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Abstract

Accurate identification of protein function is critical to elucidate life mechanisms and design

new drugs. We proposed a novel deep-learning method, ATGO, to predict Gene Ontology

(GO) attributes of proteins through a triplet neural-network architecture embedded with pre-

trained language models from protein sequences. The method was systematically tested on

1068 non-redundant benchmarking proteins and 3328 targets from the third Critical Assess-

ment of Protein Function Annotation (CAFA) challenge. Experimental results showed that

ATGO achieved a significant increase of the GO prediction accuracy compared to the state-

of-the-art approaches in all aspects of molecular function, biological process, and cellular

component. Detailed data analyses showed that the major advantage of ATGO lies in the

utilization of pre-trained transformer language models which can extract discriminative func-

tional pattern from the feature embeddings. Meanwhile, the proposed triplet network helps

enhance the association of functional similarity with feature similarity in the sequence

embedding space. In addition, it was found that the combination of the network scores with

the complementary homology-based inferences could further improve the accuracy of the

predicted models. These results demonstrated a new avenue for high-accuracy deep-learn-

ing function prediction that is applicable to large-scale protein function annotations from

sequence alone.

Author summary

In the post-genome sequencing era, a major challenge in computational molecular biology

is to annotate the biological functions of all genes and gene products, which have been

classified, in the context of the widely used Gene Ontology (GO), into three aspects of

molecular function, biological process, and cellular component. In this work, we proposed

a new open-source deep-learning architecture, ATGO, to deduce GO terms of proteins

from the primary amino acid sequence, through the integration of the triplet neural-net-

work with pre-trained language models of protein sequences. Large benchmark tests
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showed that, when powered with transformer embeddings of the language model, ATGO

achieved a significantly improved performance than other state-of-the-art approaches in

all the GO aspect predictions. Following the rapid progress of self-attention neural net-

work techniques, which have demonstrated remarkable impacts on natural language pro-

cessing and multi-sensory data process, and most recently on protein structure

prediction, this study showed the significant potential of attention transformer language

models on protein function annotations.

This is a PLOS Computational Biology Methods paper.

Introduction

Proteins are the material basis of life and play many important roles in living organisms, such

as catalyzing biochemical reactions, transmitting signals, and maintaining structure of cells

[1]. To elucidate life mechanisms, it is critical to identify the biological functions of proteins,

which have been grouped, in the context of the widely used Gene Ontology (GO), into three

aspects of molecular function (MF), biological process (BP), and cellular component (CC) [2].

Direct determination of protein functions via biochemical experiments is standard but often

time-consuming and incomplete [3]. As a result, numerous sequenced proteins have no avail-

able function annotation to date. As of June 2022, for example, the UniProt database [4] har-

bored ~230 million protein sequences, but only <1% of them were annotated with known GO

terms using experimental evidence. To fill the gap between sequence and function, it is urgent

to develop efficient computational methods for protein function prediction [5,6].

Existing function prediction methods use at least one of three information sources: tem-

plate detection [7], biological network [8], and sequence composition [9]. Conventional func-

tion prediction methods typically rely on the detection of templates that have similar sequence

or structure to the query and therefore suitable for functional inference. For examples, GOtcha

[10], GoFDR [11], and Blast2GO [7] identify sequence templates using BLAST or PSI-BLAST

alignments [12], while COFACTOR [13] and ProFunc [14] search templates through structure

alignment [15]. Meanwhile, biological networks established by either protein-protein interac-

tion (PPI) or gene co-expression have been used in more recent function predictors, such as

NetGO [8], MS-kNN [16], and TripletGO [17]. The rationale behind PPI networks or gene co-

expression is that the proteins with PPI or similar gene expression patterns are more likely to

be involved in the same biological pathway or found in the same subcellular location.

Both template-based and network-based approaches have a common drawback: the accu-

racy of these methods is contingent upon the availability of readily identifiable and function-

ally annotated templates or interaction partners. To eliminate such dependence, machine

learning-based methods have emerged to directly derive functions from the sequence compo-

sition of the query alone [8]. This can be achieved by extracting hand-crafted sequence features

(e.g., k-mer amino acid coding and matches of protein domain families), which can then be

used by machine learning approaches (e.g., support vector machine and logistic regression) to

implement function model training and prediction, with typical examples including FFPred

[18] and GOlabeler [19].

Despite the potential advantage, the prediction accuracy of many early machine learning

methods was not satisfactory. One of the major reasons is due to the lack of informative feature
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representation methods, as most of the approaches are based on simple feature representa-

tions, such as amino acid composition, physiochemical properties, and protein family coding,

which cannot fully extract the complex pattern of protein functions [19,20]. To partly over-

come this barrier, several methods, e.g., DeepGO [9], DeepGOPlus [21], and TALE [22], uti-

lized deep learning technology to predict protein function. Compared to traditional machine

learning approaches, one advantage of deep learning technologies is that they could extract

more discriminative feature embeddings from preliminary sequence through designing com-

plex neural networks. Nevertheless, the performance of deep learning methods is often ham-

pered by the limitation and imbalance of annotated function data. Currently, there are only

~130,000 proteins with experimental annotations in the UniProt database, where 81.6% of GO

terms are annotated to less than 50 proteins per term. The insufficient experimental data sig-

nificantly limits the effectiveness of training the deep neural network models.

To alleviate the issue caused by the lack of annotated data, a promising approach is to utilize

protein language models pre-trained through deep-learning networks on large-scale sequence

databases which may not have functional annotations. Due to the extensive sequence training

and learning, important inter-residue correlation patterns, which are critical for protein func-

tions, can be extracted through the language models and utilized for functional embedding.

Several protein language models, such as ProtTrans [23], models used in TAPE [24], and

Bepler & Berger’s approach [25], have been recently proposed in the literatures. Especially, an

unsupervised protein language model, ESM-1b transformer [26], which utilized self-attention

networks to learn the evolutionary diversity from 250 millions of protein sequences, has found

impressive usefulness in protein contact-map and structure prediction. Meanwhile, the unsu-

pervised language models have also been used, often through supervised learners such as con-

volutional neural networks (CNNs), for protein function prediction tasks, with examples

including the predictions of protein molecular function [27], mutation and stability [24], sub-

cellular localization [23], GO transferals [28], and ligand binding [29].

In this work, we proposed a new deep learning model, ATGO, for high accuracy protein

function prediction by the integration of the triplet neural-network protocol [30] with the lan-

guage models of protein sequences. First, we utilized an unsupervised self-attention trans-

former model, ESM-1b transformer [26], which has been pre-trained on millions of

unannotated sequences, as a feature extractor to generate feature embeddings. Next, a super-

vised triplet neural-network was extended to train function annotation models from multi-

layer transformer feature embeddings, by enhancing the difference between positive and nega-

tive samples. To improve prediction accuracy, we further implemented a composite version,

ATGO+, by combining ATGO with a sequence homology-based model. Both ATGO and

ATGO+ have been systematically tested on a large set of non-redundant proteins, where the

results demonstrated significant advantage on accurate GO term prediction over the current

state-of-the-art of the field. The standalone package and an online server of ATGO are made

freely available through URL https://zhanggroup.org/ATGO/.

Results

Overall performance of ATGO

ATGO is a deep learning-based approach to protein function annotation with respect to GO

terms. As shown in Fig 1, ATGO first extracts three layers of feature embeddings from the

attention network-based transformer (ESM-1b), which are then fused by a fully connected

neural network. Next, the fused feature embedding is trained by a triplet neural network to

generate confidence scores of the predicted GO terms (See ‘Methods and materials”).
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Fig 1. The procedures of ATGO for protein function prediction. (a) The workflow of ATGO. Starting from the input sequence, the ESM-1b transformer is utilized to

generate the feature embeddings from the last three layers, which are fused by a fully connected neural network. The fused feature embedding is then fed into a triplet

network to create confidence scores of GO models. (b) The structure of ESM-1b transformer. For an input sequence, the masking, one-hot encoding, and position

embedding are orderly executed to generate the coding matrix, which is then fed into a self-attention block with n layers. Each layer can output a feature embedding

matrix from an individual evolutionary view through integrating m attention heads with a feed-forward network, where the scale dot-product attention is performed in

each head. (c) The design of a triplet network for assessing feature similarity. The input is a triplet variable (anc, pos, neg), where anc is an anchor (baseline) protein, and

pos (or neg) is a positive (or negative) protein with the same (or different) function of anc. Each sequence is fed into the designed feature generation model to extract a

feature embedding vector, as the input of fully connected layer to output a new embedding vector. Then, the feature dissimilarity between two proteins is measured by

Euclidean distance of embedding vectors. Finally, a triplet loss is designed to enhance the relationship between functional similarity and feature similarity in embedding

space.

https://doi.org/10.1371/journal.pcbi.1010793.g001
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To examine the efficacy of proposed ATGO, we implemented three GO prediction methods

from different biology views as baselines, including a sequence alignment-based GO predic-

tion method (SAGP, see S1 Text), a PPI-based GO predictor (PPIGP, S2 Text), and a Naïve-

based GO predictor (NGP, see S3 Text). In addition, we compared ATGO with five state-of-

the-art models, including three deep learning-based methods (i.e., DeepGO [9], DeepGOCNN

[21], and TALE [22]), two template-based methods (FunFams [31] and DIAMONDScore

[21]), which are driven by protein family search and sequence homology alignment, respec-

tively. Given the complementarity of machine learning and homology-based alignments, we

also implemented a composite method, ATGO+, which generates predictions by linearly com-

bining the confidence score of ATGO and SAGP. This will be benchmarked with two other

composite methods (DeepGOPlus [21] and TALE+ [22]), which are weighted combinations of

(DeepGOCNN, DIAMONDScore) and (TALE, DIAMONDScore), respectively. For the seven

third-party methods, we downloaded the programs and ran them on our test dataset under the

default setting.

Table 1 summarizes the overall results of all 12 GO prediction methods on 1068 non-redun-

dant test proteins (See ‘Methods and materials”) for three GO aspects, where the performance

is measured by maximum F1-score (Fmax) [32,33], area under the precision-recall curve

(AUPR) [34], and coverage [33]. The data shows that ATGO achieves a significantly better per-

formance than all other 8 non-composite control methods. Specifically, compared with the

second-best performer SAGP, ATGO gains 9.3% and 69.1% average improvements for Fmax

and AUPR, respectively, on the average of three GO aspects, all with p-values�1.1e-07 on

two-sided Student’s t-test.

Table 1. The summary of the proposed ATGO/ATGO+ and other 10 competing GO prediction methods on the 1068 benchmark proteins. p-values in parenthesis

are calculated between ATGO and other single-based methods and between ATGO+ and other composite methods by two-sided Student’s t-test. Specifically, the proposed

ATGO and ATGO+ are repeatedly implemented with 10 times on the benchmark dataset to generate the corresponding performance evaluation indices, which are com-

pared with the fixed evaluation index generated by the competing method to calculate p-value using two-sided Student’s t-test. Bold fonts highlight the best performer in

each category. Coverage is the ratio of the number of proteins with available prediction scores divided by the total number of test proteins.

Methods Fmax AUPR Coverage

MF BP CC MF BP CC MF BP CC

Single algorithms SAGP 0.597

(1.1e-07)

0.400

(5.5e-10)

0.534

(1.5e-14)

0.351

(3.1e-17)

0.242

(4.8e-17)

0.322

(1.6e-19)

0.88 0.87 0.85

PPIGP 0.224

(1.2e-18)

0.303

(3.0e-17)

0.467

(7.4e-17)

0.103

(4.6e-20)

0.181

(8.9e-19)

0.340

(2.9e-19)

0.52 0.63 0.63

NGP 0.224

(1.2e-18)

0.254

(1.2e-18)

0.481

(1.7e-16)

0.103

(4.6e-20)

0.151

(2.1e-19)

0.355

(5.0e-19)

1.00 1.00 1.00

DeepGO 0.355

(4.3e-17)

0.317

(9.6e-17)

0.499

(6.4e-16)

0.293

(4.3e-18)

0.218

(8.1e-18)

0.430

(1.5e-17)

1.00 1.00 1.00

FunFams 0.476

(1.0e-14)

0.315

(7.6e-17)

0.424

(7.5e-18)

0.294

(4.4e-18)

0.152

(2.1e-19)

0.236

(1.3e-20)

0.66 0.62 0.58

DeepGOCNN 0.328

(1.8e-17)

0.307

(3.8e-17)

0.463

(5.6e-17)

0.264

(1.8e-18)

0.208

(4.2e-18)

0.337

(2.6e-19)

1.00 1.00 1.00

DIAMONDScore 0.592

(2.4e-08)

0.391

(1.6e-11)

0.511

(1.6e-15)

0.272

(2.3e-18)

0.209

(4.5e-18)

0.239

(1.4e-20)

0.80 0.81 0.78

TALE 0.393

(1.8e-16)

0.315

(7.7e-17)

0.516

(2.7e-15)

0.344

(2.4e-17)

0.236

(3.0e-17)

0.496

(1.6e-15)

1.00 1.00 1.00

ATGO 0.627 0.425 0.623 0.603 0.361 0.600 1.00 1.00 1.00

Composite algorithms DeepGOPlus 0.603

(3.4e-10)

0.409

(3.7e-11)

0.533

(6.8e-17)

0.528

(8.7e-14)

0.323

(2.2e-15)

0.486

(8.8e-18)

1.00 1.00 1.00

TALE+ 0.602

(3.3e-10)

0.420

(8.4e-09)

0.586

(2.2e-13)

0.542

(5.6e-13)

0.332

(2.2e-14)

0.569

(3.5e-12)

1.00 1.00 1.00

ATGO+ 0.631 0.438 0.624 0.611 0.368 0.600 1.00 1.00 1.00

https://doi.org/10.1371/journal.pcbi.1010793.t001
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After combining ATGO with SAGP, the composite AGTO+ achieves a small but consistent

improvement over all three categories of GO aspects in terms of Fmax and AUPR, where the p-

values in Student’s t-test between them are both below 4.3e-02, showing the difference is statis-

tically significant at the entire dataset level. ATGO+ also significantly outperforms the two

composite control methods, DeepGOPlus and TALE+, with p-values below 8.4e-09 in all the

comparisons, although these two control methods clearly outperform their corresponding sin-

gle-based methods (DeepGOCNN and TALE) respectively. It cannot escape our notice that

the magnitude of performance difference between ATGO and ATGO+ is smaller than that

between TALE and TALE+ (or between DeepGOCNN and DeepGOPlus) in each GO aspect

as shown in Table 1. Part of the reason is that ATGO by itself is a much more accurate predic-

tor compared to other deep learning predictors such as DeepGO and TALE. Therefore, adding

another component of sequence homology can bring a relatively smaller increase in the overall

Fmax and AUPR scores. In fact, ATGO alone already outperforms both DeepGOPlus and

TALE+, which provides a solid base for the better performance of AGTO+. Nevertheless, a

consistent improvement has been seen in all datasets and approaches when adding the homol-

ogy transferal component, demonstrating the advantage of combining different sources of

information for improving protein function predictions.

It is noted that the Student’s t-test p-values in Table 1 are calculated by comparing 10 inde-

pendent implementations of ATGO/ATGO+ to a single implementation of the competing

methods. To examine the statistical significance between all individual methods, most of

which have only single implementation, we perform Friedman test [35], one of the most used

approaches in analysis of variance, for the 12 GO prediction methods at individual protein

level (see details in S4 Text). A significant performance difference with p-values�4.6e-106 is

found among all prediction methods in three GO aspects. Thus, a Nemenyi post-hoc test [36]

is performed to calculate the p-value of performance difference between each pair of prediction

methods, with result listed in S1 Table. It can be found that the p-value between the propose

ATGO/ATGO+ and each of competing methods is below 0.05 in each GO aspect at the indi-

vidual protein level, except for (ATGO, SAGP), (ATGO, DeepGOPlus), and (AGTO+, SAGP)

in MF with the p-values of 2.5e-01, 3.0e-01, and 1.5e-01, respectively. However, the p-values of

Fmax values for the above-mentioned three pairwise methods in MF are 1.1e-07, 1.5e-06, and

4.8e-11, respectively, under Student’s t-test at the entire dataset level, while the corresponding

p-values for AUPR values are 3.1e-17, 1.1e-11, and 1.6e-18, respectively, as shown in Table 1.

Meanwhile, although the difference between ATGO and ATGO+ is not significant at the indi-

vidual protein level with the Nemenyi post-hoc test p-value> = 0.90 for three GO aspects, the

difference is statistically significant at the entire dataset level, with the Student’s t-test p-

value = 1.3e-03/1.2e-12/3.2e-05 for Fmax and 1.8e-09/3.9e-12/4.3e-02 for AUPR on MF/BP/CC

terms respectively. Part of the reason for the p-value difference in the two calculations is that at

the individual protein level ATGO/ATGO+ are measured by a set of F1-scores on hundreds of

proteins with significant functional differences while at the entire dataset level the ATGO/

ATGO+ are run at a fixed index obtained through the average of confidences scores of 10

models, where each ATGO+ model consistently shows higher evaluation index than the corre-

sponding ATGO model. Another reason is that the Student’s t-test is mathematically different

from that in the Nemenyi post-hoc test (see explanation in S2 Table and S5 Text). Given that

the Student’s t-test can be approximated in a more precise range and not be affected by the

performances of other prediction methods in the same group (see details in S5 Text), we pres-

ent the results mainly on the t-test in this work.

It is noted that the Fmax values of TALE listed in Table 1 are considerably lower than those

reported by the TALE paper [22]. The major reason for this discrepancy is that in the TALE

paper, Fmax calculation includes the root GO terms of three GO aspects for both ground truth
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and prediction, while in this study, we followed the standard practice of CAFA assessment

[33] and excluded the root terms. We further re-calculated the Fmax and AUPR values with

including root GO terms for ATGO and TALE, as shown in S3 Table, where ATGO achieves

significantly higher Fmax and AUPR than TALE for all GO aspects regardless of whether root

terms are included.

Table 1 also shows that the four methods (i.e., SAGP, PPIGP, FunFams, and DIAMOND-

Score) are associated with lower coverage scores; this is because these methods fail to search

available templates or interaction partners for some of the test proteins and therefore cannot

provide the predictions for them. Since the lack of prediction may have impact on their overall

prediction performances on the whole test dataset, we further benchmarked the 12 methods

on a subset of 562 test proteins, for which predictions can be generated by all methods. As

shown in S4 Table, a similar trend is observed in which ATGO/ATGO+ outperform the con-

trol methods with a significant marge. Meanwhile, it is observed that SAGP and DIAMOND-

Score share an obviously higher prediction accuracy than PPIGP and FunFams for both tests,

showing that sequence homology is more effective than PPI and family similarity for protein

functional references.

We further assess the modeling results using an information theory-based evaluation met-

ric, i.e., information content-weighted maximum F1-score (ICW-Fmax), which is defined by Eq

S7 in S6 Text. The results for 12 GO prediction methods on the 1068 test proteins are listed in

S5 Table, which shows again that the proposed ATGO and ATGO+ outperform the 10 com-

peting methods using this new metric score.

ATGO shows great generality to new species and rare GO terms

Despite the power of modeling, many of the machine-learning based methods can have

reduced performance on the proteins from new species not included in their training dataset.

To examine the generalizability of ATGO to new species, we mapped every protein in our

dataset to the corresponding species and collected 160 test proteins from 104 new species

which are never seen in training and validation datasets. In Fig 2, we listed the performance of

ATGO/ATGO+ in control with other 9 GO prediction methods on the 160 proteins. Here,

PPIGP was excluded because it cannot make any prediction for the above-mentioned 160 pro-

teins as they have no available PPI information in STRING database [37].

From the view of Fmax, ATGO and ATGO+ are top-two performers in MF and CC. As for

BP, ATGO outperforms all single-based methods but slightly underperforms two composite

methods (i.e., DeepGOPlus and TALE+), but ATGO+ achieves a better performance with Fmax

4.3% and 3.8% higher than the two composite methods. In terms of AUPR values, ATGO/

ATGO+ is ranked 3/1, 2/1, and 1/2 for MF, BP, and CC, respectively, among all 11 methods.

Meanwhile, the Fmax/AUPR values of ATGO/ATGO+ for the 160 proteins in Fig 2 are largely

comparable to that for the whole dataset in Table 1. These observations show that the perfor-

mance of ATGO and ATGO+ does not degrade when modeling new species proteins, demon-

strating the generalizability of the approaches.

Due to the nature of knowledge-based training, another challenge to the machine learning

approaches is the modeling of rarely seen function terms. To examine ability of ATGO/ATGO

+ on the GO terms of different popularities, we grouped GO terms in the test dataset into four

groups: 5–10, 10–30, 30–50 and>50, in terms of the number of annotated proteins per GO

term; these ranges correspond to the numbers of terms of 425, 328, 64 and 105, respectively. In

Fig 3, we present the AUROC scores for the rare GO terms in ranges 5–10 and 10–30, respec-

tively, where the mean and median AUROC scores are listed in S1 and S2 Figs. It is found

that ATGO/ATGO+ are ranked as the top two methods. Taking range 5–10 as an example,
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ATGO+ shows better performance than all other 10 methods for each GO aspect. Specifically,

ATGO+ gains 2.5% and 3.9% average improvements on three aspects for mean and median

AUROC values, respectively, compared to the best of the control method (TALE+). For the

range 10–30, ATGO and ATGO+ share the highest mean and median AUROC values both in

BP and CC. As for MF aspect, ATGO+ and ATGO are ranked as 1/3 and 1/2 in terms of mean

and median AUROC values, respectively.

In S3 Fig, we also list the results of the two more common GO terms with ranges of 30–50

and>50. ATGO and AGTO+ again outperform other control methods. These results demon-

strate a balanced performance for all type of functional terms.

Testing on targets of the third CAFA challenge (CAFA3)

As an independent test, we applied ATGO/ATGO+ to the third Critical Assessment of Protein

Function Annotation (CAFA3) dataset which consists of 3328 test proteins [33]. To make a

fair comparison, we re-trained the ATGO pipeline on a subset of the 66,841 training proteins

that were released by the CAFA3 organizers. To remove homology contamination, we have fil-

tered out the homologous proteins from the training dataset which have more than t1 sequence

identity to the test proteins. Here, we have randomly selected 95% of the filtered training pro-

teins to re-train the ATGO model and used the remaining 5% proteins as the validation set to

optimize the ATGO parameters. For the in-house SAGP, PPIGP, and NGP programs, these

non-homology training proteins were used to construct the template databases and prior prob-

abilities of GO terms.

Table 2 summarizes the performance of the 10 GO prediction methods on all of 3328

CAFA3 test proteins under the cut-off t1 = 30%. Here, we excluded TALE and TALE+ from

Fig 2. Comparison of ATGO/ATGO+ with 9 competing methods on the 160 test proteins from 104 new species for (a) Fmax and (b) AUPR.

https://doi.org/10.1371/journal.pcbi.1010793.g002
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the method list because the models trained on the CAFA3 dataset are unavailable for TALE. It

is noted that for other third-party methods, the homologous proteins were not removed from

the training dataset and run with the default setting. The result shows that ATGO and ATGO

+ outperform other single and composite methods, respectively, for every GO aspect. Taking

ATGO as an example, it achieves 8.2%, 6.5%, and 14.6% improvements of Fmax values for MF,

BP, and CC, respectively, compared to the best single method (SAGP), all with p-values below

2.2e-07 under Student’s t-test.

To examine the pairwise significance, we performed Friedman test [35] for the 10 GO pre-

diction methods at the individual protein level and found that there exists a significant perfor-

mance difference with p-value�6.0e-168 in each GO aspect. Next, the Nemenyi post-hoc test

[36] is further performed to calculate the p-values of performance difference between all

method pairs. As shown in S6 Table, the p-values between ATGO/ATGO+ and all the compet-

ing methods are both below 0.05 in three aspects at the individual protein level. In addition,

we list in S7 Table the ICW-Fmax scores performed by all 10 GO prediction methods, where

ATGO/ATGO+ show again a better performance than other competing methods in all three

GO aspects.

Fig 3. AUROC values by different methods for the rare GO terms in terms of the number of associated proteins, where the median line in the box is the median

AUROC value. (a) range 5–10. (b) range 10–30.

https://doi.org/10.1371/journal.pcbi.1010793.g003
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Among the 3328 test proteins, 1177 have no knowledge on any of the GO aspects before the

CAFA3 experiment, where other 2151 proteins have limited knowledge on some GO terms

and with other GO terms determined during the CAFA3 experiment. In S8 Table, we list the

GO prediction results on the no-knowledge (NK) and limited-knowledge (LK) datasets sepa-

rately. The ATGO/ATGO+ outperform again other existing methods in all GO aspects for

both datasets, showing that the superiority of the pipeline does not depend on specific protein

datasets.

Finally, we examine our methods for different species in CAFA3 test dataset. According to

statistics, the 3338 test proteins are originated from 20 species, as shown in S9 Table, where

Human, Arabidopsis, Fission Yeast, and Mouse are the top-four species in terms of the sample

number. Fig 4 lists the Fmax values of the 10 GO prediction methods for the four species under

the cut-off t1 = 30%, while the corresponding AUPR values are given in S4 Fig. For Human,

Arabidopsis, and Mouse, ATGO and ATGO+ achieve the highest Fmax values among 10 meth-

ods for all three GO aspects. Taking Human species as an example, the Fmax values of ATGO

+ are 2.1%, 2.1%, and 12.2% higher than that of the third-best performer in MF, BP, and CC,

respectively. In Arabidopsis and Mouse, the improvements between ATGO/ATGO+ and the

control methods are more significant. As for Fission Yeast, although ATGO/ATGO+ show a

slightly lower Fmax in comparison with DeepGOPlus and DIAMONDScore for MF, they

achieve the highest Fmax for both BP and CC aspects.

In addition, the prediction performance of the ATGO/ATGO+ under the cut-off t1 = 100%

on CAFA3 test dataset is summarized in S10 Table, where t1 = 100% indicates that we did not

filter out any homologs from the training dataset. Since the third-party programs did not

remove homologs, we only listed the in-house programs. Again, the ATGO/ATGO+ show

Table 2. Comparison of ATGO/ATGO+ with other 8 competing methods on 3328 CAFA3 targets where a sequence identity cut-off t1 = 30% between the training

and testing proteins was applied to the five in-house methods (ATGO, ATGO+, SAGP, PPIGP, and NGP). p-values in parenthesis are calculated between ATGO and

other single-based methods and between ATGO+ and other composite methods by two-sided Student’s t-test. Specifically, the proposed ATGO and ATGO+ are repeatedly

implemented with 10 times on the benchmark dataset to generate the corresponding performance evaluation indices, which are compared with the fixed evaluation index

generated by the competing method to calculate p-value using two-sided Student’s t-test. Bold fonts highlight the best performer in each category. Coverage is the ratio of

the number of proteins with available prediction scores divided by the total number of test proteins.

Methods Fmax AUPR Coverage

MF BP CC MF BP CC MF BP CC

Single algorithms SAGP 0.463 0.465 0.473 0.244 0.302 0.298 0.82 0.90 0.85

(4.3e-10) (2.2e-07) (3.2e-11) (9.8e-19) (2.2e-14) (6.4e-19)

PPIGP 0.248 0.377 0.453 0.153 0.296 0.421 0.89 0.88 0.84

(5.6e-18) (3.2e-13) (3.0e-12) (4.5e-20) (1.2e-14) (3.9e-16)

NGP 0.159 0.302 0.445 0.066 0.170 0.366 1.00 1.00 1.00

(3.6e-19) (3.4e-15) (1.4e-12) (4.9e-21) (7.3e-18) (1.3e-17)

DeepGO 0.275 0.386 0.487 0.198 0.291 0.487 1.00 1.00 1.00

(1.6e-17) (6.8e-13) (2.8e-10) (1.8e-19) (7.8e-15) (6.3e-13)

FunFams 0.470 0.428 0.464 0.304 0.228 0.284 0.65 0.71 0.66

(4.7e-09) (6.4e-11) (1.0e-11) (1.6e-17) (1.1e-16) (3.8e-19)

DeepGOCNN 0.311 0.291 0.413 0.231 0.191 0.288 1.00 1.00 1.00

(8.0e-17) (2.0e-15) (9.8e-14) (5.9e-19) (1.8e-17) (4.4e-19)

DIAMONDScore 0.456 0.450 0.464 0.199 0.268 0.238 0.76 0.85 0.80

(8.8e-11) (3.2e-09) (1.1e-11) (1.9e-19) (1.3e-15) (8.6e-20)

ATGO 0.501 0.495 0.542 0.469 0.397 0.546 1.00 1.00 1.00

Composite algorithms DeepGOPlus 0.459 0.460 0.474 0.392 0.342 0.470 1.00 1.00 1.00

(9.2e-12) (4.5e-13) (4.0e-12) (2.3e-15) (3.4e-15) (3.8e-14)

ATGO+ 0.511 0.502 0.543 0.477 0.412 0.546 1.00 1.00 1.00

https://doi.org/10.1371/journal.pcbi.1010793.t002
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superior performance in comparison with the competing methods for each GO aspect. It is

also observed that ATGO has a lower sensitivity on homologous training proteins than the

sequence-based method of SAGP. Specifically, after reducing cut-off t1 from 100% to 30%, the

Fmax and AUPR values of ATGO are separately decreased by 5.2% and 6.2% on average of

three GO aspects, while the corresponding decreases for SAGP are 8.9% and 19.3%. This is not

Fig 4. The Fmax values of 10 GO prediction methods under the homology cut-off t1 = 30% between training and testing proteins for four individual species in

CAFA3 test dataset. (a) Human; (b) Arabidopsis; (c) Fission Yeast; (d) Mouse.

https://doi.org/10.1371/journal.pcbi.1010793.g004
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surprising because the sequence alignment-based approach can obtain closer homology tem-

plates and therefore higher accuracy predictions when given a higher sequence identity cut-off.

Interestingly, SAGP outperforms most of other control methods. Although both are built

on BLAST alignments, SAGP is different from the BLAST baseline method used in CAFA

challenge [33]; the main difference between these two is that the former deduces consensus

functional patterns from multiple homology templates (see Eq S1 in S1 Text) while the latter

only uses a single template for function deduction (see Eq S10 in S7 Text). In S11 Table, we

further compare SAGP with the CAFA BLAST baseline in our constructed test dataset (1068

non-redundant proteins) and CAFA3 test dataset, respectively, with details explained in S7

Text. It is shown that SAGP significantly outperforms the CAFA BLAST baseline, suggesting

the importance of combining multiple templates in the homology-based protein function

inference. Consistently with the CAFA experiments [33], the BLAST baseline also underper-

forms other competing methods, such as FunFams and DeepGOPlus, as shown in Tables 1, 2

and S11.

Ablation study

To analyze the contributions of algorithmic innovations in ATGO to its improved perfor-

mance, we design an ablation study, in which we start from a baseline model (M0) and incre-

mentally add algorithmic components of ATGO to build three advanced models (M1, M2 and

M3, with M3 = ATGO). The pipelines of the four models are designed as follows (see S5 Fig

for the architectures):

• M0: Model is trained with the standard CNNs with a one-hot coding matrix extracted from

the input sequence, followed by a fully connected network, in which an output layer with sig-

moid activation function [38] is added to generate the confidence scores of predicted GO

terms. In the training stage, the cross-entropy loss [39] is used as the loss function, as

described in Eq 5.

• M1: We replace the CNN by the ESM-1b transformer and extract the feature embeddings

from the last layer for input sequence, which is further fed to a fully connected network with

sigmoid activation function to output the confidence scores of predicted GO terms, where

the cross-entropy loss is used as loss function in the training stage.

• M2: We add the triplet network-based guilt-by-association (GBA) strategy in M1, where the

loss function is the combination of triplet loss [30] and cross-entropy loss, as shown in Eq 4.

The final outputs are the combination of confidence scores from triplet network-based GBA

strategy and those from the output layer with sigmoid activation function, as described in

Eq 1.

• M3: We add the multi-view feature fusion strategy in M2 to build the final model, where the

embedding features are derived from the last three layers of ESM-1b rather than only the last

layer (see “Methods and materials”).

Fig 5 illustrates the Fmax and AUPR values of four models for three GO aspects on all of

1068 test proteins, where we run each model for 10 times and then used the average of all pre-

dictions as the final result. Compared with M0, M1 achieves a significant gain with the average

Fmax and AUPR increased by 32.4% and 41.8%, respectively, demonstrating that ESM-1b

transformer is critical to improve function prediction of the ATGO pipeline. Compared to

other function categories, M1 achieves the highest performance improvement in MF predic-

tion, indicating that the embeddings from ESM-1b contain sequence signals which have a

closer relationship with MF than with BP and CC. This is probably because MF is mainly
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associated with the molecular action that a protein can perform by itself and therefore directly

related to the internal feature of the sequence that can be captured by the sequence embedding.

On the other hand, BP describes the biological pathways which often involve a series of inter-

molecular actions. Rather than a single protein, a group of interacting proteins are required to

complete a BP. Since the sequence embedding is primarily derived from the sequence itself

and not designed for capturing the information of protein-protein interactions or co-expres-

sion regulations, it is less effective for BP prediction. Similarly, the CC of a protein such as sub-

cellular localization is dependent on other molecules in the cell and cannot be fully captured

by the embedding.

Fig 5. Ablation study on the ATGO pipeline based on 1068 test proteins. M0 denotes the baseline model with one-hot embedding, where M1-3 are the

models with transformer embedding, triplet network, and multi-view feature added respectively. (a) The Fmax values of four models. (b) The AUPR values of

four models.

https://doi.org/10.1371/journal.pcbi.1010793.g005
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After separately adding triplet network-based GBA strategy to M1 and multi-view feature

fusion strategy to M2, the corresponding Fmax values are increased on average by 2.2% and

1.6% on three GO aspects. The AUPR values of M2 and M3 are slightly decreased for CC

aspect in comparison with M1, but the corresponding values are sustainably increased in other

two aspects with p-values�9.1e-18 after adding the two strategies. Although M2 and M3 use

the same ESM-1b model for feature extraction and the same loss function for training, M3 still

slightly outperforms M2 by using the last three rather than just the last one layer of ESM-1b

for feature extraction. This is partly because that different layers of a transformer model such

as ESM-1b capture different levels of information and the layers closer to the end of the trans-

former tend to extract more abstract information. Therefore, M3 captures more fine-grained

information from ESM-1b than M2. These observations indicate that the additional two strate-

gies are helpful for enhancing the overall performance of function prediction, although less

significant than the ESM-1b transformer.

In addition, to examine the impact of different metric learning methods on the ATGO

model (see “Methods and materials”), we used four metrics of F1-score, Jaccard similarity [40],

weighted F1-score, and weighted Jaccard similarity to assess the functional similarity in the

triplet loss separately, where the weights of GO terms are measured by information content

[41]. The performance of the ATGO models via the four metric learning methods on our test

datasets is summarized in S12 Table and discussed in S8 Text. It is found that although the per-

formance of individual models varies, there is no obvious difference on the overall perfor-

mance of the models for each GO aspect, suggesting that the effectiveness of the proposed

ATGO framework is not sensitive to the choices of different metric learning methods.

Case studies

To further examine the effects of different GO prediction methods, we selected three represen-

tative proteins from our test dataset (A6XMY0, E7CIP7, and F4I082) as illustrations. These

proteins are associated with 18, 14, and 13 GO terms, respectively, for the BP aspect in the

experimental annotation, where the root GO term (GO: GO:0008150, biological process) is

excluded. Table 3 summarizes the numbers of correctly predicted GO terms (i.e., true posi-

tives) and mistakenly predicted terms (i.e., false positives), and the F1-scores between predicted

and native GO terms (see Eq S32 in S10 Text) in the BP prediction for three proteins by 12 GO

prediction methods.

Table 3. The modeling results of the ATGO/ATGO+ in control with other 10 competing GO prediction methods on three representative examples in biological pro-

cess (BP) prediction, where bold fonts highlight the best performer in each category.

Methods A6XMY0 E7CIP7 F4I082

TP FP F1-score TP FP F1-score TP FP F1-score

Single algorithms SAGP 0 0 0.000 8 9 0.516 13 8 0.765

PPIGP 0 0 0.000 0 0 0.000 3 16 0.187

NGP 2 16 0.111 4 14 0.250 1 17 0.065

DeepGO 14 29 0.459 0 20 0.000 2 57 0.056

FunFams 0 0 0.000 0 14 0.000 0 0 0.000

DeepGOCNN 14 26 0.483 3 9 0.231 1 11 0.080

DIAMONDScore 0 0 0.000 8 9 0.516 0 0 0.000

TALE 14 5 0.757 10 2 0.769 1 9 0.087

ATGO 15 0 0.909 14 2 0.933 9 7 0.621

Composite algorithms DeepGOPlus 1 2 0.095 8 10 0.500 0 1 0.000

TALE+ 1 0 0.105 8 9 0.516 0 1 0.000

ATGO+ 11 0 0.759 14 2 0.933 13 3 0.897

https://doi.org/10.1371/journal.pcbi.1010793.t003
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In Fig 6, we plot the directed acyclic graph of GO terms in the experimental annotation and

the correctly predicted GO terms of 12 methods for three proteins. Moreover, the false posi-

tives of each method are listed for all three examples in S13 Table. It should be noted that the

predicted GO terms of different methods are determined by their own cut-off setting to

achieve the highest Fmax value.

Several interesting observations can be made from the data. First, for two of three proteins

(i.e., A6XMY0 and E7CIP7), the proposed ATGO and ATGO+ are top-two performers with

the highest F1-scores. In A6XMY0, for example, the four template-based or biology network-

based methods, including SAGP, PPIGP, FunFams, and DIAMONDScore, cannot make any

Fig 6. The directed acyclic graph with GO terms for three representative examples of A6XMY0, E7CIP7, and F4I082 in biological process. The circles above each GO

term refer to the prediction methods, where a circle filled with “X” on GO term “Y” indicates that method “X” can correctly predict term “Y”.

https://doi.org/10.1371/journal.pcbi.1010793.g006
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predictions, because they fail to hit the available sequence templates or PPIs. At the same time,

ATGO correctly recognizes the most (15) GO terms with no false positives, indicating that the

deep learning-based ATGO has low dependency on the availability of templates and interac-

tion partners.

For E7CIP7, all true positive predictions by the 10 control methods can be effectively iden-

tified by ATGO. More importantly, ATGO can correctly recognize two additional GO terms,

i.e., GO: 0000272 and GO:0045490, which are missed by all the 10 control methods. This

observation shows that ATGO can predict functions in a more precise level, due to the fact

that it successfully identifies several children GO terms, in which other methods fail. However,

because SAGP cannot provide additional true positives for ATGO, the performance of com-

posite ATGO+ cannot be further improved and even be slightly degraded in A6XMY0. This

example shows that although homology-based transferals can help improve the overall perfor-

mance of ATGO+, it could negatively impact the modeling accuracy when the template quality

is poor. It might be helpful to introduce additional filters to the component of homology-

based models, e.g., on the confidence score of sequence alignments.

Occasionally, ATGO shows the worse performance with a lower F1-score in comparison

with SAGP, as illustrated in F4I082. For this case, SAGP generates the highest number of true

positives among all 9 single-based methods, where four GO terms (i.e., GO:0006955,

GO:0006952, GO:0098542, and GO:0050832) are missed by ATGO. Due to the valuable infor-

mation inherited from SAGP, the composite ATGO+ obtains the highest F1-score across all

single and composite methods, which demonstrates the advantage of ATGO+ by combining

composite homology and deep learning-based results.

Discussion

We developed a new deep learning-based method, named ATGO, to predict functions of pro-

teins from the primary sequence. The algorithm was built on transformer embedding and trip-

let network decoding. The large-scale tests on a set of 1068 non-redundant benchmark

proteins and 3328 targets from the community-wide CAFA3 experiments demonstrated that

ATGO consistently outperforms other state-of-the-art approaches in the accuracy of gene-

ontology (GO) predictions. The improvement of ATGO can be attributed to several advance-

ments. First and most importantly, the ESM-1b transformer can effectively extract the discrim-

inative feature embeddings for the input sequence from the different views of evolution

diversity. Second, the multi-view feature fusion helps reduce the negative impact caused by

information loss in feature extraction. Third, the triplet network-based GBA strategy is impor-

tant to enhance the training efficiency by maximizing the feature distance between positive

and negative samples. Finally, combining ATGO with complementary information from

sequence homologous inference can further improve the prediction accuracy.

Despite the demonstrated effectiveness of the transformer, it is important to note that the

currently used ESM-1b transformer is only one of the several existing language models built

on a single query sequence. The use of other embedding language models such as ProtTrans

and a newly released extended version ESM-2 [42], both of which demonstrated superiority to

ESM-1b, for GO prediction is worthy of exploration in future work. Moreover, given that mul-

tiple sequence alignment (MSA) contains significantly more enriched evolutionary informa-

tion labelled with conserved protein sites [43], which are critical to protein functional

annotations, we will construct a new unsupervised protein language model by the use of the

MSAs created from DeepMSA [44] through self-attention networks. The embedding from

MSA transformers should help further improve the sensitivity and accuracy of the GO predic-

tion models [45]. Studies along these lines are under progress.
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Methods and materials

Dataset construction

To construct the datasets, we downloaded all protein entries from the Gene Ontology Annota-

tion (GOA) database [46], which provides functional annotations for the sequences in the Uni-

Prot database [4]. To ensure the reliability, we only considered the 123,774 proteins whose

functions are annotated by at least one of the eight experimental evidence codes (i.e., EXP,

IDA, IPI, IMP, IGI, IEP, TAS, and IC) [47,48].

Among the 123,774 proteins, we selected 1068 non-redundant proteins as the test dataset,

which have the function annotations deposited in the manually reviewed Swiss-Prot library

[49] after 2019-1-1; and 1089 non-redundant proteins as the validation dataset, which were

deposited in Swiss-Prot from 2017-1-1 to 2018-12-31. The remaining 109,132 proteins were

used as the training dataset of ATGO. Here, a sequence identity cut-off 30% has been used to

filter out the redundant proteins within each dataset and between different datasets using the

CD-HIT [50] program. The number of entries in each dataset on different GO categories is

summarized in S14 Table. While the training and validation datasets were separately used to

train the ATGO models and optimize the parameters, the test dataset was used to evaluate the

performance of the models.

The framework of ATGO

ATGO is a deep learning-based protein function prediction method, with input being a query

amino acid sequence and output including confidence scores of predicted GO terms. As

showed in Fig 1A, ATGO consists of three procedures of multiple-view feature extraction

using transformer, neural network-based feature fusion, and triplet network-based function

prediction, where the first and second procedures are jointly defined as feature generation

model (FGM).

Procedure I: Multiple-view feature extraction using transformer. The input sequence is

fed to ESM-1b transformer with 33 attention layers to extract the feature embeddings. Specifi-

cally, each layer outputs a feature embedding from an individual evolutionary view, which is

further used as the input of next layer to generate a new embedding from a more complex

view. Considering that the feature embedding from a single view (layer) cannot fully

represent the evolutionary information for sequence, we extract feature embeddings from

multiple views (i.e., the last three layers) to relieve information loss. Each embedding is repre-

sented as a L×D matrix, where L is the length of query, and D = 1280 is a preset hyper-parame-

ter in ESM-1b.

Procedure II: Neural network-based feature fusion. We calculate the average value for

each column in the embedding matrix to generate an embedding vector with D dimension, as

the input of fully connected layer with N1 neurons. Then, the outputs of three fully connected

layers are concatenated as a new vector with 3N1 dimension, which is further fed to another

fully connected layer (i.e., FCLa) with N2 neurons. Here, we set N1 = N2 = 1024.

Procedure III: Triplet network-based function prediction. The triplet network-based

GBA strategy is performed on the output of FCLa to generate a confidence score vector sgba for

predicted GO terms. At the same time, the output layer FCLO with sigmoid activation function

[38] is fully connected to FCLa to output another confidence score vector ssaf. The final confi-

dence score vector is the weight combination:

s ¼ wsgba þ ð1 � wÞssaf ð1Þ

where w is the weight and ranges from 0 to 1.
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ESM-1b transformer

The architecture of ESM-1b transformer [26,51] is illustrated in Fig 1B. For an input sequence,

the masking strategy [52] is performed on the corresponding tokens (i.e., amino acids). Specif-

ically, we randomly sample 15% tokens, each of which is changed as a special “masking” token

with 80% probability, a randomly-chosen alternate amino acid with 10% probability, and the

original input token (i.e., no change) with 10% probability. Then, the masked sequence is rep-

resented as a L×28 matrix using one-hot encoding [53], where 28 is the types of tokens, includ-

ing 20 common amino acids, 6 non-common amino acids (B, J, O, U, X and Z), 1 gap token,

and 1 “masking” token.

The one-hot matrix is firstly embedded with positions and then fed to a self-attention block

[54] with n layers, each of which consists of m attention heads, a linear unit, and a feed-for-

ward network (FFN). In each head, the scale dot-product attention is performed on three

matrices, including MQ (Query), MK (Key), and MV (Value), as follows. First, the dot-product

between MQ and MK is performed to generate an L×L weight matrix, which measures the simi-

larity for each amino acid pair in sequence. Then, we use the scale parameter and SoftMax

function to normalize the weight matrix. Finally, the attention matrix is generated by multiply-

ing the normalized weight matrix with MV.

In each layer, all attention matrices are concatenated as a new matrix, which is further fed

to the subsequent linear unit and FFN with shortcut connections to output feature embedding.

The output of the last attention layer is fed to a fully connect layer with SoftMax function to

generate a L×28 probability matrix P, where Plc indicates the probability that the l-th token in

the masked sequence is predicted as the c-th type of amino acid.

The loss function is designed as a negative log likelihood function between inputted one-

hot and outputted probability matrices, to ensure that the prediction model correctly predicts

the true amino acids in the masked position as much as possible. The mathematics formulas of

the above-mentioned procedures are listed in S9 Text.

The ESM-1b transformer is optimized by minimizing the loss function via Adam optimiza-

tion algorithm [55]. Then, the output of each attention layer is a L×D feature embedding,

where D is the number of neurons of FFN. The current ESM-1b model was trained on 27.1

million proteins from UniRef50 database and can be download at https://github.com/

facebookresearch/esm, where n = 33, m = 20, and D = 1280.

Triplet network-based guilt-by-association for GO prediction

In GBA strategy, we select the templates with the most similar feature embeddings for a query

from the training dataset to annotate the query, where the similarity of feature embeddings is

measured by a supervised triplet network [30], as shown in Fig 1C.

The input is a triplet variable (anc, pos, neg), where anc is an anchor (baseline) protein, and

pos (or neg) is a positive (or negative) protein with the same (or different) function of anc.

Each sequence is fed into feature generation model (FGM, see Fig 1A) to generate a feature

representation vector, as the input of FCLa, to output a new embedding vector. Then, the fea-

ture dissimilarity between two proteins is measured by Euclidean distance [56] of embedding

vectors. Finally, a triplet loss is designed to associate feature similarity with functional similar-

ity:

Tripletloss ¼ maxðdðanc; posÞ þmargin � dðanc; negÞ; 0Þ ð2Þ

where d(anc, pos) (or d(anc, neg)) is the Euclidean distance of feature embeddings between

anchor and positive (or negative), and margin is a pre-set positive value. Here, the minimiza-

tion of triplet loss requests for the maximization of d(anc, neg)−d(anc, pos). In the ideal case,
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Tripet loss = 0 when d(anc, neg)�d(anc, pos)+margin, which indicates substantially higher fea-

ture similarity of anchor proteins to positives than to negatives.

We use the “batch on hard” strategy [57,58] to calculate the triplet loss for a training data-

set:

Losst ¼ Ex�Xmaxðdðx; posÞmax þmargin � dðx; negÞmin; 0Þ ð3Þ

where x is a sequence in training set X, and d(x, pos)max (or d(x, neg)min) is the maximum (or

minimum) value of Euclidean distances between x and all positive (or negative) proteins with

same (or different) function of x. Moreover, two proteins are considered to have the same

function if their functional similarity is larger than a cut-off value cf. The functional similarity

of two proteins is measured by F1-score between their GO terms, as shown in S10 Text.

It has been demonstrated that the cross-entropy loss [39] helps to improve the performance

of triplet network [59–61]. Therefore, we further designed a composite loss function for

ATGO through combining triplet loss with cross-entropy loss:

LossATGO ¼ Losst þ a � Lossc ð4Þ

Lossc ¼ � Ex�XEq�Qyðx; qÞ � logssaf ðx; qÞ þ ð1 � yðx; qÞÞlogð1 � ssaf ðx; qÞÞ ð5Þ

where α is a balanced parameter, q is an element in candidate GO term set Q, ssaf(x, q) is the

confidence score of term q for x in the FCLO of ATGO (see Fig 1A); y(x, q) = 1 if x is associated

with q in the experimental function annotation; otherwise, y(x, q) = 0. We minimize loss func-

tion to optimize ATGO using Adam optimization algorithm [55].

After training ATGO, the GBA strategy is used to generate the confidence score vector sgba
of predicted GO terms for the query. Specifically, we select K training proteins, which have the

highest feature similarity with query, as templates, where the feature dissimilarity between two

proteins is defined as the Euclidean distance of corresponding embedding vectors outputted

by FCLa in trained ATGO. Then, the confidence score that the query is associated with GO

term q is calculated:

sgba qð Þ ¼
PK

k¼1
wk � IkðqÞ

PK
k¼1

wk

;wk ¼ 1 � rk � 1ð Þ=K ð6Þ

where rk is the rank of the k-th template in K templates according to the feature similarity with

query; Ik(q) = 1, if the k-th template is associated with q in the experimental annotation; other-

wise, Ik(q) = 0. The values of margin, cf, α, and K are listed in S15 Table, which are determined

by maximizing the Fmax values of ATGO in the validation dataset.

Composite model of ATGO+

Inspired by previous works [21,22], we implemented a composite model, ATGO+, by combin-

ing neural network-based model (AGTO) with sequence homology inference (SAGP), to fur-

ther improve prediction accuracy:

sATGOþðqÞ ¼ b � sATGOðqÞ þ ð1 � bÞsSAGPðqÞ ð7Þ

where sATGO+(q) is the confidence score of ATGO+ for GO term q, sATGO(q) and sSAGP(q) are

confidence scores for term q by ATGO and SAGP, respectively. The values of the weight

parameter β are set to be 0.57, 0.60, and 0.67 for MF, BP, and CC, respectively, based on the

validation dataset.
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Hierarchy of GO annotations

The GO annotation is hierarchical [33]. Specifically, for both the ground truth and the predic-

tion, if a protein is annotated with a GO term q, it should be annotated with the direct parent

and all ancestors of q. To enforce this hierarchical relation, we follow CAFA’s rule and use a

common post-processing procedure [9] for the confidence score of term q in all GO prediction

methods:

sðqÞpost ¼ maxðsðqÞ; sðqc
1
Þpost; sðq

c
2
Þpost; . . . ; sðqc

nÞpostÞ ð8Þ

where s(q) and s(q)post are the confidence scores of q before and after post-processing,

sðqc
1
Þpost; sðq

c
2
Þpost; . . . ; sðqc

nÞpost are the confidence scores of all direct child terms of q after post-

processing. This post-processing procedure enforces that the confidence score of q is larger

than or equal to the scores of all children.

Evaluation metrices

Fmax and AUPR are widely used to evaluate the performance of proposed methods. Fmax is a

major evaluation score in CAFA [32,33] and defined as:

Fmax ¼ max
0�t�1

2 � prðtÞ � rcðtÞ
prðtÞ þ rcðtÞ

� �

ð9Þ

where t is a cut-off value of confidence score; pr(t) and rc(t) are precision and recall, respec-

tively, with confidence score�t:

pr tð Þ ¼
tpðtÞ

tpðtÞ þ fpðtÞ

rc tð Þ ¼
tpðtÞ

tpðtÞ þ fnðtÞ

ð10Þ

8
>>><

>>>:

where tp(t) is the number of correctly predicted GO terms, tp(t)+fp(t) is the number of all pre-

dicted GO terms, and tp(t)+fn(t) is the number of GO terms in experimental function

annotation.

AUPR is the area under the precision-recall curve and ranges from 0 to 1. In addition,

AUROC is the area under the receiver operating characteristic curve and also ranges from 0 to 1.

Supporting information

S1 Fig. The mean AUROC values of GO terms versus 12 GO prediction methods in four

ranges. (a) range 5–10. (b) range 10–30. (c) range 30–50. (d) range >50.

(TIF)

S2 Fig. The median AUROC values of GO terms versus 12 GO prediction methods in four

ranges. (a) range 5–10. (b) range 10–30. (c) range 30–50. (d) range >50.

(TIF)

S3 Fig. The distributions of AUROC values for GO terms in two ranges versus 12 GO pre-

diction methods, where the median line in the box is the median AUROC value. (a) range

30–50. (b) range>50.

(TIF)

S4 Fig. The AUPR values of 10 GO prediction methods under the sequence identity cut-off

t1 = 30% for three GO aspects on four individual species in CAFA3 test dataset. (a) Human
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(b) Arabidopsis (c) Fission Yeast (d) Mouse.

(TIF)

S5 Fig. The architectures of different models in ablation study.

(TIF)
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6. Urzúa-Traslaviña CG, Leeuwenburgh VC, Bhattacharya A, Loipfinger S, van Vugt MA, de Vries EG,

et al. Improving gene function predictions using independent transcriptional components. Nature com-

munications. 2021; 12(1):1–14.
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