-L/2 distance is comparable

between DeepPotential and other programs, with the increase of evaluated residue pairs (from Top-L/2 to

10*L), the MAE values for DeepPotential are increasingly more accurate than other competing methods.

In fact, a high number of deep-learning distances are usually needed to fully define and smoothen the en-

ergy landscape so that the gradient-based model methods could be applied to identify energy minimum

states. A recent study (Pearce et al., submitted) showed that a set of 93*L distance restraints are required to

achieve the best modeling results through L-BFGS optimization. Such results suggest that DeepPotential

can produce higher-accuracy distance predictions on a large number of residue pairs for gradient-based

structure constructions.

DeepPotential also participated in the most recent 14th CASP experiment as an automatic server group

(Group ID: 010) in the residue-residue contact category and ranked as one of the top groups among all

servers. Figures 2C and 2D show a comparison of the average contact precision and distance MAE of

DeepPotential with other top servers. On the 22 CASP14 FM targets, DeepPotential achieves an average

Top-L/5 precision of 0.638, 3.6% higher than that of the second-best server, Group 183. For distance pre-

diction, DeepPotential achieved the lowest Top-5*LMAE of 3.098 Å. Table S1 summarizes the performance

of contact and distance predictions of DeepPotential and the control methods (or their extensions) for the

CASP14 FM targets on the blind test. The result is consistent with that of CASP13 and CAMEO dataset as

listed in Table 1. For example, the Top-L contact precision of DeepPotential is 0.396 on the CASP4 FM
iScience 25, 104425, June 17, 2022 3



Table 1. Precision comparison of long-range Top-N contact prediction between DeepPotential and controlled

methods on CASP13 and CAMEO datasets

Datasets Methods N = L/5 N = L/2 N = L

CASP13 trRosetta 0.794 (2.0 3 10�2) 0.688 (1.6 3 10�2) 0.546 (1.2 3 10�3)

CopulaNet 0.810 (1.5 3 10�1) 0.682 (5.0 3 10�2) 0.531 (1.3 3 10�3)

RaptorX 0.819 (1.1 3 10�1) 0.729 (1.8 3 10�1) 0.578 (3.9 3 10�2)

DeepPotential 0.854 0.751 0.608

CAMEO trRosetta 0.874 (3.0 3 10�4) 0.776 (1.3 3 10�12) 0.630 (1.9 3 10�26)

CopulaNet 0.835 (5.9 3 10�10) 0.725 (1.6 3 10�16) 0.564 (7.6 3 10�24)

RaptorX 0.867 (1.4 3 10�6) 0.780 (2.4 3 10�11) 0.642 (3.4 3 10�16)

DeepPotential 0.902 0.822 0.687

The bold fonts highlight the highest precision values in each category
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targets, which is 18.6%, 33.8%, and 40.4% higher than that of trRosettaX (Group ID: Yang_FM), CopulaNet

(Group ID: FALCON-DeepFolder), and RaptorX (Group ID: RaptorX), respectively. The leading perfor-

mance in the blind CASP test shows the validity of the proposed pipeline for inter-residue contact and

distance map predictions.

Orientation and H-bond predictions

In addition to the distance prediction, DeepPotential also provides probability distributions of dihedral

angle orientations proposed by trRosetta (Yang et al., 2020), and three coarse-grained hydrogen-bond

(H-bond) descriptors originally defined in I-TASSER (Yang et al., 2015) (Figure S4). Figure 3 shows the cor-

relations between DeepPotential predictions versus the ground truth in the experimental structures. The

predicted values are themeans estimated from the predicted angle histogram. For the symmetricU torsion

angle and asymmetricQ or F angle, long-range Top-5*L and Top-10*L predictions are evaluated, respec-

tively, sorted by the total probability of Cb distance below 20 Å. On the combination set of 154 CASP13 FM

and CAMEO Hard targets, DeepPotential achieves the circular correlation coefficient (CCC) of 0.729 and

0.861 for U and Q torsion angles, and a Pearson correlation (PCC) of 0.880 for F angle. These correlation

coefficients are 15%, 4%, and 4% higher than those obtained by trRosetta (0.635, 0.827, and 0.848).

Figures S2A–S2C further compares the MAE values of the orientation angles between DeepPotential

and trRosetta. The average MAEs (degree) by DeepPotential are 35.94, 23.64, and 14.17 for U, Q, and F

angles, respectively, which are significantly lower than the MAEs of 41.71, 27.39, and 15.91 for trRosetta

(with p-values of 7.4 3 10�22, 7.0 3 10�14 and 8.5 3 10�27, respectively). The major reasons for the better

performance by DeepPotential are probably due to the more discriminative feature extraction and the

multi-task training with H-bond terms which help calibrate the inter-chain torsion angle predictions in a

corporative manner.

For the H-bond descriptors, Top-2*L predictions are evaluated, as they are defined at a lower threshold of

inter-Ca distance (10 Å). Figures 3D–3F show that DeepPotential generates H-bond descriptors with a PCC

value of 0.867, 0.771, and 0.753 for aa, bb, and cc terms (Equation 3 inMaterials andMethods), respectively,

which are comparable with that of the torsional orientation terms. The Top-2*L angle MAEs reach the lower

scale of 17.70, 22.90, and 22.32, respectively, for the three H-bond terms. These angles and H-bond term

predictions provide important restraints, complementary to distance/contact maps, for the DeepPotential-

based ab initio protein structure prediction.

Comparative analyses show important advantages of MSA selection and network

architecture design

We process to investigate the impact of different components of DeepPotential to the performance in Fig-

ure 2E. Compared to the previous DeepMSA approach (Zhang et al., 2020), one update in DeepPotential is

that three additional metagenome databases have been used for MSA construction. As shown in Figure 2E

(Panel 1 vs 6), the additional sequences bring a quite significant improvement, from 0.660 to 0.677 in con-

tact-map precision, corresponding to a p-value of 1.33 10�7 in Student’s t test. One possible reason for the

improvement should come from the greater MSA depths as the number of effective sequences (Neff) in-

creases from 387.0 to 409.1 due to the utilization of the metagenome databases. Apparently, the increased
4 iScience 25, 104425, June 17, 2022



Figure 2. Performance of contact and distance predictions by different methods

(A and B) Comparison of long-range Top-N distance prediction evaluated by MAE on CASP13 FM targets and CAMEO Hard targets, respectively.

(C) The Top-L/5 precision of the ten best servers in CASP14 on 22 FM targets, where DeepPotential is group 010. Data are mean and standard deviation of

precision for each group.

(D) The Top-5*L MAE of the ten best servers in CASP14 on 22 FM targets.

(E) The ablation analysis of DeepPotential on long-range Top-L precision by excluding specific components.
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number of homologous sequences facilitates the collection of more precise and robust coevolution

information.

Nonetheless, the Neff value might not be an optimal indicator for the quality of MSA. In DeepPotential, we

selected a favored MSA for each target from the candidate MSAs based on confidence score. For this, a

quick distance prediction is performed on each candidate MSA, where the confidence score is computed

as the average of the cumulative probability under a threshold 10 Å of the top 4 � L predicted Cb-Cb dis-

tance distributions for residue pairs whose sequential gap is over four residues. As shown in Figure 4A

(Panel 2), the use of confidence score resulted in 3.4% higher contact precision (p-value = 1.1 3 10�4)

than that using the Neff to select MSAs. Figure S3 presents the correlation between the contact precision

and the confidence score and Neff of selected MSAs, where the PCC for the confidence score (0.827) is

significantly higher than that for the Neff (0.503), suggesting that the confidence score is a more reliable

indicator for MSA selections.

We further check the MSA selection on two of the state-of-the-art protein structure prediction methods,

AlphaFold2 and RoseTTAFold, on the CAMEO test dataset. For each target, two MSAs are selected using

DeepPotential confidence score and Neff value, respectively. 79 out of 127 targets have different MSAs

selected. The average TM-score (Zhang and Skolnick, 2004b) of AlphaFold2 based on confidence score-

selected MSAs is 0.812, slightly higher than that based on Neff (0.806). Further improvements could be

observed if we only consider those targets whose DeepPotential confidence score is x% higher than the

confidence score of its MSA with the highest Neff value, where x% is the confidence threshold parameter.

Table S2 shows the performance of MSA selection indexes with different confidence thresholds, where the

TM-scores of AlphaFold2 based on confidence score-selected MSAs are 0.9%, 3.3%, 3.6%, and 6.2% higher

than those based on Neff-selected MSAs, with the confidence thresholds from 1% to 4%, respectively.
iScience 25, 104425, June 17, 2022 5



Figure 3. Comparison of DeepPotential orientation and H-bond prediction with the experimental values

(A–C) Correlations on U, Q, and J angles, respectively.

(D–F) Correlations on H-bond descriptors (aa, bb, and cc defined in Equation 3).

ll
OPEN ACCESS

iScience
Article
Similar results were observed for RoseTTAFold but the advantage is slightly less pronounced, possibly

because that RoseTTAFold program only takes the first 1000 sequences from the input MSA (Table S2).

These results suggest that the DeepPotential confidence score could be used as a general filter for MSA

selections.

DeepPotential has integrated a set of eight structure descriptors on distance, inter-change angle and

orientation, and hydrogen-bonds in the deep residual network training. The multi-tasking networks also

contribute to the high performance of DeepPotential. As shown in Figure 2E (Panel 3), if we replace the

deep learning model with the legacy architecture (Li et al., 2021a) with the same training set but only

supervised by the distance bins, the contact precision would drop sharply to 0.598. In Panels 4 and 5 of Fig-

ure 2E, we also present the contact prediction results without orientation and H-bond tasks, respectively,

where the two tasks added the improvement on contact accuracy predictions by 4.3% and 0.29%, respec-

tively, which further confirms the advantage of multi-tasking networks.

In Figure S1, we also show the detailed head-to-head comparison of contact precision without correspond-

ing components versus the full pipeline. The success rates for the components, i.e., the proportion of the

cases for which the precision of the full pipeline is higher than or equal to that without the corresponding

component, are 92.2%, 85.7%, 66.9%, 59.1%, and 54.5% for additional databases, MSA selection,

DeepPotential architecture, orientation tasks, and H-bond tasks, respectively. These results are consistent

with what were observed in Figure 2E.
DeepPotential-based 3D structure prediction

To examine the practical usefulness of DeepPotential on 3D protein structure prediction, we implemented

a differentiable protein folding program that can construct twice-differentiable potentials and obtain the

forces automatically using PyTorch (Paszke et al., 2017). The program thus enables the use of the gradient-

descent-based optimization algorithm to identify the conformations with the lowest energy (Materials and

Methods).
6 iScience 25, 104425, June 17, 2022



Figure 4. 3D structure prediction based on DeepPotential

(A) Comparison of TM-score distributions between DeepPotential and trRosetta potential.

(B) Head-to-head comparison of TM-score based on DeepPotential and trRosetta potential.

(C and D) Predicted distance histogram map versus distance histogram map from the experimental structure for trRosetta and DeepPotential, respectively.

(E) Predicted models of CASP13 FM target, T0957s1, based on trRosetta potential and DeepPotential, compared to the experimental structure.
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In Figure 4, we summarize the folding result of DeepPotential on the 154 hybrid test targets of CASP13 and

CAMEO, in comparison with that of trRosetta which implements both distance and orientation predictions

(Yang et al., 2020). Here, to have a clean and fair comparison of the two programs, we implemented the

trRosetta potential in the same differentiable folding pipeline of DeepPotential, although we found that

the default pyRosetta search engine (Chaudhury et al., 2010) generated a similar folding result to the

DeepPotential folding pipeline for the two potentials. On the 154 hybrid targets, DeepPotential achieves

an average TM-score of 0.672, which is 6.7% higher than that by the trRosetta potential (0.630), correspond-

ing to a p-value of 2.6 3 10�16 and showing that the difference is statistically significant.

Figure 4A shows a clear TM-score shift of DeepPotential over trRosetta on the histogram distributions,

where the 25%, 50%, and 75% percentile TM-scores are 0.558, 0.722, and 0.811 for DeepPotential, which

are 6.7%, 8.6%, and 5.7% higher than those of trRosetta, respectively. Figure 4B presents a head-to-

head comparison of TM-scores, where DeepPotential shows a better performance in 131 out of 154 targets

(85%) and trRosetta does so only in 23 cases.

The major reason of better performance of DeepPotential is due to the higher accuracy of the spatial

restraint accuracy. Here, we investigate an illustrative example from CASP13 T0957s1 which is a discon-

tinuous domain (2–37,92-163 of original sequence) from the E. coli contact-dependent growth inhibition

toxin, chain A of PDB: 6cp8, with 108 residues. As shown in Figures 4C and 4D, the top-L MAE of the

distance map by DeepPotential (1.39 Å) is 1.11 Å lower than that of trRosetta (2.50 Å). Especially, the

false-positive contact prediction at the upper-left region by trRosetta in Figure 4C resulted in the false

anti-parallel beta-sheet structure prediction between N- and C-terminal. As a result, the structure built

based on trRosetta potential has a TM-score of 0.491, which is 46% lower than that by DeepPotential

(TM-score = 0.719) (Figure 4E). It is notable that the predictions of the two methods are based on the

same MSA with a low Neff value of 3.41. The success of such an example highlights the effectiveness
iScience 25, 104425, June 17, 2022 7
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of the proposed DeepPotential that can help assist the protein structure prediction from a low number of

homologous sequences.

Note that the advantage of DeepPotential might be overrated when compared to trRosetta which was

trained on data from 2018, as DeepPotential should have access to more information when trained on

data from 2019. In Table S3, we list the comparison results of DeepPotential with three other top

methods, trRosetta2 (Anishchenko et al., 2020), AlphFold2 (Jumper et al., 2021a), and RoseTTAFold

(Baek et al., 2021), which were all trained in and after CASP14. For a fair comparison, all the methods

in the table used the same MSAs from DeepMSA, without using any template information. Unsurpris-

ingly, AlphaFold2 outperforms all other methods with the average TM-score 20.1% and 26.6% higher

than those of RoseTTAFold and DeepPotential, respectively. The superiority of AlphaFold2 may be

contributed by its carefully designed recycling Evoformer neural networks that can iteratively optimize

the models and the end-to-end protocol enabling equivariant protein structure learning. The two ver-

sions of RoseTTAFold have also slightly higher average TM-scores than DeepPotential (0.606 and

0.590 versus 0.575); this might also be brought due to the incorporated end-to-end information

in the geometry distributions. Nevertheless, there are still some (2, 5, and 7) targets for which

DeepPotential has a higher TM-score compared to AlphaFold2, RoseTTAFold, and RoseTTAFold_e2e,

respectively, showing that DeepPotential could potentially provide information complementary to

AlphaFold2 and RoseTTAFold. Compared with trRosetta2, an extension of trRosetta with additional fea-

tures from pre-trained protein language models, DeepPotential has a better performance in terms of

TM-score and RMSD. Based on insight obtained from Table S3, our future focus will be on the design

of an effective recycling framework, the proper injection of end-to-end information during the training,

and the collection of richer input features (e.g., protein/MSA language models), to further improve

DeepPotential.
Hydrogen-bond prediction helps improve secondary structure packing

Compared to other deep learning models, one of the major new ingredients of DeepPotential is the

H-bond network prediction. In our test on the 154 proteins, if the H-bond potential was excluded, the

average TM-score of the DeepPotential models slightly drops from 0.672 to 0.663 with a p-value = 0.02,

showing that the TM-score improvement brought by H-bond potential is modest but statistically

significant.

The more significant impact of H-bond potential is on the secondary structure packing, which is ex-

pected because the form of local secondary structures in proteins is mainly driven by hydrogen-bonding

interactions. In Figures 5A and 5B, we compare the Matthews correlation coefficient (MCC) and F1

score (harmonic mean of precision and recall) of the secondary structures in the DeepPotential model

relative to the experimental structure, when using and without using the H-bond predictions in the

DeepPotential-based folding. It is shown that the H-bond potential improves the accuracy for all three

secondary structure classes (alpha-helix, beta-sheet, and coil). Especially for beta-sheets, the MCC/F1

score on the 154 test targets improves from 0.394/0.439 to 0.538/0.539. Figure 5C further displays a

head-to-head target-wise F1 score comparison, which is computed by the average of F1 scores of the

three classes for each target, where 111 out of 154 targets have an F1 score improved when folding

with the H-bond potential.

In Figures 5D–5F, we show an illustrative example from the CAMEO target chain C of PDB: 6ntv, which

consists of 220 residues forming an a/b structure. Consistent with the average trend, the TM-score of the

full-version DeepPotential model (0.748) is only slightly higher than that without using H-bond terms

(0.734). However, the secondary structural F1-score (0.773) of the full-version model is significantly higher

than the latter (0.472); this is mainly due to the H-bond potential, as the average errors (MAE) of aa, bb,

and cc terms in the original model (17.54, 29.73, and 29.59) have been dramatically reduced to (13.16,

19.57, and 19.28) after introducing the H-bond restraints. In Figure 5D, we show an example of the res-

idue pair (126, 167) whose (aa, bb, and cc) = (24.77, 155.82, and 148.47) in the original model without

H-bond. Such geometry results in the loss of the hydrogen bond that is formed in the native structure

with native (aa, bb, and cc) = (19.16, 168.15, and 162.41), as shown in Figure 5F. DeepPotential predicted

a mean value of (aa, bb, and cc) = (22.24, 165.59, and 154.13) and the use of this restraint adjusts the

relative C a orientation and regulates the (aa, bb, and cc) to (19.38, 165.65, and 156.63) in the 3D model,

which results in the successful recovery of the hydrogen-bonding in this residue pair (Figure 5E). These
8 iScience 25, 104425, June 17, 2022



Figure 5. H-bond potential improves protein secondary structure packing

(A and B) Performance of classification comparison with and without H-bond potential.

(C) head-to-head comparison of F1 score for each target with and without H-bond potential.

(D and E) Predicted structures of a CAMEO target, 6ntvC, with and without H-bond potential, respectively.

(F) The experimental structure of 6ntvC. In D–F, the Ca atoms forming the local geometry systems for the residue pair (i = 126, j = 167) are zoomed in.
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results indicate that the H-bond potential of DeepPotential provides additional information of long-

range inter-residue geometries, which help accurately model the H-bonding network of beta-sheets,

in addition to their orientations.
DISCUSSIONS AND CONCLUSIONS

We proposed a new deep neural network model, DeepPotential, to predict high-accuracy structural de-

scriptors and full-length 3D models of proteins from the amino acid sequence and the co-evaluation

information derived from multiple sequence alignments. The network architecture is featured with

multiple inter-residue geometry term predictions powered with parallel 1D unitary and 2D pairwise

blocks followed by a set of sequential residual blocks. Benchmark tests on two sets of CASP13

FM and CAMEO Hard targets showed that the DeepPotential could generate more accurate

structural descriptors than the state-of-the-art deep learning models (trRosetta (Yang et al., 2020),

CopulaNet (Ju et al., 2021), and RaptorX (Xu et al., 2021)), where the average TM-score of the

DeepPotential models is 6.7% higher than the best of the control methods with a p-value of

2.6 3 10�16 in Student’s t test.

A former version of DeepPotential was tested (as Group 010) in the most recent CASP14 experiment

and ranked as the best distance/contact server predictor (Li et al., 2021b). The DeepPotential models

served as one of the important spatial restraint resources for I-TASSER and QUARK, which ranked at the

top two positions in the automated 3D structure prediction in the CASP14 experiment (Zheng et al.,
iScience 25, 104425, June 17, 2022 9
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2021a). The detailed ablation analyses showed that several factors have made significant contributions

to the superiority of the DeepPotential, which include: (i) multi-tasking architecture, (ii) confidence-

based MSA selection and metagenome-based MSA collection, (iii) inter-residue orientation, and (iv)

hydrogen-bonding prediction, following the magnitude of contact/distance map accuracy improve-

ment. Despite the modest impact of H-bond terms on global structure topology, they demonstrated

significant improvement on the hydrogen-bonding network and secondary structure packing of the

DeepPotential models.

Limitations of the study

Nevertheless, DeepPotential still underperforms the most recently released AlphaFold2 and RoseTTAFold

programs, although it provides complementary information for some of the targets. One of the

major advantages of these programs is due to the utilization of the end-to-end training protocol

which enables direct cycling and feedback from 3D structure coordinates, instead of the training on

intermediate states such as contact and distance maps. Inspired by the new benchmark results and

the encouraging achievement made in AlphaFold2 in the CASP14 (Jumper et al., 2021b), an extended

DeepPotential model with new end-to-end network implements is under development, while the

systematical examination of various critical network features performed by this study should provide a

robust and useful base for the next step high-resolution ab initio protein structure prediction

developments.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Uniclust30 Remmert et al., 2012 http://gwdu111.gwdg.de/�compbiol/uniclust

Uniref90 UniProt Consortium, 2016 http://www.uniprot.org/uniref

Metaclust Steinegger and Söding, 2018 https://metaclust.mmseqs.com

BFD Steinegger et al., 2019b https://bfd.mmseqs.com

Mgnify Mitchell et al., 2020 https://www.ebi.ac.uk/metagenomics

IMG/M Chen et al., 2021 https://img.jgi.doe.gov

Software and algorithms

HH-suite Steinegger et al., 2019a https://github.com/soedinglab/hh-suite

HMMER Eddy, 1998 http://hmmer.org

TM-score Zhang and Skolnick, 2004b https://zhanggroup.org/TM-score

CCMPred Seemayer et al., 2014 https://github.com/soedinglab/CCMpred

TripletRes Li et al., 2021a https://zhanggroup.org/TripletRes

CD-HIT Fu et al., 2012 https://github.com/weizhongli/cdhit

CopulaNet Ju et al., 2021 https://github.com/fusong-ju/ProFOLD

RaptorX Xu et al., 2021 https://github.com/j3xugit/RaptorX-3DModeling

trRosetta Yang et al., 2020 https://github.com/gjoni/trRosetta

AlphaFold2 Jumper et al., 2021a https://github.com/deepmind/alphafold

RoseTTAFold Baek et al., 2021 https://github.com/RosettaCommons/RoseTTAFold

PyTorch Paszke et al., 2017 https://pytorch.org

Python Python Software Foundation https://www.python.org

DeepPotential This paper https://zhanggroup.org/DeepPotential
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Yang Zhang (zhng@umich.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

The DeepPotential server is available at Zhang Lab (https://zhanggroup.org/DeepPotential). The stand-

alone package of DeepPotential can be downloaded at https://zhanggroup.org/DeepPotential/files/

DeepPotential.zip. The standalone package of protein folding can be downloaded at https://

zhanggroup.org/DeepPotential/files/PotentialFold.zip. The training set of DeepPotential is available at

https://zhanggroup.org/DeepPotential/files/new_pdb. Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Benchmark dataset collection

DeepPotential was trained on a non-redundant set of experimental structures collected from the PDB,

where a total number of 150,940 structures by Nov 2019 with a maximum length of 1000 residues were

initially collected. CD-HIT (Fu et al., 2012) was then used to cluster the sequences at the sequence identity
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threshold of 35%, which resulted in 26,151 representative proteins that are used as the DeepPotential

training set.

Prediction terms of protein structure

For a given residue pair (i; j), four classes of complementary inter-residue geometry descriptors are pre-

dicted by DeepPotential and used to assist 3D structure modeling.

Two-atom distance terms

The Euclidean distance of Cb(i)-Cb(j) (or dCb
i;j ) and Ca(i)-Ca(j) (or dCa

i;j ) atoms are first predicted by

DeepPotential (Figure S4A). The distance values are discretized into nbinð = 36Þ bins in the range of

[2, 20 Å], with an even bin width = 0.5 Å. Two additional bins in [0, 2 Å] and [20, N Å] are counted for

the distances beyond the normal range.

Three-atom angle terms

DeepPotential predicts the angles of Ca(i)-Cb(i)-Cb(j) (or Fi;j ) and Cb(j)-Cb(i)-Ca(i) (or Fj;i ), for which the angle

values are discretized into 12 bins with the bin width = 15o(=180o/12) (Figure S4B). An additional bin is

added to count for the angles when the distance dCb
i;j >20 Å, indicating that there are no significant inter-

action patterns predictable for the residue pair.

Four-atom dihedral terms

Two types of inter-residue dihedral angles are predicted (Figure S4B). WhileUi;jð = Uj;iÞ is the dihedral angle

in Ca(i)-Cb(i)-Cb(j)-Ca(j),Q is defined by N(i)-Ca(i)-Cb(i)-Cb(j) (orQi;j) and N(j)-Ca(j)-Cb(j)-Cb(i) (orQj;i). Each dihe-

dral angle is represented by a one-hot vector with a dimension size of 25. The 24 dimensions represent 24

bins with an interval of 15o (=360/24), while the last dimension is assigned for all angles with dCb
i;j > dmax .

Six-atom hydrogen-bond terms

To specify the coarse-grained H-Bonds, which only involve Ca atoms, two types of auxiliary Ca unit vectors

are computed first by (Figure S4C):

8>>><
>>>:

p!i =

�
ca�!i � ca�!i� 1

��
j ca�!i � ca�!i� 1j

q!i =

�
ca�!i + 1 � ca�!i

��
j
�
ca�!i + 1 � ca�!ij

(Equation 1)

where ca�!i is the coordinate vector of Ca(i) atom. Three local geometry orthometric vectors are then

defined by:

8>>>>><
>>>>>:

a!i = p!i + q!i

c!i = p!i � q!i

b
!

i = a!i 3 c!i

(Equation 2)

The relative orientation of the vectors, which specify the backbone H-bond interactions, are predicted with8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

aai;j = arccos

0
@ a!i, a

!
j

j a!ijj a!jj

1
A

bbi;j = arccos

0
B@ b

!
i,b
!

j

jb!ijjb
!

jj

1
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cci;j = arccos

0
@ c!i, c

!
j

j c!ijjcj j

1
A

(Equation 3)
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where the angle values are discretized into 18 bins with 10o interval if dCa
i;j < 10 �A, meaning that the relative

orientations are predictable. One additional bin is assigned for the probability that dCa
i;j > 10 �A.
Deep neural network training of protein structure descriptors

Multiple candidate MSA construction

DeepPotential starts with the collections of multiple sequence alignments (MSAs) whose quality is critical

to the final model training. As shown in Figure S5, DeepPotential constructs 6 sets of candidate MSAs from

a query sequence through an iterative process. The first three MSAs were collected by searching the query

through three genome sequence databases from Uniclust30, Uniref90, and Metaclust (Steinegger and Sö-

ding, 2018) sequence databases via HHblits (Remmert et al., 2012), Jackhmmer (Johnson et al., 2010; Eddy,

1998), and HMMsearch (Eddy, 1998), respectively, following the protocol of DeepMSA (Zhang et al., 2020).

The second threeMSAs are further searched through three metagenomic databases from BFD (Steinegger

et al., 2019b), Mgnify (Mitchell et al., 2020), and IMG/M(Chen et al., 2021), respectively. The iterative search-

ing process stops if the Neff value is above 128 with the last MSA returned. The homologous sequences

generated by Jackhmmer or HMMsearch will be converted into a custom database in HHblits format using

‘hhblitdb.pl’ in HH-suite (Steinegger et al., 2019a), where such customization is particularly important to

wipe out noisy sequences from the raw sequence hits (Zhang et al., 2020).

Feature extraction

Two types of pairwise and unary features are extracted from the returned MSA, which represent the inter-

residue relationship and the individual residue profile, respectively.

First, the pairwise feature PF i;j (˛RL3L3D1 ) for residue pair (i; j) is defined as

PF i;j =
�
PLMT

i;j;MITi;j

�T
(Equation 4)

where L andD1 are the length of the protein sequence and the dimension of the pairwise feature; PLMi;j and

MIi;j are the feature vectors generated from coupling parameter P (˛RL3L3Q3Q) of PseudoLikelihood Maxi-

mized Potts model (Ekeberg et al., 2013) and Mutual Information matrices M (˛RL3L3Q3Q ), respectively.

Here, Q = 22, representing 20 types of regular amino acids, plus the unknown residue type state and

the gap state.

The coupling parameter P can be obtained by minimizing the loss function of

LPLM = �
XN
n = 1

XL

l = 1

log
exp

�
eiðXn;iÞ+

PL
j = 1;jsiP i;j

	
Xn;i;Xn;j


�
PQ

q = 1 exp
�
ei

	
q


+
PL

j = 1;jsiP i;j

	
q;Xn;j


�

+ lsingle
XL

i = 1

keik22 + lpair
XL

i;j = 1

isj

kP i;jk22

(Equation 5)

where e (˛RL3Q) represents the field parameters of the Potts model; X (˛ ½1; 2;.;Q�N3L) is the input MSA in

the form of an integer matrix with each entry representing the residue type. lsingle = 1 and lpair = 0:23

ðL � 1Þ are the regularization coefficients for e and P respectively. The parameter P i;jðq1;q2Þ measures

the linear coefficients of q1 state of residue i and the q2 state of residue j, conditioning on other residues

and states. The conditional model can eliminate transitive interactions in the observed interactions.

After the optimization, the PLMi;j vector can be written as

PLMi;j =
�
P i;jð1;1Þ;.;P i;jð1;22Þ;.;P i;jð22;22Þ;S1

i;j; S
2
i;j;S

3
i;j;P i;j

	
X1;i;X1;j


�T
(Equation 6)

where the first 484 ð = 22322Þ terms, P i;j, are the flattened vector of residue pair-specific potentials for res-

idue pair (i, j). S1
i;j ; S

2
i;j; and S3

i;j are Frobenius norms of all edge potentials, edge potentials excluding gap

state, and edge potentials excluding both gap and unknown states of residues i and j, respectively, with

Sk
i;j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ + 1� k
q1 ;q2

P i;jðq1;q2Þ2
q

being the couplings at the residue-wise scale. The last term of Equation 6,
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P i;jðX1;i;X1;jÞ, extracts the query-specific coupling potential, assuming that the first sequence in the MSA is

the query sequence. Such a feature is an important part of the feature set since all other features are

agnostic to the order of sequences within the MSA; for example, if a pair of aligned sequences in the

MSA are swapped, those features will be unchanged. The optimization of the Potts model was imple-

mented by a custom version of CCMpred program (Seemayer et al., 2014), which we modified to account

for the unknown residue type state.

The PLM measures the dependency between residue positions conditional on other positions, which

should be more relevant to the structural interaction terms between residue pairs. However, the optimiza-

tion of PLM could be ill-posed when there are no sufficient aligned sequences in the MSA. A raw marginal

correlation measurement, i.e., mutual information (MI) was utilized as another pairwise feature. Similar to

Equation 6, the MI feature for residue i and j can be written as

MIi;j =
�
Mi;jð1;1Þ;.;Mi;jð1;22Þ;.;Mi;jð22;22Þ;C1

i;j;C
2
i;j;C

3
i;j;Mi;j

	
X1;i;X1;j


�T
(Equation 7)

Here, the raw MI matrices is defined as:

Mi;j

	
q1;q2



= fi;j

	
q1;q2



ln

fi;j
	
q1;q2



fi
	
q1



fj
	
q2


 (Equation 8)

where fiðq1Þ is the frequency of a residue type q1 at position i of the MSA, fi;jðq1;q2Þ is the co-occurrence

of two residue types q1 and q2 at positions i and j; C1
i;j;C

2
i;j;C

3
i;j are the MI at the residue-wise scale, and

Ck
i;j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ + 1� k
q1 ;q2

Mi;jðq1;q2Þ2
q

. Mi;jðX1;i;X1;jÞ extracts sequence-specific mutual information. Compared to

the regular Pearson correlation, MI is capable to scale the non-linear relationships between variables.

Second, the unary features UF (˛RL3D2 ) of DeepPotential are the combination of self-mutual information

feature, field parameter of Potts model, one-hot sequence feature and HMM profiles. Here, D2 is the

size of the feature dimension for each site. For residue i, the self-mutual information feature UMi can be

represented as:

UMi = ðgið1Þ;.;gið22Þ;giðX1;iÞÞT (Equation 9)

where self-mutual information giðqÞ = � fiðqÞln fiðqÞ is Equation 8 when i = j and q1 = q2 = q, which mea-

sures the entropy of residue type q at position i. And the field parameter featureUP i at residue i of the Potts

model is defined as:

UP i = ðeið1Þ;.; eið22Þ; eiðX1;iÞÞT (Equation 10)

Note that for bothUMi andUP i the last dimensions are the sequential descriptors that introduce sequence-

specific information in addition to the MSA-specific single-site features. The one-hot sequence feature for

residue i is defined as UV i ˛ f0; 1gQ and UV iðqÞ = 1 if the residue type at position i is in q state and

UV iðqÞ = 0 elsewhere. HMM profile features UH˛RL330 (30 descriptors) are also considered by building

a profile hidden Markov models from the input alignment using hhmake program in HHsuite package.

Thus, the concatenated unary feature for residue i is calculated by

UF i =
	
UMi

T ;UP i
T ;UV i

T ;UHi
T

T (Equation 11)

In total, the channel size of pairwise and unary input feature tensors are 976 (Equation 4) and 98 (Equa-

tion 11) respectively.

Neural network architecture

The 1D (unary) and 2D (pairwise) features extracted fromMSA are fed into ten 1D residual blocks and ten 2D

residual blocks, respectively, for structure descriptor prediction. A general structure of a residual block is

shown in Figure 1 where a shortcut link is added from previous layers to the output, compared to the tradi-

tional neural networks. Here, the residual block is composed of two types of layers, i.e., the convolutional

layer and the instance normalization layer (Ulyanov et al., 2016), which are collected sequentially. The trans-

formed 1D features with 32 channels will be tiled vertically and horizontally and concatenated with trans-

formed 2D features (64 channels). The composited 2D features (32*2 + 64 = 128 channels) will further go

through forty 2D residual blocks. The prediction layer for each potential term performs a simple pixel-

wise linear transformation to the desired channel size, prior to a softmax layer.
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Two types of neural networks with different output terms will be trained. The first one, orientation-

related networks, output the Cb-Cb distance map and orientation matrices. The second type of net-

works, H-bond related networks, output Cb-Cb and Ca-Ca distance maps and the H-bond related

pairwise geometry descriptors as defined in Equation 3. Dilation was applied for both 1D and 2D con-

volutional layers with the cycling of 1, 2, 4, 8, and 16. The padding size was then set accordingly to

ensure the consistency of feature signal shapes. Dropout was used in all residual blocks and the

dropout rate was set to 0.2 globally. The convolutional kernel size in 1D and 2D residual blocks are

set to 3 and 33 3, respectively.

Training DeepPotential models

The DeepPotential model was trained by minimizing the negative log-likelihood of Pðtermt
i;j

���PF;UFÞ
for each residue pair ði; jÞ when predicting term t, marginally. More specifically, the loss function is

defined as

LðTÞ = �
X
i;j

X
t ˛T

wt log P
�
termt

i;j

���PF;UF� (Equation 12)

where T is a set of predictive terms. i.e., distance, orientation, and H-bond terms. wt is the weight co-

efficient for the term t. During the training, wt = 1 for all terms, under the assumption that all terms

contribute equally to the protein structure prediction. Adam optimizer (Kingma and Ba, 2014) was

used to optimize DeepPotential models with an initial learning rate of 1E-3. Each model was trained

for around 50 epochs with a batch size of three. The maximum sequence length was set to 256 which

means that for any sequences with length >256 AA, a random continuous crop with the length of 256

(maximum sequence length) will be used during the training.

To improve the generalization of DeepPotential model, the MSAs of the training set are simply con-

structed by HHblits searching against Uniclust30 for 2 iterations. The training set was further

augmented by sub-sampling each of the MSAs in the training set for 5 times, with proportions of

20%, 40%, 50%, 60% and 80% in all alignment sequences, respectively. The sub-sampled MSAs have

the same weights at the early stage of the training but will be changed to 2.0, 1.5, 1.2, 1.0 and 0.6,

respectively, at the later stage. Such training strategy puts extra emphasis on MSAs with fewer

sequence homologs which should be beneficial to predicting Hard targets.
Protein structure prediction by automatic differentiation

For each pair of residues, the predicted probabilities of structural geometry terms will be converted into

smooth potentials for the gradient-descent-based protein structure prediction. For each term, the nega-

tive log of the raw probability histogramwill be interpolated by cubic spline as be used as potentials. Based

on DeepPotential predictions, the folding potential can be written as

Efold = w1Ecb +w2Eca +w3EU +w4EQ +w5EF +w6ðEaa +Ebb +EccÞ (Equation 13)

which are classified into distance potentials (Ecb and Eca), orientation potentials (EU, EQ and EF), and

H-bond potentials (Eaa, Ebb and Ecc ). The weights of corresponding terms are set empirically to (w1, w2,

w3, w4, w5, w6) = (5.0, 0.1, 0.45, 0.45, 0.3, 0.5).

The backbone structure of proteins is specified by the 4=j backbone torsion angle of each residue

along the query sequence, while the backbone torsion angle u is set to 180�. Given a set of ð4i;jiÞ pa-
rameters with i = 1;/; L, the coordinates of backbone atoms (including Cb atoms) can be recovered

(Derevyanko and Lamoureux, 2018), thus the energy of such decoy conformation, defined in Equa-

tion 13, can be computed according to the interpolated potential curves. With the help of the auto-

matic differentiation in PyTorch (Paszke et al., 2019), the gradient with respect to the parameters could

be readily obtained.

We implemented the L-BFGS algorithm (Zhu et al., 1997) to iteratively update the protein structure confor-

mations. The whole backbone folding process will be performed 10 times with different initial structures

built from random backbone torsion angle samplings. The final conformation with the lowest total energy

will be returned. Once the optimal backbone conformation is obtained, the FASPR program (Huang et al.,

2020) will be used to construct and repack the sidechain atoms.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using Python. Details of specific statistical analyses are included in the main text. For

differences between distributions, we used the single-tailed Student’s t test of the hypothesis that both in-

dividual distributions are drawn from the same underlying distribution, as indicated in the different parts of

this study. Statistical significance was defined as p < 0.05.
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