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12.1 Introduction

G protein-coupled receptors (GPCRs) are a superfamily of integral membrane
proteins and consist of over 800 established members, establishing them as the
third-largest family of proteins in humans [1, 2]. Marked by their distinctive
seven-pass transmembrane domain, they account for almost 5% of the human
proteome. Consequently, they have been implicated in a multitude of diseases,
including cancer and diabetes [3, 4]. Moreover, almost a third of all drugs in use
today target these receptors, accentuating their importance in drug discovery [5].
Given the interest the pharmaceutical industry has in GPCRs, extensive scienti!c
e"orts have been made to develop novel drugs for a variety of medical conditions.

Drug discovery has traditionally used high throughput screens (HTSs) as a
means to discover hit compounds from enormous chemical libraries. Unfortu-
nately, these large-scale assays are typically very expensive, time-consuming, and
laborious. In the years following its explosive beginnings in the pharmaceutical
industry in the early 1980s [6], computer-aided drug design (CADD) methods
were developed to computationally predict how well a potential drug would bind
to a receptor or to model how it binds; predictions e"ectively compensate for the
brute force approach of HTS and help inform further biochemical experiments.
In particular, virtual (or in silico) screening complements HTS by reducing the
chemical space to be explored. Using various CADD approaches, computational
chemists could then assign scores to chemical compounds and rank them
accordingly, helping prioritize which compounds to experimentally assay.

GPCRs as Therapeutic Targets, Volume 1, First Edition. Edited by Annette Gilchrist.
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12.2 Overview of Virtual Screening 389

In the current chapter, we aim to provide the reader with an introduction to vir-
tual screening and its application to GPCRs. In addition to providing an overview
of virtual screening and its required components, we will delve into what will
be referred to as classical virtual screening; this includes many well-established
approaches with which many medicinal chemists will be familiar, such as chem-
ical similarity comparisons and molecular docking. Subsequently, we will survey
the use of chemogenomics and machine learning in virtual screening, including
bioactivity prediction. Lastly, various topics on inverse virtual screening will be
presented to give the audience a sense of how o"-target e"ects of drugs can be
computationally examined or addressed.

12.2 Overview of Virtual Screening

12.2.1 Principle of Virtual Screening

In virtual screening, the overall aim is to computationally screen through a
database of chemical compounds that would be tested in the wet lab. A typical
work#ow can be represented as follows:

1) Prepare inputs (receptor, pharmacophore, etc.) for CADD method
2) Format chemical compound database
3) Screen through database with CADD method
4) Rank compounds in database by prediction scores
5) Select top n compounds for experimental validation

Compound databases can vary greatly in size depending on the target of inter-
est, ranging from tens of thousands to millions of compounds. There is a general
misconception from the scienti!c community that virtual screening is a compli-
cated process; to an extent, it is beautifully simple. One way to envision screening
is the large-scale repetition of a CADD methodology against each compound in
the database, analogous to a loop in a computer program. However, the intricacies
and challenges of virtual screening are found primarily in the parameterization of
the CADD methodology, as well as the way one processes the resulting predictions.
After a virtual screen, the CADD methodology will have assigned a metric or score
to each compound. Subsequently, the compounds will be ranked from most likely
to least likely to bind or interact with the receptor of interest. The top-ranked com-
pounds are then typically chosen for experimental validation, either by selection
after clustering or visual inspection of docked poses.

Before going further, it should be noted to the reader that a proper understanding
of various computer representations of chemical compounds is useful for trou-
bleshooting errors related to !le formats while using a CADD methodology. More-
over, the proper design of a chemical database is paramount to the success of a
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390 12 Virtual Screening and Bioactivity Modeling for G Protein-Coupled Receptors

virtual screening campaign. Finally, a stringent implementation of a retrospec-
tive or prospective virtual screening for a drug target of interest is a necessity for
validation. These will all be detailed in the subsequent Sections 12.2.2–12.2.4.

12.2.2 Computer Representation of Chemical Compounds

12.2.2.1 Line Notation
Line notation allows for the representation of a chemical compound using a
string of ASCII characters. Despite looking rather odd to the untrained eye, they
are completely readable, and those familiar with the format would be able to
convert between it and the corresponding 2D chemical structure. Nowadays, this
representation is primarily used for chemical database searching. The Simpli!ed
Molecular-Input Line-Entry System (SMILES) and International Chemical
Identi!er (InChI) formats are currently the most widely used.

SMILES strings were initially conceived in the 1980s as a means to make chemi-
cal compounds machine readable. Each letter represents an atom (B, C, N, O, P, S,
F, Cl, Br, or I), single bonds are usually implicit, and double and triple bonds are
represented as “=” and “#”, respectively. Aromaticity is denoted with alternating
equal signs (e.g. pyridine moiety: C4=CC=CC=N4). Additionally, rings are
classi!ed by including an opening and closing number (e.g. thiophene moiety:
C1=C(SC=C1)). The use of parentheses indicates branching, and stereochemistry
is speci!ed at chiral centers with “@”. SMiles ARbitrary Target Speci!cation
(SMARTS) strings were developed by the Daylight Chemical Information Systems
as a robust extension of the SMILES string that provided expanded functionality,
such as the ability to !lter a compound database by substructure. However, one of
the biggest drawbacks of this format is that there is no standard way to generate
the SMILES string [7]. Thus, the heterogeneity of SMILES strings possible for a
single compound can complicate chemical database searching, especially when a
compound of interest cannot be found due to this problem.

InChI strings were developed in 2005 by the International Union of Pure
and Applied Chemistry (IUPAC) in response to the inconsistencies produced by
SMILES strings [8]. Additionally, they were able to express more information than
SMILES strings. All InChI strings start with “InChI=”, followed by the version
number and an “S”, which corresponds to its standardization. Subsequently,
there are six layers of information; the !rst layer is the most important and
gives the chemical formula, atomic connections, and hydrogen atoms, while
the others focus on other chemical aspects such as charge, stereochemistry,
and isotopes. Also, it should be noted that the InChI format is conspicuously
more di$cult to read than SMILES. InChI keys, 27-character hashed versions of
InChI strings, allow for extremely fast chemical database searches due to their
reduced length. A previous study has demonstrated that a single duplicate for the
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12.2 Overview of Virtual Screening 391

!rst 14 characters could theoretically occur 0.014% of the time in a database of
100 million compounds [9]. Given that most chemical databases have well below
this number of chemical compounds, it can be assumed that a duplication will
likely not occur. A drawback of using the InChI key is that it cannot be converted
back to its respective InChI string, thus these two descriptors always need to be
paired.

12.2.2.2 Molecular Fingerprints
Molecular !ngerprints provide an abstraction of the chemical features of com-
pounds into binary vectors. All have a !xed length for purposes of comparison
and can be used to calculate chemical similarity mind-bogglingly fast. Though e$-
cient, they likely have the least speci!c information packed into their form. Over
the years, various developments have aimed to squeeze as much information as
possible into small vector lengths.

Substructure key-based !ngerprints consist of a prede!ned set of substructures,
and the number of possible bits is de!ned by the number of substructures. One
of the most commonly used !ngerprints of this type is Molecular ACCess System
(MACCS), !rst developed by MDL Information Systems (formerly Molecular
Design Limited) in 1979. Interestingly, they were initially intended for use in
database searching as opposed to virtual screening [10], which is the common
method it is used for today. They assume two di"erent variants: one with 960
substructures, and the other with 166 of the most interesting substructures for
drug discovery, paired with corresponding SMARTS strings [10]. Not surprisingly,
the latter is far more popular. The principle of how this type of !ngerprint works
is that each position in the !ngerprint corresponds to a substructure. If the
compound has the substructure in its chemical structure, then the bit will be
set to “1”. Otherwise, it would be set to “0”. A drawback to using these types of
!ngerprints is that they are usually relatively sparse in content, such that they will
have mostly zeros, as typical molecules will have very few of the substructures.

Path-based !ngerprints are constructed by analyzing every possible fragment
in a molecule of a given linear path length, then cryptographically mapping them
onto a !xed-length !ngerprint. An example is given in Figure 12.1a for oliceridine,
using a path length of 3. Occasionally, bit collisions occur when the same bit is
assigned to two di"erent fragments. However, this is not a common occurrence
and can be reduced by increasing the !ngerprint length. The Daylight !ngerprint,
developed by Daylight Chemical Information Systems (hence the namesake), is
the most used out of all of the !ngerprints of this type and typically consists of
1028 bits.

Circular !ngerprints are very similar to path-based !ngerprints in that they are
mapped from a collection of molecular fragments onto a !xed-length !ngerprint.
However, their method of fragment analysis is not based on fragments generated
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Figure 12.1 Hypothetical 10-bit fingerprints for Oliceridine. (a) A path-based fingerprint
with a path length of 3 is used for this example. Only fragments found from a single
starting atom (green circle) are shown. The path lengths of the fragments (0, 1, 2, 3) are
numbered in bold. The asterisks (*) denote where there are bit collisions. (b) A circular
fingerprint with a radius of 2 is used for this example. Only fragments found from a single
starting atom (innermost green circle) and onwards are shown. The diameters of the
fragments (0, 2, 4) are numbered in bold. For both fingerprints, the fragment-generating
process occurs for all atoms on the molecule. MarvinSketch was used for drawing and
displaying the chemical structures, MarvinSketch 18.10.0, 2018, ChemAxon (http://www
.chemaxon.com).

in a linear path, but rather, the chemical environment centered around each
atom within a certain radius. An example for oliceridine is given in Figure 12.1b,
where a radius of 2 was used. Here, fragments are generated by moving a certain
radius away from a starting atom up until a diameter of 4, resulting in 3 fragments
for the speci!ed starting atom. The ECFP4 !ngerprint is the industry standard
of this type, and not surprisingly, it has been shown to be among the best
performing !ngerprints in a recent benchmark that ranked diverse structures by
similarity [11].

12.2.2.3 Chemical Table Files
Another strategy for storing chemical information in a text !le is chemical table !le
family of !le formats. Originally developed by MDL Information Systems starting
in the late 1970s [12], they have become one of the most widely used !le formats,
having been adopted by a vast majority of computational chemistry software. Of
those in this family, focus will be upon the Structure-Data File (SDF) format due
to its widespread use. In brief, the !le starts with a three-line header block, which
is mandatory but can be left empty if desired. This is followed by a “counts” line,
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12.2 Overview of Virtual Screening 393

which consists of speci!cations such as number of atoms, number of bonds, and so
forth. The “atoms” block provides information about the coordinates and identity
of the atoms, while the “bond” block describes the connectivity between atoms.
The properties block denotes any existing charges or isotopes, as well as the end
of the molecular description. SDF is unique in that the subsequent associated data
allow the inclusion of miscellaneous information not allowed in the main form,
such as the IUPAC name and database identi!ers. The tag for each data type is
included inside angle brackets (“<”, “>”), and the relevant data is placed on the
line immediately following it.

Originating from the now-defunct Tripos, the Mol2 format has achieved a sim-
ilar level of popularity and usage as the SDF format. Many aspects are almost
identical to the SDF format, where various blocks are designated for counts, atom,
and bond information, though with di"erent column formatting. Moreover, each
block is recognized starting with a record type indicator (e.g. @<TRIPOS>ATOM),
followed by the corresponding data. Apart from the main record type indicators,
there exists many others not available in SDF format, such as substructures and
rotatable bonds.

12.2.2.4 PDB File Format
Most researchers in biochemistry will be fairly acquainted with the Protein
Data Bank (PDB) !le format, since it has been primarily used to describe the
three-dimensional structure of proteins, DNA, and RNA. This !le format was !rst
conceived in 1976 as a means to help researchers exchange protein coordinates
through a database [13]. Not surprisingly, its format has been revised and updated
numerous times over the years. Essentially, a PDB !le is a text !le that contains
various information about the structure provided in speci!ed ranges of columns.
The !le contains a variety of data, ranging from resolution and method used to
solve the structure to atomic coordinate speci!cations.

One of the most important pieces of information within the PDB !le is the
“ATOM” record name. An example is shown in Figure 12.2 that depicts the
coordinates for two representative amino acids from a PDB structure. Each line
depicts a single atom in the structure. For example, the !rst line corresponds
to the backbone nitrogen of Gly-85. Furthermore, the atomic coordinates of
this atom (−2.211, 29.344, −42.463) are given so that whichever algorithm or
molecular visualization software is used can correctly process this representation.

12.2.3 Chemical and Biological Databases

As the amount of data available to the scienti!c community has increased over
time, there has become a distinct need to catalogue and organize it so that it can be
easily accessible. Truly, gone are the days of hours-long expeditions to the library
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394 12 Virtual Screening and Bioactivity Modeling for G Protein-Coupled Receptors

Record name Atom name Chain identifier Occupancy B-Factor

ElementAtomic coordinates (x, y, z)Residue nameAtom serial number

Figure 12.2 Representative portion of PDB file. The portions with the “Record Name” of
ATOM helps software understand the identity and location of atoms and therefore help
correctly process relevant information from the file. The amino acids, Glycine (GLY) in
position 85 and asparagine (ASN) in position 86, from this structure are shown.

in search of publications that may or may not have been helpful to the question
at hand. Astoundingly, there now exist public databases that index data anywhere
from the primary structures of proteins to various experimental values of ligands
for a given receptor.

12.2.3.1 Biological Databases
UniProt is the de facto standard source of information for proteins [14]. This
database originated from the merging of data from European Bioinformatics
Institute (EBI), Swiss Institute of Bioinformatics (SIB), and Protein Information
Resource (PIR) into an entity known as the UniProt consortium. The most
commonly used portion of the database is referred to as UniProt Knowledgebase
(UniProtKB), which is subdivided into Swiss-Prot and TrEMBL. The former col-
lection of data is manually annotated and reviewed by experts of each respective
protein, while the latter refers to those that are computationally annotated from
genomic data. Not surprisingly, TrEMBL contains a far larger quantity of data
than Swiss-Prot. Within Swiss-Prot, a multitude of information about a protein of
interest is available, such as primary structure, post-translational modi!cations,
function, subcellular localization, and known protein–protein interactions.

The Protein Data Bank (PDB) is the single largest repository for protein, DNA,
and RNA structures solved by structural biologists [15]. It began as a united e"ort
in the 1970s to provide the scienti!c community with protein structures coded
into punch cards [13]. As the Internet came into fruition, it became possible to
move the data onto an online platform for its higher throughput distribution.
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12.2 Overview of Virtual Screening 395

Thus, the !rst web-server for browsing the PDB was developed at Brookhaven
National Laboratory in 1996 [16]. With the explosion of solved structures start-
ing in the 1980s, this resource became increasingly invaluable to life science
researchers around the world. In its current state, it serves as the primary resource
that provides protein structures for structure-based drug discovery e"orts. The
G Protein-Coupled Receptors database (GPCRdb) [17] was developed in 1993
as repository for GPCR-related data, and after the GPCR structure boom, it has
continually participated in the manual curation of GPCR structures. A more
recent e"ort to catalogue experimental GPCR structures from our group in a
user-friendly fashion is GPCR-EXP, which is semi-manually curated and updated
weekly (https://zhanglab.ccmb.med.umich.edu/GPCR-EXP/).

12.2.3.2 Chemical Databases
First released in 2009, ChEMBL is arguably the most massive database for
molecules with drug-like properties and biological activity [18]. As of its latest
release (ChEMBL 25), the database contains 1 879 206 unique compounds cor-
responding to 12 482 targets and 15 504 603 activities from 72 271 publications,
all derived from manual annotation. A similar database founded over a decade
earlier at University of California at San Diego is BindingDB [19], which also
contains a large amount of manually curated a$nity data. However, it has less
of a focus on membrane receptors than ChEMBL and more strongly emphasizes
enzyme targets [20]. DrugBank is a chemical database whose topic of interest is
information on drug molecules and their corresponding targets [21]. Another
interesting database of note is Psychoactive Drug Screening Program’s (PDSP)
Ki database [22], which houses a sizeable number of experimental a$nities.
A large portion of their data is dedicated to GPCRs. Also, the International Union
of Basic and Clinical PHARmacology’s (IUPHAR) Guide to Pharmacology is a
chemical database that deals primarily with popular pharmacological targets,
such as GPCRs and ion channels [23]. It is manually curated by experts, and only
ligands that have been well characterized are included. In contrast, ChEMBL,
BindingDB, and PDSP Ki are looser in their criteria for inclusion, where the
binding mode or mechanism are largely unknown for most ligands. PubChem
is a pure chemical database maintained by the National Center for Biotechnol-
ogy Information (NCBI) [24], containing approximately 93.9 million chemical
compounds. Additionally, they have a gargantuan collection of bioactivity data
from about 1.25 million high-throughput screening campaigns, each with several
million values.

All of the aforementioned chemical databases contain GPCR-related exper-
imental data. One of the earliest e"orts in organizing such data was with
G protein-coupled receptor-LIgand DAtabase (GLIDA) [25, 26]. Moreover, our
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group developed a database called G protein-coupled receptor-Ligand ASSocia-
tion (GLASS) database [27], which processes and uni!es GPCR experimental data
across ChEMBL, BindingDB, IUPHAR, PDSP Ki, and DrugBank, and remains
the most comprehensive database of its type. It has been used in other algorithms
as input, such as SwissSimilarity [28] and weighted deep learning and random
forest (WDL-RF) [29].

12.2.4 Retrospective and Prospective Virtual Screening

Retrospective virtual screening is performed to computationally validate a
method’s predictive performance based on a set of known active compounds
and their associated decoys. Moreover, it is employed as the primary method of
theoretical studies in benchmarking virtual screening methods, as well as serves
as a calibration of predictive conditions so that prospective virtual screens are opti-
mally successful. In brief, decoys are compounds that likely do not interact with
the receptor of interest but are similar in some way with the active compound. A
common way to produce decoys is to generate compounds that are similar in one
aspect but di"erent in another. For example, directory of useful decoys (DUD) [30]
and directory of useful decoys enhanced (DUD-E) [31] are two such datasets that
provide 33 and 50 decoys, respectively, per active compound that are chemically
similar yet topologically di"erent. Additionally, GPCR-Bench [32] and GPCR
ligand library/GPCR decoy database (GLL/GDD) [33] are GPCR-speci!c datasets
created in a similar fashion. It is important to note that the core assumption
of using an abundance of decoys over actives is that most compounds will not
bind to a given target by sheer chance, in principle making them hypothetical
inactive compounds. Furthermore, it is also recommended to add experimentally
determined inactive compounds to the decoy set whenever available, as is done
by DUD-E.

After all active compounds and decoys are all scored, they will be ranked accord-
ingly. The goal is to try and get as many active compounds into the top-ranking
portion as possible. A typical metric for evaluation is the enrichment factor of the
top 1% (EF1%), given as follows:

EF1% =
N1%

act∕N1%
select

Nact∕Ntot

(12.1)

where Nact and N tot are the total numbers of the active and all compounds,
respectively. N1%

act and N1%
select are, respectively, the number of active ligands and

the number of all candidates in the top 1% of the ranked database. The numerator
essentially accounts for the proportion of active compounds found in the top 1%,
while the denominator represents the probability of selecting an active compound
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12.3 Conventional Virtual Screening 397

randomly from the entire database. An EF1% greater than 1 would mean the
screening method performed better than randomness, while if it were less than 1,
it would mean it performed worse than randomness.

An important metric typically paired with the enrichment factor is the area
under the curve (AUC) of the receiver operator characteristic (ROC) curve, where
the true and false positive rates are calculated for both the active and decoys,
respectively. A value greater than 0.5 would suggest better performance than ran-
domness, while the inverse would suggest worse than randomness. A drawback
to this metric is that the entire list of ranked compounds is taken into account,
thereby putting great emphasis on the portions of the database that are unlikely
to ever have a compound chosen for experimentation. To account for this, some
groups have developed ways to give a higher weight to early enrichment. The
Shoichet group utilized the logAUC metric in DUD-E [31], while Schrödinger
seems to favor the Boltzmann-enhanced discrimination of the receiver operator
characteristic (BEDROC) [34, 35]. Either of these metrics will allow a better exam-
ination of how well the CADD methodology is able to distinguish active com-
pounds from decoys.

As opposed to its counterpart, prospective virtual screening is far more
straightforward: in a prospective screen, a computational chemist chooses several
high-scoring compounds for experimental validation. One way of choosing com-
pounds would be to cluster a subset by molecular frameworks (i.e. Bemis–Murcko
sca"olds [36]) or chemical similarity, wherein the top-ranking compound in each
cluster would be chosen. Another way would be to visually examine the docking
poses of the compounds for important interactions with the receptor. Unfortu-
nately, there is no replacement for a prospective virtual screen, as retrospective
virtual screens remain theoretical in nature and serve only as a measure of how
believable virtual screening can be.

12.3 Conventional Virtual Screening

In the traditional sense, virtual screens are categorized as ligand based or
structure based, depending on which CADD methodology is used; the former
utilizes pure chemical information in its search process, whereas the latter uses
protein structural information to determine how a compound binds. Most of
the major modeling suites from various companies (i.e. molecular operating
environment [MOE], Schrodinger, Cambridge Crystallographic Data Centre
(CCDC), BIOVIA, etc.) have the capability for all or most of the following
methods.
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12.3.1 Ligand-Based Approaches

12.3.1.1 Chemical Similarity
Molecular !ngerprints are most often used in the calculation of chemical simi-
larity. As a brief reminder, they are composed of a !xed-length string of bits; the
presence of “1” in a position denotes the presence of a chemical feature, while
“0” denotes its absence. The simplicity of this form allows for the possibility of
blazing fast calculations. A multitude of similarity metrics are available, but the
Tanimoto coe$cient has proven to perform the best and therefore has been most
popular [37]. Its calculation is shown as follows:

Tanimoto Coe$cient = c
a + b − c (12.2)

where a is the number of bits in the !rst molecule, b is the number of bits in the
second molecule, and c is the number of shared bits between the two molecules.
Only the same type of molecular !ngerprint can be compared between molecules;
mixing di"erent types will lead to erroneous results. Free software for chemical
similarity screening includes OpenBabel [38] and RDKit [39], both of which are
user-friendly standard toolkits in cheminformatics.

12.3.1.2 Ligand-Based Pharmacophores
A pharmacophore is a collection of chemical features (H-bond donor, H-bond
acceptor, aromatic, etc.) represented spatially, developed from a set of known
bioactive compounds. They are typically used when the protein structure of the
target is not known, which was historically the case. In brief, the pharmacophore
is constructed by structurally superposing low-energy conformers of the bioactive
compounds, whereupon chemical features from superposed moieties among the
compounds are assigned to the model. It should be noted that it is assumed that
the shared chemical features contribute to the bioactivity. When used in a virtual
screen, the target compounds will be spatially matched onto the pharmacophore
model and scored.

12.3.1.3 Shape-Based Comparison
Molecular shape has long been established as being an important contribution
to bioactivity [40]. Thus, another common method in ligand-based virtual
screening has involved the use of shape-based matching. Query conformers are
geometrically matched to other target conformers, trying to achieve the best
3D electron density overlap. One of the earliest algorithms to implement this
approach was ROCS [41] from OpenEye Scienti!c Software, while other freely
available methods include Ultrafast Shape Recognition (USR) [42], LigSift [43],
and LS-align [44].
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12.3 Conventional Virtual Screening 399

12.3.2 Structure-Based Approaches

12.3.2.1 Structure-Based Pharmacophores
When the drug target of interest has a protein structure available, then a
structure-based pharmacophore can be employed in virtual screening. This
type operates similarly to the ligand-based pharmacophore, except the spatial
distribution of chemical features are informed by the ligand-binding pocket as
opposed to a ligand structural superposition. Moreover, these can be used when
there is little to no knowledge of how a ligand binds to a receptor, especially in
the case of orphan receptors. However, the selection of chemical features to be
used in the model is nontrivial, given the large amount of uncertainty of residue
importance in the binding site, and warrants careful decision-making.

12.3.2.2 Molecular Docking
Molecular docking is a method used to predict how a ligand binds with a receptor
through conformational search and scoring functions. Prior knowledge of the lig-
and binding site is typically required in order to optimize the area to be examined.
Protocols for most docking programs start with adding non-polar hydrogens and
partial charges to both the receptor and the compounds. This is then followed by
the docking algorithm performing a conformational search for the most favorable
ligand pose, which is evaluated with a scoring function at each step. Subsequently,
the top poses are generated for the user, who can then visualize them with a molec-
ular viewer. Additionally, the !nal scores for each predicted pose are also given.

There have been dozens of docking software programs developed over the
years, and each has approached docking in a di"erent way. Some of the major
di"erences between these are: (i) the search algorithm, (ii) scoring function,
and (iii) conformational #exibility of the ligand and the receptor. Among the
top methods employed for conformational searching are the Lamarckian genetic
algorithm (AutoDock [45]), genetic algorithm (GOLD [46]), local search global
optimizer (AutoDock Vina [47]), ant colony optimization (PLANTS [48]),
anchor-and-grow (DOCK 6 [49]), and exhaustive search (Glide [50, 51]). Though
these strategies di"er greatly in their search algorithms, their basic premise
remains the same: they aim to achieve the most favorable ligand pose. To do so,
a scoring function must be calculated at each step of conformational sampling
to evaluate the pose. Many of the functions used currently are physics-based
force !elds that approximate the binding energy of the ligand pose in the binding
site. For example, the scoring function from DOCK 6 simply uses van der Waals
and electrostatic terms for computational e$ciency [52]. Various others take
other physical terms into account, such as hydrogen bonding, ligand desolvation,
and hydrophobic contributions [46]. Additionally, there exist empirical scoring
functions, which estimate the binding energy using a set of weighted energy
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400 12 Virtual Screening and Bioactivity Modeling for G Protein-Coupled Receptors

terms, and knowledge-based scoring functions, which utilize statistical energy
potentials derived from experimentally solved structures [53, 54]. Finally, there
is the option of how to treat the receptor and ligand during docking with respect
to conformational #exibility. Most software packages make the receptor rigid
because of the computational rigor involved in sampling all receptor conforma-
tions. However, some programs provide an option to make certain side chains of
the receptor #exible, such as AutoDock Vina [47] and GOLD [46]. Schrödinger
has an induced-!t docking protocol that allows for both ligand #exibility and
conformational changes in the binding site, though its application to virtual
screening of a large number of compounds is limited due to its computational
intensity. Most of the earliest docking methods, such as the original DOCK [55],
treated the ligand as rigid in order to !nd molecules with shape complementarity
to the binding site. Nevertheless, this methodology’s success is dependent on
the conformation of the molecule being docked, which may be a vastly di"erent
conformation from what is observed in reality.

12.3.3 Application to GPCRs

To date, there exists a plethora of prospective virtual screening campaigns applied
to GPCRs. To list them all would be outside the scope of this chapter, but the reader
can !nd further information from reviews [56–58]. Some particularly interesting
studies have included the discovery of: (i) a biased agonist for the μ opioid recep-
tor [59], (ii) selective agonists for the serotonin 1B receptor over the serotonin 2B
receptor [60], and (iii) antagonists for the C–X–C chemokine receptor 4 [61].

Several compounds found initially from virtual screen campaigns have actually
entered clinical trials. In 2006, a group from Predix Pharmaceuticals (known as
Epix Pharmaceuticals before collapsing) performed a docking-based virtual screen
on a homology model of the serotonin 1A receptor that resulted in a potent, selec-
tive agonist [62]. The reported molecule became the drug candidate, Naluzotan,
and proceeded into a phase III clinical trial; ultimately, it failed to perform bet-
ter than the placebo and was discontinued [63]. From the same company, a sep-
arate virtual screening campaign with the serotonin 4 receptor using a similar
methodology produced a selective, partial agonist that also made it to clinical tri-
als, though it too failed [64]. In another study from Heptares Therapeutics, a novel
adenosine A2A receptor antagonist was discovered through a docking-based vir-
tual screen on homology models, called AZD4635, and is currently in phase II
clinical trials for lung cancer [65]. Additionally, they also have a muscarinic M4
receptor agonist, HTL0016878, in phase I clinical trials for Alzheimer’s disease,
found through similar methods [66]. To the best of the authors’ knowledge, there
has yet to be an approved drug found from virtual screening targeting GPCRs,
though many examples exist for various other targets, such as growth factor-β1
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12.4 Chemogenomics-Based Virtual Screening 401

receptor kinase [67]. Despite this, numerous GPCR-targeting drugs resulting from
virtual screening await their verdict in clinical trials, and it is only a matter of time
before one hits the market, which would undoubtedly validate the current com-
putational methods and increase con!dence in virtual screening for GPCRs.

12.3.4 Challenges

Despite the relative successes each type of virtual screening approach has had,
there are distinct advantages and disadvantages to each. Ligand-based methods,
such as chemical similarity, are computationally inexpensive and can screen
millions of compounds within a short time but have the drawback of being biased
towards the known ligands used to build the model. Conversely, structure-based
methods, such as molecular docking, inherently have no such bias, but they are
extremely computationally expensive relative to ligand-based methods. A trend
in recent years has culminated in the combination of these methods to address
their respective shortcomings [68]. Given the speed of ligand-based methods,
several studies experimented with using it to !rst produce an “enriched” database
of top-ranking compounds, followed with molecular docking on this reduced
subset [69–71]. This can greatly reduce the computational cost and enable
virtual screening for groups without access to high performance computing
clusters. Other groups have exploited the complementarity between ligand- and
structure-based methods by running them in parallel and employing a consensus
scoring system for ranking [72–74]. Regardless of the strategy used, the manual
selection of bioactive compounds remains a great challenge.

12.4 Chemogenomics-Based Virtual Screening

Oftentimes, a drug target will have neither structural information nor known
active compounds. In cases like this, related proteins can be used to infer what
compounds the drug target can bind, based on the assumption that similar
receptors bind similar ligands [75]. The sequence of the protein can be used in
a sequence-based alignment search to !nd homologous proteins with sets of
bioactive compounds. Alternatively, a structural homology model of the protein
can be generated based on the sequence and structurally compared with all
known protein structures to !nd related proteins.

FINDSITE was an early implementation of a chemogenomics-based vir-
tual screening algorithm, which utilized ligand information from structurally
homologous receptors found through fold-recognition in a ligand-based virtual
screening (VS) [76]. This algorithm later evolved into FINDSITEX, which used
modelled structures as structural templates instead [77]. FINDSITEcomb and its
successor, FINDSITEcomb2.0, incorporated FINDSITEX along with an improved
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402 12 Virtual Screening and Bioactivity Modeling for G Protein-Coupled Receptors

version of FINDSITE that !lters out false-positive ligands (FINDSITE!lt), vastly
improving its performance in benchmarks [78, 79]. Additionally, another recent
algorithm is PoLi, developed from the same lab; it looks for similar receptors
by performing binding pocket structure comparison between the target and
templates, followed by a ligand-based screening search [80]. SPOT-Ligand [81]
is an algorithm that employs global structure alignment for the acquisition of
protein structures that are structurally similar and have sets of bioactive ligands,
which are then used in a ligand-based virtual screen. An updated version of the
method, SPOT-Ligand 2 [82], included a more comprehensive protein–ligand
database, and consequently, it achieved a better performance than its predecessor.
Recently, our group has developed a pipeline, Michigan G protein-coupled
receptor ligand-based virtual screen (MAGELLAN), that utilizes structure- and
sequence-based similarity to !nd homologous GPCRs, whereupon their ligands
are clustered and then used to construct ligand pro!les; using a consensus scoring
function, a ligand pro!le-based virtual screen can then be performed against a
database of choice [83].

12.5 Bioactivity Modeling with Machine Learning

Machine learning is the study of algorithms and statistical models where com-
puter systems are used to e"ectively implement a speci!c task without explicit
instructions, instead drawing information from inference and patterns. Machine
learning algorithms construct a mathematical model using sample data, called
“training data,” to improve the performance P at a task T based on experience
E [84]. Machine learning has been applied in a wide variety of applications, such
as computer vision and e-mail !ltering.

12.5.1 Pipeline

The aim of machine learning in virtual screening is to incorporate data from mul-
tiple sources into sensible models for describing and screening compounds with
the goal of identifying active drug targets. The typical machine learning pipeline
begins from data acquisition, proceeds to feature engineering, then to algorithm
selection and model construction, and !nally to model evaluation and applica-
tion. Figure 12.3 shows the overview of a typical machine learning-based virtual
screening work#ow.

12.5.2 Data Preparation

Data preparation is the step of transforming and cleaning raw data prior to process-
ing and further analysis. Steve Lohr of The New York Times said: “Data scientists,
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Figure 12.3 Typical machine learning workflow.

according to interviews and expert estimates, spend 50 percent to 80 percent of their
time mired in the mundane labor of collecting and preparing unruly digital data,
before it can be explored for useful nuggets.” Thus, it is important and often involves
reformatting data, imputation of missing values, and the combination of datasets
to increase sample size. Data preparation usually is a lengthy undertaking for sci-
entists, but it is essential as a prerequisite to put data in its proper context in order
to gain meaningful insights and eliminate bias resulting from poor data quality.

12.5.3 Feature Selection

Feature selection aims to reduce the dimensionality of data by using only a subset
of the most important features to build a model. Selection criteria usually consist
of the minimization of predictive errors for models given diverse feature subsets.
Algorithms search for a subset of features that can optimally model measured
responses, subject to speci!c constraints, such as !1-norm and !2-norm regular-
ization. As shown in Figure 12.4, there are three general classes of feature selection
algorithms: !lter methods, wrapper methods and embedded methods.

Filter methods usually adopt a statistical measure to determine a score for each
feature. The features can be ranked by the scores and are either selected to be saved
or removed from the model. The methods usually are univariate and consider each
feature independently or with regards to the dependent variable. Some examples
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Figure 12.4 Classes of feature selection algorithms.

of !lter methods involve the Chi squared test, information gain, and correlation
coe$cient scores.

Wrapper methods regard the selection of a subset of features as a search problem,
in which di"erent combinations are generated, evaluated and compared to each
other. A predictive model is built to evaluate the combinations of features and
to assign a ranking according to the model accuracy. The search process can be
methodical such as a best-!rst search, or it may be stochastic such as a random
hill-climbing algorithm, or it may use heuristics, like forward and backward ways
to add and remove features, such as the recursive feature elimination algorithm.

Embedded methods aim to learn which features have the best contribution to
the model performance while the model is being built. The most common class
of embedded feature selection is regularization-based methods. Regularization
methods are also called as penalization methods that introduce additional con-
straint terms into the objective function of a predictive algorithm that push the
model toward lower complexity. Examples of regularization algorithms involve
the LASSO, Elastic Net, and Ridge Regression.

12.5.3.1 A Case
We proposed a new method SED to predict ligand bioactivities and to recognize
key substructures associated with GPCRs through the coupling of screening for
LASSO of long extended-connectivity !ngerprints (ECFPs) with deep neural net-
work training [85]. Shown in Figure 12.5, the SED pipeline contains three suc-
cessive steps: (i) representation of long ECFPs for ligand molecules, (ii) feature
selection by screening for LASSO of ECFPs, and (iii) bioactivity prediction through
a deep neural network regression model.

12.5.4 Algorithms

12.5.4.1 Traditional Algorithms
Traditional applications of machine learning in virtual screening focus on the
use of supervised techniques to train statistical learning algorithms to clas-
sify databases of molecules by their activity against a particular drug target.
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Figure 12.5 Schematic of SED. The approach is composed of three stages: long
extended-connectivity fingerprint (ECFP) representation for ligand molecules, feature
selection by screening for LASSO, and construction of deep neural network regression
prediction models. Source: Wu et al. [85]/with permission of Oxford University Press.

Both ligand-based virtual screening and structure-based docking bene!t from
machine learning algorithms, including naïve Bayesian classi!ers, neural net-
works, support vector machines, and decision trees, as well as more regression
techniques.

The most simple machine learning method in virtual screening is multiple linear
regression (MLR), which has been widely used in quantitative structure–activity
relationship (QSAR) software [86–89], such as CoMSIA [90]. For instance, Evers
et al. proposed a method of integrating linear regression and classi!cation methods
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with discriminative analysis to !nd potential ligands targeting GPCRs from the
Molecular Design Limited drug data report (MDDR) [89]. For four GPCR drug
targets, Feher et al. employed consensus scoring to combine multiple di"erent
ligand-based methods using 2D descriptors, and 3D pharmacophore models [91].
Another usage of linear regression in virtual screening is in structure-based dock-
ing approaches [92, 93]. For instance, Jacobsson and Karlén employed partial least
squares (PLSs) to correct for the size bias of many docking scoring functions [93].

Conceptually, one of the popular methods to model the activity of a molecule
is to search a database for the molecules that are the most similar to it. The pre-
dicted score values are the activity of these “nearest neighbors,” a method referred
to as “k nearest neighbors” (kNN). A few attempts have been made to improve the
model performance of virtual screening based on the kNN methods, such as CoL-
iBRI [94], ENTess [95], MFMNN [96] methods and several lazy methods [97, 98].

Naïve Bayesian is among the simplest classi!ers. The probability of activity is
determined by the ratio of actives to inactives that share the descriptor value.
This approach supposes that each descriptor is statistically independent. The ear-
liest usage of a naïve Bayesian method in virtual screening was for Binary QSAR,
introduced by Labute [99]. Following this work, several excellent applications of
the naïve Bayesian model have been put forward [100–102]. For instance, Glick
et al. adopted a naïve Bayesian model with ECFP descriptors as a post-processing
method in order to prioritize hits from experimental HTS data [102]. Then, they
extended the usage of the naïve Bayesian model in docking to take the place of
HTS as a source of potential active compounds [101].

Support vector machines (SVMs) were proposed by Vapnik [103], where a
separation hyperplane boundary was de!ned, and examples were classi!ed
depending on which side of the boundary they are located. The initial work
on the usage of SVM in virtual screening was carried out by the Willett group,
where 35 991 molecules in the National Cancer Institute (NCI) AIDS data set
were tested, using UNITY !ngerprints as attributes [104]. Following this work,
multiple excellent virtual screening methods based on SVM have been proposed
[105–108]. For example, a prospective usage of SVM in virtual screening was
developed by Schneider et al., who adopted a model which was built from
331 dopamine receptors inhibitors for screening the SPECS and Interbioscreen
databases (over 255 000 molecules combined) which resulted in the identi!cation
of 11 compounds with a high selectivity for the D3 receptor [108].

Arti!cial neural networks (ANNs) have played a long-established role in
cheminformatics. ANNs are composed of a set of connected arti!cial “neurons.”
A single neuron takes multiple numerical inputs, and outputs a transformed and
weighted sum of the inputs; through layers of many parallel neurons, complex
classi!cation functions can be de!ned through training. Multiple uses of ANNs to
produce consensus scoring functions for docking have been proposed [109, 110].
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12.5 Bioactivity Modeling with Machine Learning 407

For instance, Sem et al. adopted ANNs to generate a consensus score for predicting
CYP2D6 binding a$nity through combination of the AutoDock and XScore tools
[110]. ANNs have also been applied for VS beyond the pharmaceutical area, for
example in heterogeneous catalysis [111].

A decision tree denotes the conjunction of a series of “rules,” each of which is
a predicate concerning a subset of descriptors. The process of training a decision
tree model determines which rules are involved in the tree, and what classi!ca-
tion is made at each leaf. The process is usually carried out by choosing a valuable
rule that can divide the training data into two or more groups. The process is then
repeated for each of the subsets, until a termination criterion is reached. A few
applications of decision trees in VS propose novel classi!cation tools in QSAR
[112, 113]. For instance, Jones-Hertzog et al. proposed a decision tree method for
screening 23 000 compounds against 14 GPCR drug targets, which outperforms
random selection and similarity searching in the majority of cases [112]. Yamakazi
developed a single decision tree, which was trained on 130 PDE-5 inhibitors and
10 000 inactives, to screen 50 520 molecules in the SPECS database [113].

Ensemble methods denote a series of classi!ers that combine the output of
base classi!ers to arrive at the !nal decision. Classical ensemble methods include
bootstrapping, boosting, etc. Simple examples of the ensemble method in VS
include the study of van Rhee et al., who adopted pairs of decision trees to screen
3000 molecules, which demonstrated a 13-fold enrichment over the hit rate
of a 14 000 member HTS when screening against an ion channel target [114].
Random forest (RF) represents one of the most popular ensemble methods; the
model consists of an ensemble of many randomly generated decision trees. Due
to its ease of use, high accuracy, and robustness to adjustable parameters, RF
has become a “gold standard” for QSAR method comparison [115]. Svetnik et al.
have examined the usage of RF against several datasets, including the same HTS
data which was used to evaluate boosting, and it was shown to have competitive
performance [116]. RF has also been applied in conjunction with docking. For
example, Teramoto and Fukunishi adopted a RF model to predict the root mean
square deviation (RMSD) of a docked conformation relative to the bioactive
conformation [117].

12.5.4.2 New Algorithms
Deep learning is a branch of machine learning consisting of a set of algorithms
that attempt to model high-level abstractions in data by using multiple process-
ing layers, with complex structures or otherwise, composed of multiple non-linear
transformations. Recently, deep learning-based methods have witnessed impres-
sive success in ligand-based virtual screening [118–122]. For instance, in 2012,
Merck organized a challenge for the design of machine learning methods to model
the bioactivities of ligands acting with target proteins, and methods using deep
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learning achieved the best performance. Later, Ma et al. (2015) proposed a deep
neural net model for determining QSARs, which demonstrated better performance
than random forest models for most of the data they studied [115]. Most recently,
we proposed a weighted deep learning algorithm that takes arbitrarily sized inputs
and generates bioactivity predictions which are signi!cantly more accurate than
the control predictors with di"erent molecular !ngerprints and descriptors [123].

Applications of deep learning models in de novo ligand design have also been
developed. There are multiple examples of models which adopt autoencoders
and/or recurrent neural networks that can produce new molecules with ideal
properties [124–127]. The usage of autoencoders also permit the representation of
molecules as short, real-valued vectors, which are extracted from the bottleneck
layers, in order to facilitate exploration of the chemical space [125].

Although deep learning is more readily applied in ligand-based VS, there
are currently a few interesting examples for structure-based VS applications
[128–130]. For instance, in AtomNet, the input of molecular complex is discretized
to a 3D grid framework and directly fed into a convolutional neural network
model [128]. Another similar work was created by Ragoza et al. (2016) where two
independent classi!cation tasks, i.e. activity and pose prediction, were trained and
performed [130].

Multi-task learning is a class of machine learning approaches that learns a task
together with other related tasks at the same time, with a shared representation.
This can usually achieve a better model for the main task, because it allows the
models to capture commonality among the tasks. Neural network models allow
for the easy construction of multi-task classi!ers and regression models, such as
those for predicting binding activities against multiple targets at once. It has been
shown that such QSAR models can perform better than single-task models [115,
121, 122, 131–133], because they can bene!t from more training data, and share
internal representations between tasks. In 2012, Merck & Co. hosted a Kaggle
challenge where the ability of data science to improve predictive performance of
QSAR methods was benchmarked. The winning team used multi-task deep net-
works, ensembled with other machine-learning techniques, to achieve a 15% rel-
ative improvement over the baseline method. The multi-task DNNs, which were
called as “joint DNNs” in Ma et al. [115], can simultaneously model more than one
molecular activity task. All tasks share the same input and hidden layers, but each
task has its own output values [122, 132]. In 2017, the Pande group from Stanford
University constructed a ligand-based virtual screening model through multi-task
deep learning and established an excellent open source platform DeepChem [121].
In 2017, Xu et al. from Merck Pharmaceutical Company adopted multi-task deep
learning to build ligand-based virtual screening models, and tried to analyze how
it can improve the model performance [122].
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12.5 Bioactivity Modeling with Machine Learning 409

12.5.5 Evaluation

12.5.5.1 Regression Models
In the Kaggle challenge organized by Merck in 2012, the correlation coe$cient
(r2) was used to assess the performance of drug activity predictions. This metric is
calculated as

r2 =

[∑n
i=1(yi − ȳ)(̂yi − ̄̂y)

]2

∑n
i=1 (yi − ȳ)2 ∑n

i=1 (̂yi − ̄̂y)2
(12.3)

where yi is the true activity, ȳ is the mean of the true activity, ŷi is the predicted
activity, ̄̂y is the mean of the predicted activity, and n is the number of ligand
molecules in the dataset. The larger the value of r2, the better the prediction per-
formance.

A common metric for evaluating regression models is the root mean square error
(RMSE), given by

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (12.4)

where yi and ŷi are the true and predicted activity values, respectively, and n is the
number of ligand molecules. The smaller the RMSE value, the better the prediction
performance.

12.5.5.2 Classification Models
The overall prediction accuracy (Q), sensitivity (Sn), precision (P), speci!city (Sp),
and Matthew’s correlation coe$cient (CC) are commonly used for assessment of
the classi!cation system.

Q = TP + TN
TP + TN + FP + FN (12.5)

Sn = TP
TP + FN (12.6)

P = TP
TP + FP (12.7)

Sp = TN
TN + FP (12.8)

CC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(12.9)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false
negative, respectively.

The ROC curve is probably the most robust technique for evaluating classi!ers
and visualizing their performance. Classi!cation machine learning models can
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be validated by accuracy estimation techniques like the K-fold cross validation
method, where the dataset is randomly partitioned into K subsets, and then K
experiments are performed each respectively considering 1 subset for evaluation
and the remaining K − 1 subsets for training the model.

12.6 Inverse Virtual Screening

The previously described procedure of virtual screening, in which a set of ligands
is screened against a single protein target, can alternatively be described as “clas-
sical” or “forward” virtual screening. In “inverse” virtual screening (IVS), also
known as “virtual target screening” or “target !shing,” the roles assigned to the
ligand and the protein are reversed: a single ligand of interest is screened against
a set of proteins. While the underlying principles and methodologies of IVS are
similar to typical virtual screening, a few challenges unique to IVS arise, which
have been addressed in some unique ways.

12.6.1 Knowledge-Based Approaches

In order to perform an IVS, the most logically simple approach is to use methods
that perform forward virtual screening but modify them so that the receptor is
changed instead of the ligand. This means that most categories of forward virtual
screening approaches (ligand-based, structure-based, etc.) also apply to IVS. Since
many of these approaches determine interaction likelihood through searching of
a database of experimentally observed binding events, such “knowledge-based”
approaches have also populated the !eld of IVS.

One simple knowledge-based approach is the Similarity Ensemble Approach
(SEA), which evaluates the biological similarity of targets by the chemical similar-
ity of their respective ligands [134]. The chemical similarity is de!ned as the sum of
Tanimoto Coe$cients above a tuned threshold between all pairs of ligands, where
each ligand is encoded by the Daylight !ngerprint. Through this method, one can
perform IVS by evaluating the chemical similarity of a query ligand against each
target’s respective ligand set. Accordingly, SEA has been applied in both retrospec-
tive and prospective drug-target prediction [135].

FINDSITEcomb2.0 is a unique approach that combines both protein structure
and chemical similarity in order to predict protein–ligand interactions [79]. The
method uses a combination of threading and structure comparison to identify
ligand-bound protein structures (both experimental and modeled) from which
a set of template ligands can be extracted. This set of template ligands is used
to screen for active compounds in a compound library using chemical similar-
ity. While the method is primarily developed and benchmarked as a forward

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by U

niversity O
f M

ichigan Library, W
iley O

nline Library on [28/02/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



!

! !

!

12.6 Inverse Virtual Screening 411

screening approach, it also can be used for IVS through evaluating the chemical
similarity of the input ligand to the predicted active ligands for a given target.

Despite the relative speed and simplicity of these approaches, they are ultimately
limited by the depth of the knowledgebase on which they are built. For example,
a ligand-based approach cannot e"ectively screen a molecule that is too unlike
any ligand in its database; such results would be based on spurious similarity and
ultimately would not be trustworthy. Therefore, these methods are only as pow-
erful as the databases on which they are built. This implies that they will only
become more accurate over time as more data becomes available. However, there
will always exist edge cases that are not properly addressed and documented by
the databases of knowledge-based approaches, and so, methods that can make
protein–ligand interaction predictions without explicit dependency on available
data, such as docking, can potentially provide insight where none currently exists.

12.6.2 Docking Approaches

Given the popularity of protein–ligand docking approaches in forward virtual
screening, it is no surprise that many methods for inverse virtual screening are
also based on these methods. TarFisDock is one of the most simply constructed
of these approaches [136]. It performs screening of a molecule of interest against
a potential drug target database (PDTD) through a method based on DOCK 4.0
and returns a set of protein targets ranked by their predicted interaction energy.
However, as noted by several other studies, while docking energy functions
are reasonable to rank ligands given a single target, they are not necessarily
comparable across targets. One way to address this problem is implemented in
the !rst inverse docking program, INVDOCK, which requires that “hits” in the
screen meet not only some minimum binding energy threshold, but also meet
a threshold based on the target’s binding a$nity for its native ligand, ensuring
that any predicted interactions would be competitive relative to the native inter-
action [137]. Another method of scoring targets is to implement an interaction
!ngerprinting technique, in which predicted interactions are evaluated based
on the presence or absence of interactions between the ligand and each residue
of the protein. Such a technique is implemented in IFPTarget [138], an approach
that compares an interaction !ngerprint generated from an AutoDock Vina
docking result to a database of native interaction !ngerprints and combines this
comparison with a few more traditional scoring functions to identify likely ligand
targets. This method can be seen as a hybrid between dependence on previously
observed data and a priori docking predictions, where the docking scores can
provide a prediction where no interaction is found and the !ngerprint score can
!nd near native binding modes that were predicted to be unfavorable by docking.
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Since these approaches depend on protein–ligand docking, they inherit all of
the shortcomings therein, such as the assumption of receptor rigidity, the lack of
a scoring function that perfectly ranks docking results, the relative computational
expense of docking, and the need for a high-resolution receptor structure with a
well-de!ned binding pocket. This last point is particularly restrictive in IVS, as
the majority of targets that one could logically screen against do not have solved
structures, and even less have clearly de!ned binding pockets. In consideration
of this problem, many docking-based IVS approaches only o"er screening against
a small database of proteins. If one wishes to use IVS to determine how a small
molecule will impact a cell at a systems level, screening against such a limited
database will not provide a complete view.

12.6.2.1 Applications of IVS
One of the most common applications of IVS is to increase the e$ciency of com-
putational drug discovery by assessing a molecule’s ability to bind to proteins other
than the intended therapeutic target. In these studies, the molecule of interest is
typically identi!ed through a previously performed forward virtual screen. When
both forward and inverse virtual screens are used in combination, the forward
screen can be viewed as a “sensitivity” screen in which a ligand that can tightly
bind a given protein target is found, and the inverse virtual screen serves as a
“speci!city” screen which ensures that the ligand binds tightly only to the target
protein and not to any other proteins within the biological context. Such o"-target
interactions can give rise to consequences other than the intended e"ect, such
as side e"ects or compound toxicity, and therefore, prediction of these interac-
tions can aid the e$ciency of drug design studies by computationally identify-
ing these problems before they are discovered in vivo. However, not all interac-
tions other than the intended one are deleterious. In fact, the e$cacy of a ligand
may be enhanced through the interaction of several proteins at once, giving rise
to the principle of “multi-target” design (a.k.a polypharmacology). Understand-
ing the extent to which a compound will impact a biological context requires the
application of systems biology models that take into account how the set of pre-
dicted binding events from an IVS result will perturb proteomic and metabolomic
networks.

Another application of IVS is the discovery of therapeutic targets for a given
active ligand. For example, there exist many drugs that are known to be clinically
e"ective, yet their mechanism of action remains nebulous. Through IVS, one can
identify a set of candidate proteins which might be the therapeutic target(s) of
the drug molecule of interest. However, the mechanism of the drug need not be
completely unknown for IVS to be helpful. In fact, IVS has also been shown to
be e"ective for “drug repurposing,” in which a clinically approved drug is used
to treat some disease other than the one for which it was developed. Through
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screening the drug to be repurposed against a library of potential therapeutic tar-
gets, high-a$nity drug–target interactions can be discovered, which can lead to
novel therapeutic action.

12.6.3 Challenges

While inverse virtual screening demonstrates promise for improving the drug
design process through systems biology, a few challenges need to be overcome
before the technique is widely accepted. One of the most pressing issues facing
the !eld is the di$culty of constructing benchmark datasets due to publication
bias. Since non-interacting protein–ligand pairs are frequently not reported,
benchmarks lack con!rmed non-interactions and instead rely on the assumption
that if no interaction has been reported, it does not exist. Another challenge is the
relative complexity of understanding of protein biochemistry relative to ligand
chemistry. When constructing a forward virtual screen, one can choose a protein
target that is su$ciently understood (i.e. solved protein structure, clearly de!ned
binding pocket, a breadth of known binding partners, etc.), but in an IVS, no such
luxury exists. If one is to gain a fully comprehensive view of how a molecule will
impact all proteins within some biological context, all proteins therein must be
addressed.

12.7 Conclusion

Hearkening back to its origins, virtual screening has come a long way and has
evolved into a mélange of algorithms. Apart from the conventional ligand-
and structure-based methods, the !eld has been burgeoning in recent years
with machine learning-based approaches for the modeling of ligand bioactivity.
Moreover, chemogenomics has been utilized in virtual screening to attempt
to de-orphanize receptors, while inverse virtual screening is opening up new
avenues for the prediction of o"-target e"ects. In many ways, it feels as if the
!eld has only just been born. Future developments are eagerly anticipated in the
hopes that novel therapeutic compounds can be discovered for one of the largest
protein families in human.
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