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Knowledge of three-dimensional (3D) structures of proteins 
is crucial for understanding their biological functions. Over 
the past decades, nuclear magnetic resonance (NMR) spec-

troscopy1, X-ray crystallography2 and electron microscopy (EM)3 
have been widely used to obtain protein structures. However, NMR 
can only be used for relatively small proteins, whereas X-ray crys-
tallography is often constrained by the difficulty of protein crystal-
lization4. Although EM can overcome some of these limitations, it 
suffers from sample damage due to high-energy radiation, or low 
signal-to-noise ratio when very low electron doses are used5. The 
idea of cryogenic-EM (cryo-EM) was first proposed in the 1980s 
to reduce sample damage through frozen specimens6. Over the 
last decade, various technological innovations, such as single par-
ticle analysis and direct electron detection cameras5,7,8, have made 
cryo-EM a practical means for probing protein structures without 
crystallization (X-ray) or size limitations (NMR). However, the suc-
cess rate of cryo-EM is low with low-resolution density map data 
and more than half of cryo-EM samples in the EMDataResource 
have no atomic structure determined9.

To help cryo-EM structure determination, a variety of compu-
tational structure modeling methods have been proposed, which 
can be generally categorized into two groups. The first group of 
approaches, such as Rosetta-Ref10, Flex-EM11, iMODFIT12, MDFF 
(molecular dynamics flexible fitting)13, Situs14 and EM-Refiner15, 
are built on structure refinement guided by correlations between 
the atomic model and cryo-EM maps. Despite the relative simplic-
ity, most of the refinement programs require predefined model and 
map superposition, and the success rate critically depends on the 
quality of initial models and the superposition. The second group 
is referred to as de novo modeling, which constructs models from 
sequence and density map alone. One such example is Rosetta 
de novo (Rosetta-dn)16,17 that creates the initial model from a den-
sity map followed by RosettaES17 beam growing and Rosetta fold-
ing refinement. Another example is MAINMAST18 that constructs 

initial backbone models from local dense points and then refines 
the models with the MDFF program13. Although these de novo 
approaches are capable of creating models from density maps alone, 
their success is highly sensitive to the resolution level of density 
maps. Additionally, methods such as MAINMAST require manual 
tuning and combination of multiple parameter-sets, rendering the 
programs less convenient for automated implementation.

We present a hybrid pipeline, CR-I-TASSER (cryo-EM itera-
tive threading assembly refinement), for fully automated protein 
structure determination. While it is a de novo type approach in 
terms of creating models from sequence and density maps alone, 
CR-I-TASSER does use multithreading algorithms to identify 
homologous and analogous templates from the Protein Data Bank 
(PDB) to facilitate structural assembly. Technically, most existing 
de novo and refinement-based approaches rely on model-to-map 
correlations to guide the structural modeling simulations, but such 
correlation information is not precise and specific when the map 
resolution is low. In CR-I-TASSER, we extend deep residual con-
volutional neural networks (CNN)19 to create high-accuracy Cα 
atom trace models from experimental density maps, providing a 
specific set of target atom positions that can be used to significantly 
improve threading template quality. In addition, the deep-learning 
boosted threading models are further assembled with cutting-edge 
I-TASSER folding simulations under the guidance of specific CNN 
models and the highly optimized I-TASSER knowledge-based force 
field20. Our large-scale benchmark tests show a significant advantage 
of CR-I-TASSER over the traditional de novo and refinement-based 
approaches in assembling atomic cryo-EM protein structures. The 
online server and standalone package of CR-I-TASSER have been 
made publicly available at https://zhanggroup.org/CR-I-TASSER/.

Results
CR-I-TASSER is a hybrid method for determining atomic-level 
protein structures from cryo-EM density maps. As outlined in  
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Fig. 1, CR-I-TASSER starts with the creation of a sequence-order- 
independent Cα conformation by deep convolutional neural- 
network (3D-CNN) training from density maps. The Cα confor-
mation is then used to improve the threading templates created by 
a local meta-threading server (LOMETS)21, using multiple heuris-
tic iteration algorithms designed to match the query and template 
sequences with the Cα conformation for template reselection and Cα 
trace regeneration. Finally, the iterative threading assembly refine-
ment method (I-TASSER20) is extended to assemble atomic structure 
models under the guidance of both cryo-EM density map correla-
tion and deep-learning boosted template restraints. Here, although 
CR-I-TASSER is built on I-TASSER and LOMETS21, the develop-
ment of a deep-learning approach for cryo-EM-based Cα atom 
prediction and the integration of sequence-order-independent Cα 
models with advanced structure assembly methods represent the 
main novelty of the pipeline. Although there were previous efforts 
in applying deep-learning techniques to extract structural informa-
tion from cryo-EM density maps22,23, CR-I-TASSER marks the first 
pipeline using sequence-order-independent Cα positions to improve 
threading alignments and regenerate order-dependent Cα trace 
models, so that the deep-learning derived cryo-EM models can be 
directly used for guiding atomic-level structural assembly simula-
tions. See Supplementary Text 1 for details of CR-I-TASSER datasets.

Density map-based Cα significantly improve template quality. A 
key component of CR-I-TASSER is the deep neural network-based 
Cα atom prediction from cryo-EM density maps, which is used to 
guide both template regeneration and structure folding simulations. 
Since the predicted Cα atoms from 3D-CNN do not have indexes, 
we define CRscore to estimate the similarity between the predicted 
Cα atoms and the native structure by

CRscore = 1
L
∑

i

1

1+
(

dij
d0

)2 (1)

where L is the target length, dij is the distance between ith atom in 
the 3D-CNN model and jth atom in the native structure, where the 
ij correspondence is established by a greedy method selecting the 
nonredundant ij pairs of the shortest distance (Supplementary Text 
2). d0 = 1.24 3√N− 15− 1.8 is a distance scale taken from the tem-
plate modeling (TM) score to rule out length dependence24. Here, 
the index information (and index connectivity) of both structures is 
completely ignored when computing the CRscore since we establish 
the ij correspondence by using their coordinate information only 
(Supplementary Text 2).

In Supplementary Fig. 1a, we list the average CRscore of 3D-CNN 
models on the 530 test proteins in different resolution ranges. The 
average CRscore is >0.95 when the resolution is high (<5 Å), but 
slightly decreases when the resolution becomes lower (>10 Å). This 
is consistent with the trend of root mean squared (r.m.s.d.) shown in 
Supplementary Fig. 1b, which is around 2–3 Å for high-resolution 
density maps but rises to 3–5 Å for low-resolution maps. As a com-
parison, we use an established algorithm, MAINMAST, which can 
generate Cα locations from the density map. In addition, we create 
Cα atom models by a naïve greedy procedure that picks Cα atom 
positions of the highest density values not in an excluded volume 
(Supplementary Text 3). As shown in Supplementary Fig. 1, the 
average CRscore and r.m.s.d. from our 3D-CNN Cα models are con-
siderably better than MAINMAST and the naïve greedy procedure 
when resolution is high to medium (1–8 Å), and the scores become 
much better as the resolution drops, demonstrating the efficiency of 
the deep-learning training process for Cα position prediction.

Using the 3D-CNN models, CR-I-TASSER creates two types of 
template by either density map-based template reselection or Cα 
trace regeneration, followed by score reranking. In Supplementary 
Table 2, we compare TM scores of the templates from LOMETS 
with those after 3D-CNN-based refinement, where TM score is 
a metric defined to assess structural similarity of two structures, 
which has values ranging (0,1) with a higher value indicating  
closer similarity24 (see Supplementary Text 4 for a more detailed 
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Fig. 1 | CR-I-TASSER pipeline. Starting with a query sequence and cryo-EM density map, CR-I-TASSER constructs atomic models through three 
consecutive steps: (1) initial data processing to generate 3D-CNN Cα conformation, LOMETS threading and ResPRE contact-map prediction; (2) density 
map-based template reselection and trace generation and (3) density map-guided fragment reassembly simulations and model refinements.
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description of TM score). In general, 3D-CNN makes the largest 
improvement for Hard targets in which Cα traces deduced from 
3D-CNN models have a substantially higher TM score (0.690 and 
0.527 with high- and low-resolution density maps, respectively) 
than that of the original LOMETS (0.283). Combining both Easy 
and Hard targets, the TM score of the first models by 3D-CNN 
(0.707) is 45% higher than that of the original LOMETS (0.487), 
which corresponds to P = 1.3 × 10−174 using Student’s t-test, show-
ing that the template quality improvement brought by 3D-CNN is 
statistically highly significant.

CR-I-TASSER on high-resolution simulated density maps. To 
examine the efficiency of the CR-I-TASSER pipeline, we first apply 
it to the 301 Hard targets from our benchmark set that lack homolo-
gous templates in the PDB. Overall, CR-I-TASSER creates models 
with average TM score of 0.772 and r.m.s.d. of 4.4 Å. If we count 
the targets with TM score >0.5, which corresponds to a model with 
the correct fold25, CR-I-TASSER creates correct folds for 251 targets, 
which is 9.3 times that obtained by I-TASSER (27, Table 1), show-
ing a major impact of cryo-EM density maps on I-TASSER-based 
structure modeling.

As a comparison, in Table 1 (rows 9–11) we list the results 
from three de novo programs, MAINMAST18, Rosetta-dn16,17 

Table 1 | Modeling results by CR-I-TASSER and other methods 
on 778 benchmark test proteins involving different density map 
types and resolutions

Methods TM score N (TM > TM0)a r.m.s.d. (Å) P value

301 Hard targets with high-resolution density map (resolution in 2–5 Å) 
(TM0 = 0.5)

I-TASSERb 0.345 27 12.0 8.0 × 10−91

Flex-EMc 0.318 22 12.4 3.8 × 10−96

iMODFITc 0.340 25 11.9 6.6 × 10−91

MDFFc 0.331 26 12.1 3.4 × 10−91

EM-Refinerc 0.315 18 12.2 6.9 × 10−96

Rosetta-Refc 0.297 30 14.0 1.2 × 10−99

MAINMASTd 0.438 121 10.2 9.8 × 10−47

Rosetta-dnd 0.419 94 12.2 8.7 × 10−52

Phenixd 0.466 134 8.6 8.7 × 10−42

CR-I-TASSERd 0.772 251 4.4 –

229 Easy targets with high-resolution density map (resolution in 2–5 Å) 
(TM0 = 0.9)

I-TASSERb 0.762 16 5.1 8.4 × 10−75

Flex-EMc 0.824 66 4.4 4.6 × 10−35

iMODFITc 0.799 43 4.7 5.6 × 10−48

MDFFc 0.857 104 4.1 4.8 × 10−21

EM-Refinerc 0.846 76 4.0 3.5 × 10−37

Rosetta-Refc 0.851 103 4.0 6.9 × 10−21

MAINMASTd 0.439 9 11.8 5.7 × 10−78

Rosetta-dnd 0.474 17 12.0 8.0 × 10−77

Phenixd 0.493 8 8.4 1.4 × 10−76

CR-I-TASSERd 0.950 198 1.4 –

301 Hard targets with low-resolution density map (resolution in 5–15 Å) 
(TM0 = 0.5)

I-TASSERb 0.345 27 12.0 2.0 × 10−48

Flex-EMc 0.303 13 12.3 1.2 × 10−61

iMODFITc 0.316 23 12.0 2.0 × 10−56

MDFFc 0.319 29 11.8 6.8 × 10−55

EM-Refinerc 0.305 19 12.1 2.3 × 10−60

Rosetta-Refc 0.268 18 13.9 1.6 × 10−70

MAINMASTd 0.204 3 14.3 2.1 × 10−86

Rosetta-dnd 0.201 7 14.6 6.7 × 10−91

Phenixd 0.180 0 12.5 5.5 × 10−95

CR-I-TASSERd 0.597 191 6.3 –

229 Easy targets with low-resolution density map (resolution in 5–15 Å) 
(TM0 = 0.9)

I-TASSERb 0.762 16 5.1 8.4 × 10−75

Flex-EMc 0.666 0 5.3 3.5 × 10−90

iMODFITc 0.767 34 4.4 4.0 × 10−29

MDFFc 0.788 46 4.3 5.5 × 10−23

EM-Refinerc 0.739 21 4.7 5.3 × 10−42

Rosetta-Refc 0.714 14 4.9 7.5 × 10−49

MAINMASTd 0.202 0 15.6 5.7 × 10−311

Rosetta-dnd 0.225 1 9.2 1.5 × 10−238

Phenixd 0.174 0 13.8 3.2 × 10−309

CR-I-TASSERd 0.898 137 2.1 –
Continued

Methods TM score N (TM > TM0)a r.m.s.d. (Å) P value

178 targets with experimental density map (resolution in 2–5 Å) 
(TM0 = 0.9)

I-TASSERb 0.647 6 8.3 4.0 × 10−15

Flex-EMc 0.681 24 8.5 3.6 × 10−9

iMODFITc 0.695 19 7.8 6.8 × 10−8

MDFFc 0.709 37 7.3 4.9 × 10−6

EM-Refinerc 0.690 32 8.3 2.5 × 10−7

Rosetta-Refc 0.688 40 8.5 7.1 × 10−7

MAINMASTd 0.323 2 15.2 7.4 × 10−72

Rosetta-dnd 0.353 5 15.7 1.4 × 10−60

Phenixd 0.349 1 13.3 2.7 × 10−63

CR-I-TASSERd 0.810 75 4.9 –

70 targets with experimental density map (resolution in 5–10 Å) 
(TM0 = 0.5)

I-TASSERb 0.612 49 9.2 2.7 × 10−3

Flex-EMc 0.546 45 9.3 4.3 × 10−7

iMODFITc 0.603 48 8.9 1.7 × 10−3

MDFFc 0.573 46 8.7 5.9 × 10−5

EM-Refinerc 0.576 45 8.8 9.7 × 10−5

Rosetta-Refc 0.554 43 9.3 9.7 × 10−6

MAINMASTd,e 0.221 0 16.1 2.0 × 10−31

Rosetta-dnc 0.176 1 15.6 5.4 × 10−41

Phenixc 0.118 0 18.3 1.5 × 10−43

CR-I-TASSERc 0.714 63 6.2 –

P values are calculated using two-tailed Student’s t-tests between the TM scores produced 
by CR-I-TASSER and the other methods. Numbers in bold font highlight the performer that 
obtained the best average result in each category. aTM0 is 0.5 for simulated Hard targets and 
low-resolution experimental targets, and 0.9 for simulated Easy targets or high-resolution 
experimental targets. bProtein structure prediction methods. cCryo-EM-based structure refinement 
methods. dCryo-EM-based de novo structure modeling methods. eOnly 61 targets are solved with 
MAINMAST, probably due to the low resolution and experimental noise.

Table 1 | Modeling results by CR-I-TASSER and other methods 
on 778 benchmark test proteins involving different density map 
types and resolutions (continued)
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and Phenix26, which create models from the same set of density 
map data (see Supplementary Texts 5–7 for setting). It shows that 
CR-I-TASSER outperforms these programs substantially, with 
the average TM score 76% higher than MAINMAST (0.438), 
84% higher than Rosetta-dn (0.419) and 66% higher than Phenix 
(0.466). In Fig. 2b–d, we present a head-to-head TM score com-
parison of CR-I-TASSER with the three control programs, where 
CR-I-TASSER has a higher TM score in 259, 270 and 252 cases 
than MAINMAST, Rosetta-dn and Phenix, and the competing  

programs outperform CR-I-TASSER do so only in 42, 31 and 49 
cases, respectively. In Fig. 2e–i, we also list the modeling results by 
five state-of-the-art cryo-EM refinement programs from Flex-EM11, 
iMODFIT12, MDFF13, EM-Refiner15 and Rosetta-Ref10, which start 
with the I-TASSER models after superposition of the density maps 
using Situs14 (Supplementary Texts 8–12). Overall, the refinement 
programs do not work well for the Hard targets, where their TM 
scores are even lower than those of the initial I-TASSER models, 
probably due to the poor quality of the initial I-TASSER models for 
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the Hard proteins that have an average TM score of 0.345. This result 
is consistent with a previous observation15, which showed that the 
correlation between model quality and model-to-map correlation 
coefficient vanishes when the TM score of the initial models <0.5, 
and therefore there is no sufficient correlation coefficient gradient 
to guide the programs for refining structures. We also benchmarked 
CR-I-TASSER on 229 Easy targets, where it outperforms other con-
trol groups with a significantly higher TM score (0.949; P < 10−20 in 
all cases, Student’s t-test). Details can be found in Supplementary 
Text 13.

In addition to the global structure quality listed in Table 1, we 
also calculate the local structure scores, including clashes and 
Molprobity27, in Supplementary Table 3. CR-I-TASSER achieves 
the second-best clash and Molprobity scores following Rosetta-Ref, 
indicating that the CR-I-TASSER models have a reasonable local 
structure quality. Moreover, we demonstrate that improvement of 
template quality plays a critically important role in CR-I-TASSER 
structure assembly (Supplementary Text 14), and benchmarked 
CR-I-TASSER under Gaussian noises added by Xmipp28 (see 
Supplementary Texts 15 and 16 for details). Furthermore, in 
Supplementary Fig. 3, we present an illustrative example from 
polyomavirus VP1 pentamer protein (PDB ID 1vps-A), which 
demonstrates that the template regeneration process can create 
high-quality templates from the 3D-CNN Cα traces and result in 
much-improved full-length structure models, even though the ini-
tial threading templates are completely incorrect (see Supplementary 
Text 17 for details).

CR-I-TASSER on low-resolution simulated density maps. While 
cryo-EM experiments are now achieving increasingly good resolu-
tions, it is still of importance to model structures from medium- 
and low-resolution density maps, especially for molecules with high 
flexibility or conformational/compositional heterogeneity5. In Table 
1 (rows 25–34), we examine the performance of CR-I-TASSER 
on the 301 Hard proteins with resolution ranging from 5 to 15 Å. 
Compared to the models with high-resolution density maps 
(2–5 Å), the overall performance of CR-I-TASSER is reduced in the 
low-resolution set with an average TM score of 0.597; this is mainly 
due to the reduction of the 3D-CNN Cα model quality with lower 
map resolution, as shown in Supplementary Fig. 1. Nevertheless, 
the TM score of CR-I-TASSER is substantially higher than the 
de novo programs by MAINMAST (0.204), Rosetta-dn (0.201) and 
Phenix (0.180), as well as the refinement programs by Flex-EM 
(0.303), iMODFIT (0.316), MDFF (0.319), EM-Refiner (0.305) and 
Rosetta-Ref (0.268). A similar trend can be found on the 229 Easy 
targets as summarized in Table 1 (rows 36–45); see Supplementary 
Text 18 for details.

In Supplementary Fig. 4a,b, we list a head-to-head TM score 
comparison of CR-I-TASSER with the best de novo and refine-
ment programs, where CR-I-TASSER outperforms MAINMAIST 
and MDFF in 296 and 265 cases, respectively, while the compet-
ing programs outperform CR-I-TASSER in only five out of 36 cases, 
respectively. If we count the number of cases with TM score >0.5, 
CR-I-TASSER constructs the correct fold for 191 out of the 301 tar-
gets, which is 63 times that by MAINMAST (3) and 7.3 times that 
by MDFF (26). As an illustration, we present in Supplementary Fig. 
4c–h the modeling results on Q6MIM9 from Bdellovibrio bacte-
riovorus, which highlights that the hybrid effects of both template 
reselection and regeneration processes, as well as the optimized 
structure assembly simulations, make a major contribution to the 
modeling of a difficult target with very low-resolution density maps 
(Supplementary Text 19).

Overall, although the average TM score of CR-I-TASSER drops 
for low-resolution maps in 530 Hard or Easy targets, the magni-
tude of the TM score reduction for CR-I-TASSER (by 17% from 
0.849 to 0.727) is much smaller than that of the other de novo 

methods, including MAINMAST (54%), Rosetta-dn (53%) and 
Phenix (73%). Even with the low-resolution maps, the average TM 
score of CR-I-TASSER is 87% higher than that of the second-best 
method (MDFF) for Hard targets, and 14% (299%) higher than 
other refinement-based (de novo) methods for Easy targets. This 
advantage on low-resolution data modeling is mainly attributed to 
the integration of multithreading alignments and the deep Cα trace 
learning with the Broyden–Fletcher–Goldfarb–Shanno and Monte 
Carlo assembly simulations, which makes CR-I-TASSER a robust 
pipeline for a wide range of map densities.

Structure modeling on experimental density maps. To examine 
our pipeline in a realistic setting, we further tested CR-I-TASSER 
on 248 nonredundant proteins with experimental density maps 
(see Supplementary Text 1 for details of the dataset). On average, 
CR-I-TASSER achieves an average TM score of 0.783 for the 248 
EMDataResource targets, which is 158% higher than the best de novo 
program Rosetta-dn (0.303) and 17% higher than the best refine-
ment program MDFF (0.671). In Fig. 3, we present a head-to-head 
comparison of CR-I-TASSER with I-TASSER and other control 
programs, where CR-I-TASSER outperforms the control methods 
(including I-TASSER) in most of the cases. Especially, CR-I-TASSER 
outperforms the sequence-based I-TASSER method in 228 out of 
248 cases (92%). The average TM score of CR-I-TASSER (0.783) is 
23% higher than that of I-TASSER (0.637), which corresponds to a 
P = 3.8 × 10−6 in Student’s t-test, showing significant impact of the 
introduction of cryo-EM data in the cutting-edge structure assembly 
simulations. If we count the number of cases with TM score >0.5 or 
0.9 for low- or high-resolution targets, CR-I-TASSER achieves good 
predictions in 138 cases, which is 23 and 1.7 times that by the best 
de novo program (Rosetta-dn, 6) and the best refinement program 
(MDFF, 83), respectively. In the bottom of Table 1 (rows 46–67), we 
split the data samples into high- and low-resolution, where a simi-
lar trend of the superiority of CR-I-TASSER over other methods is 
seen. The gap between CR-I-TASSER and the comparison methods, 
as assessed by ΔTM = TM scoreCR-I-TASSER − TM scoreother, is slightly 
larger for the low-resolution (0.543 / 0.141 for Rosetta-dn / MDFF) 
than the high-resolution samples (0.457 / 0.101), despite the fact 
that all methods perform better for high- rather than low-resolution 
samples. This is probably due to the fact that TM scores of the con-
trol methods for low-resolution samples are lower and therefore have 
more room for improvement. Furthermore, we specifically checked 
whether any particular secondary structure components would affect 
the performance of CR-I-TASSER. As shown in Supplementary 
Fig. 5, although CR-I-TASSER performs better in high- than 
low-resolution maps, there is no obvious correlation between the 
average TM score and the ratio of secondary components for both 
high- and low-resolution cases. More benchmark results (for exam-
ple, template homology cutoff, different network training sessions, 
full maps and so on) can be found in Supplementary Text 20.

As a further case study focusing on difficult targets, we exam-
ine in detail a hard example from the anthrax toxin antigen pore 
protein (PDB ID 3j9c-A) in Fig. 4. This target consists of 423 res-
idues and the cryo-EM density map has a resolution of 2.6 Å. In 
this case, LOMETS failed to locate good templates (the best tem-
plate has a TM score of 0.257), which resulted in an incorrect fold 
of the final I-TASSER model with a TM score of 0.132. Therefore, 
the superposition from Situs is nearly random. Consequently, all 
refinement-based methods failed to model the target and have a 
final model with TM scores of 0.144, 0.132, 0.136, 0.143 and 0.153 
for Flex-EM, iMODFIT, MDFF, EM-Refiner and Rosetta-Ref, 
respectively. As illustrated in Fig. 4a,d, the Rosetta-Ref model 
does not match the native structure both globally and locally. On 
the other hand, Phenix built a model from density map alone that 
fits the global conformation with the density map. However, there 
are multiple misconnections and disordered local structures in the 
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model, resulting in an incorrect topology and sequence mapping 
with a TM score of 0.274 (Fig. 4b,e). Similar results were obtained 
by MAINMAST and Rosetta-dn with TM scores of 0.165 and 0.245, 
respectively.

Given the high resolution of the density map, 3D-CNN gener-
ated a well-predicted Cα conformation with CRscore of 0.947. 
Benefiting from this high-quality prediction, the template regen-
eration algorithm created a reasonable Cα trace model with TM 
score of 0.534. Following the CR-I-TASSER reassembly, the final 
model achieves a TM score of 0.725 for the head globular domain  

(Fig. 4c) and TM score of 0.620 for the overall chain (Fig. 4f), which 
are both higher than that by all template and cryo-EM-based mod-
eling programs.

It is notable that the TM score of the sequence-ordered Cα trace 
model in CR-I-TASSER is considerably lower than the CRscore 
calculated from the order-independent Cα conformation in the 
anthrax toxin antigen pore protein case. This is mainly due to the 
extreme complexity of target structure consisting of a three-domain 
globular head flanked with a long beta-hairpin stem that form an 
antigen pore with other homo-chains; such structural complexity 
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not only introduces noise to Cα position predictions due to the 
high flexibility of the long stem, but also results in a huge confor-
mational space of fragment connection patterns, which makes the 
true backbone difficult to trace. As shown in Supplementary Fig. 
8, there are many mis-predicted Cα atoms around the long stem. 
Additionally, the connection conformational space is huge because 
the two long beta strands are close to each other, making it hard 
for the fragment-tracing program to interpret the correct connec-
tion patterns. Given the specific local structures, however, this issue 
could be amended by using the density map-based secondary struc-
ture prediction models because the backbone conformational space 
could be substantially reduced by excluding the zigzag connection 
patterns in the predicted beta zone. A separate computational pipe-
line implementing real-space secondary structure prediction pow-
ered with deep learning is currently under development, which may 
in the future highly benefit modeling for targets with extremely 
low-resolution maps as well.

End-to-end studies on protein complexes EMD-10564/EMD- 
30703. As end-to-end case studies from raw density map to final 
structure, we first present an illustrative example in Fig. 5a–f and 
Supplementary Figs. 9a–c for a large-size homo-tetramer complex 
Beta-galactosidase (PDB ID 6tsk), with each chain consisting of 
1,040 residues. The corresponding density map EMD-10564 has 
a resolution of 2.3 Å and is segmented by Phenix segment_and_
split_map that has been integrated in the CR-I-TASSER pipeline 
(Supplementary Text 22), resulting in a reasonable segmentation 
model as shown in Supplementary Fig. 9a. Here, we construct 
four models from the four segmented density maps separately and 
look specifically into chain A. As shown in Supplementary Fig. 9b, 
3D-CNN creates a high-quality Cα model with CRscore of 0.946, 
which is subsequently used for template reranking and selection 
from the LOMETS alignment pool (outlined in Supplementary Fig. 
12) and for Cα trace generation with the Cα trace connection algo-
rithm (outlined in Supplementary Fig. 14). In this case, the best tem-
plate with a TM score of 0.666 was identified by both LOMETS and 
the predicted Cα trace conformation, as shown in Supplementary 
Fig. 9c. However, the rest of the threading templates are not as good 
as the best one, resulting in an average TM score of 0.446 for the 
top 40 LOMETS templates. By combining the template reranking 
and Cα trace generation processes, CR-I-TASSER improved the TM 
score from 0.446 to 0.513 for the top 40 templates.

These templates are submitted to the structural assembly simu-
lations that are guided by the restraint-enhanced I-TASSER force 
field and the density map correlations. Eventually, CR-I-TASSER 
constructed the final model with TM score of 0.705 (Fig. 5c), which 
is 41% higher than that of the original I-TASSER prediction (0.500). 
Due to the size and complexity of the model, Situs does not cor-
rectly superpose the I-TASSER model into the density map, result-
ing in the general low quality from the refinement-based programs 
with TM scores of 0.476, 0.474, 0.343, 0.359 and 0.353 for Flex-EM, 
iMODFIT, MDFF, EM-Refiner and Rosetta-Ref, respectively. 
Meanwhile, the de novo programs that we tested are also unsuc-
cessful in creating correct folds because of the complexity of trac-
ing/building such a large protein, resulting in final TM scores of 
0.194, 0.105 and 0.251, for MAINMAST, Rosetta-dn and Phenix, 
respectively.

Although CR-I-TASSER successfully built a model with the 
highest TM score among the state-of-the-art programs, there is still 
room for improvement. In fact, the final model in Fig. 5c shows that 
the structure of the three domains in the left side of the picture is 
very close to the native, but that for the remaining two domains in 
the right side is poor. This is partly because the correct LOMETS 
alignments are mostly located in the left domains. However, the 
connection patterns of the Cα trace model shown in Fig. 5a over-
laps well with the target structure, indicating the connections are 
mostly correct. A closer view shows that there are several small 
flaws of misconnections in beta sheets of the right part, where these 
misconnections can terminate the growth of the long traces as the 
target atoms may be out of the probing radius of the last Cα atom, as 
shown in the zoom-in figure in Fig. 5b. The probing radius request 
is used as the default in CR-I-TASSER to ensure the reasonability 
of the Cα tracing models for general sequences. Nevertheless, if we 
use the option of ‘keep-tracing mode’ provided in the CR-I-TASSER 
pipeline, which allows for the end point of current trace to break the 
connection patterns (Supplementary Text 23), the created Cα trace 
models are greatly improved with the average TM score increased 
from 0.446 to 0.708 for this case, where the TM score of the first 
template is improved from 0.666 to 0.749. These high-quality Cα 
trace templates lead to a much-improved full-length model with 
TM score of 0.857 (Fig. 5e). Despite the improved performance for 
this case, the keep-tracing mode is not used as the default setting in 
CR-I-TASSER as the drop off of the probing radius could increase 
connection uncertainty and reduce the average performance for 
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Fig. 4 | Structure modeling results on a protective antigen pore protein (PDB ID 3j9c-A) with high-resolution (2.9 Å) density map. a–c, Predicted 
models by Rosetta-Ref (green) (a), Phenix (orange) (b) and CR-I-TASSER (red) (c) are shown along with the native structure on the head globular domain 
(residues 1–98; 185–423, blue). d–f, The corresponding full-length models including the stem region: Rosetta-Ref (d), Phenix (e) and CR-I-TASSER (f). The 
predicted Cα conformations and connection pattern can be found in Supplementary Fig. 8.
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normal proteins. Additionally, since we have separately modeled 
four segmented chains, we could choose a possibly better model by 
examining the estimated TM scores (see equation (8) in Methods), 
which are 0.777, 0.912, 0.834 and 0.856 for chains A, B, C and D, 
respectively. By selecting the model for chain B, we obtained the 
final full-length model with a TM score of 0.908 as shown in Fig. 5f.

Overall, this example demonstrates the practicality of CR-I- 
TASSER for generating high-quality models from unsegmented raw 

density map data, but also exposes the potential weaknesses of the 
default CR-I-TASSER pipeline that is sometimes too conservative 
when generating Cα traces for targets involving long loops/tails and 
disorder regions, where the keep-tracing mode may help provide an 
alternative solution for better Cα tracing and final model construc-
tions for these cases when the first try fails.

In Fig. 5g–i, we present another example of models built  
from a raw low-resolution density map (13.5 Å), which is for the 
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Fig. 5 | Illustrative examples of end-to-end structural modeling by CR-I-TASSER from unsegment maps. Through all pictures, native structures are shown 
in blue overlaid on density map in gray. a–f, Beta-galactosidase in complex with L-ribose (PDB ID 6tsk) from density map (EMD-10564, resolution 2.3 Å). 
a, Best Cα trace model (orange) superposed with the native. b, Zoom-in pictures of breaking connections can be remedied by the ‘keep-tracing mode’ (see 
Supplementary Fig. 15 for details). c, Full-length model by CR-I-TASSER with default setting (red). d, Cα trace model generated with ‘keep-tracing mode’ 
(green). e, Full-length model by CR-I-TASSER in ‘keep-tracing mode’ (red). f, Full-length model with the highest eTM score among four chains (magenta).  
g–i, the SARS-CoV-2 spike protein with RBDs bound with a 2H2 Fab (PDB ID 7dk5) from a density map (EMD-30703, resolution 13.5 Å). g, First CR-I-TASSER 
model (yellow) built on the map as in the chain C location. h, Models of chains A (green), B (red) and C (yellow) built on the map. i, Final CR-I-TASSER 
models of heavy and light chains of 2H2 Fab (gold and silver) using the complex-based superposition process described in Supplementary Text 24.
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complex of the SARS-CoV-2 spike protein with a 2H2 Fab (PDB 
ID 7dk5). In this complex, three large homo-chains (each with 
1,261 residues) are bound with the two heavy and light chains of 
a 2H2 Fab with 214 and 218 residues. Due to the low resolution, 
it is not feasible to automatically segment using only density map 
information. Thus, we attempted to build models on the whole 
map. Given that CR-I-TASSER performs better for the cases with 
a higher protein-map size ratio as shown in Supplementary Fig. 7b, 
we first tried to build a long spike protein chain in the map. In this 
case, LOMETS recognize the top-1 template with TM score of 0.562, 
where the CR-I-TASSER reranked the alignments and chose a better 
first-rank template with TM score of 0.671. As shown in Fig. 5g and 
Supplementary Fig. 9d, CR-I-TASSER superposed the first-rank 
template into the low-resolution density map correctly and built a 
final model with TM score of 0.798 to the deposited structure in 
the chain C position, where the model built by I-TASSER has only a 
TM score of 0.682. After that, the density map was masked by delet-
ing the part that overlaps with the model just built. The remaining 
density map was then used by CR-I-TASSER to build the second 
and third spike chains subsequently by repeating this process. As 
shown in Fig. 5h and Supplementary Fig. 9e, CR-I-TASSER eventu-
ally built three spike protein models on the low-resolution map with 
TM scores of 0.668, 0.800 and 0.798 for the chain A (with an up 
receptor-binding domain, RBD) and chains B/C with down RBDs, 
respectively (compared to 0.599, 0.677 and 0.682 by I-TASSER). 
Although the resolution is low, CR-I-TASSER still assembles spikes 
with up and down RBD conformations in the correct position.

Following the long-chain structure modeling for the spike pro-
teins, we further attempted to build models of the heavy and light 
chains of 2H2 Fab. Since these two chains are of similar lengths but 
not identical, it is hard to tell which one should be built first. By 
randomly selecting the heavy chain to start, CR-I-TASSER created 
models with TM scores of 0.702 and 0.518 for the heavy and light 
chains, respectively, which are marginally better than I-TASSER 
(TM scores of 0.524 and 0.571), where the positions of the two 
chains on the map are apparently incorrect (Supplementary Fig. 
9f,g). The failure in improvement is partly because the native struc-
tures of these two chains share similar folds (TM score of 0.730 by 
TM-align29), and hence they have very similar density maps, which 
make it harder to locate the correct position in such a low-resolution 
map. Instead of one-by-one modeling, a better strategy may be to 
introduce complex modeling. Here, we slightly extended the cur-
rent pipeline to simultaneously superpose the templates from 
two chains and choose the best combination poses (see details in 
Supplementary Text 24). With this, good templates for both chains 
were correctly ranked and superposed in the density map as shown 
in Supplementary Fig. 9h. These templates were then submitted to 
CR-I-TASSER simulations separately, which resulted in the final 
models with higher TM scores (0.827 and 0.670 for heavy and light 
chains, Fig. 5i and Supplementary Fig. 9i). Despite the simplicity 
of the strategy, this result demonstrates the feasibility to extend 
CR-I-TASSER for complex-based structural modeling on full den-
sity maps.

Conclusion
We present a hybrid pipeline, CR-I-TASSER, for automated protein 
structure modeling from cryo-EM density maps. The core compo-
nent of the pipeline is the density map-based Cα trace predictions 
from 3D CNNs, which are used for threading template selection and 
initial model generations through fragment tracing. The advanced 
I-TASSER folding simulation platform is then extended to reas-
semble the template and Cα trace models, under the guidance of an 
optimized force field combining 3D-CNN density map and template 
restraints with the advanced knowledge-based energy potentials.

CR-I-TASSER was benchmarked on a large-scale data-
set containing 778 proteins with both computer-simulated and 

experimental density maps, compared to three state-of-the-art 
de novo (Rosetta-dn16,17, MAINMAST18 and Phenix26) and five 
refinement-based (Flex-EM11, iMODFIT12, MDFF13, EM-Refiner15 
and Rosetta-Ref10) methods. Overall, CR-I-TASSER generates mod-
els with an average TM score of 0.839 when high-resolution (2–5 Å) 
density maps are used, which is 88% higher than the best de novo 
modeling program (Phenix) and 41% higher than the best refine-
ment program (MDFF), with P < 10−66 using Student’s t-test for 
both comparisons. When the medium-to-low resolution (5–15 Å) 
maps are used, although the average TM score of CR-I-TASSER 
is slightly reduced (0.726), it still generates the correct fold with a 
TM score >0.5 for 482 cases, which is 66% higher than the best of 
other methods (289 by the MDFF program). Detailed data analy-
ses showed that the density map-based deep-learning Cα trace 
models from 3D-CNN play a critical role in the structure quality 
improvement. Since deep learning can derive specific and precise 
information on Cα atoms from density map, the 3D-CNN Cα trace 
models can therefore be used to more efficiently constrain both 
initial template regeneration and CR-I-TASSER model assembly 
simulations, compared to traditional de novo and refinement-based 
approaches that are guided solely by model-to-map correla-
tions. Thus, CR-I-TASSER provides currently best-in-class per-
formance for automated structure prediction from cryo-EM  
density maps.

Despite the encouraging results, it is important to note that the 
current CR-I-TASSER pipeline relies on the success of 3D-CNN on 
Cα trace prediction, and we observe that the accuracy can decrease 
on low-resolution data. There are also issues in converting Cα 
positions into ordered tracing models when the target structure 
involves long loops/tails or disordered regions. Given the exciting 
progress witnessed in hybrid deep-learning and evolution-based 
protein structure prediction30–32, the combination of 3D-CNN 
with deep multiple sequence alignments (MSAs) collected from 
metagenome databases should help further improve the 3D-CNN 
Cα trace and CR-I-TASSER model accuracy. Additionally, a new 
module of CR-I-TASSER aimed to further enhance its performance 
on low-resolution data is in development, in which we use density 
map-based real-space secondary structure modeling powered by 
deep neural-network learning to assist cryo-EM model construc-
tion. The preliminary result is encouraging and shows that since 
secondary structure is ‘coarser’ than Cα positions, the models 
are easier to learn and can provide more relevant information to 
improve the modeling accuracy for the targets with poorer resolu-
tion maps. Meanwhile, CR-I-TASSER mainly focuses on monomer 
proteins, for which the density maps need to be segmented manu-
ally in the first place. We expect that it will be possible to combine 
CR-I-TASSER in a modular fashion with improved upstream or 
downstream tools for other modeling tasks (for example, segmenta-
tion or refinement) to further enhance future performance. Given 
that a chief advantage of cryo-EM is on large-size protein complex 
structure determination, however, an important next step is to 
extend the deep learning-based structure assembly simulations for 
protein–protein/protein–nucleic acid complex structure modeling 
and determination. While one of the current state-of-the-art seg-
mentation programs has been integrated into CR-I-TASSER, new 
algorithms built on I-TASSER homology modeling and heuristic 
structure-map alignment iterations29 can be a meaningful solution; 
investigations along these lines are in progress.
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Methods
CR-I-TASSER is a hierarchical method integrating I-TASSER with cryo-EM 
density maps for high-accuracy protein structure determination. As outlined in 
Fig. 1, the pipeline consists of three consecutive steps: (1) initial data processing; 
(2) deep learning-based template refinement and regeneration and (3) density 
map-guided structural reassembly simulations.

Initial data processing. Starting from query sequence and cryo-EM density map, 
CR-I-TASSER extracts three parts of information.

Predicting Cα locations using deep neural-network learning. A 3D-CNN with a 
residual network architecture19 (see Supplementary Text 25 for details) is used 
to predict Cα atom locations in a grid system, where the input of the 3D-CNN 
is the cryo-EM density map, and the output is the grid values ranging from 0 
to 1 representing the possibility of Cα atoms at the grids. The overall 3D-CNN 
architecture is shown in Supplementary Fig. 10a, where the density map in 3D grid 
space is taken as input signal to send through a 3D convolutional layer followed by 
instance normalization and the rectified linear unit, and extended to 32 channels. 
Next, ten basic blocks with residual network architecture are used to enhance the 
network capability of learning essential information of density maps. Eventually, 
the signal goes through the last layer that contains a 3D convolutional layer with 
two output channels and a SoftMax layer. The final outputs of 3D-CNN contain 
two complementary probability maps with the same size of the input density map, 
in which one map represents the probability of class 1 (‘having a Cα atom’) while 
the other one stands for class 0 (‘not having a Cα atom’). Since only a few grids are 
with Cα atoms around them, these two classes are highly imbalanced. Specifically, 
if we look at the central part (instead of marginal part) of the density maps where 
proteins are located, the ratio of the numbers of class 0 to 1 in experimental training 
set is 440,462,749 to 9,537,251, which is approximately 50 to 1 (Supplementary 
Table 1). Therefore, to make the training process more balanced, we set the weights 
as 1.0 and 50.0 for class 0 and 1, respectively, when computing the loss function, 
for which the cross-entropy loss is used. Although the weights are important in 
imbalance training and can affect the training process, the slightly different weights 
(for example, 1/25 or 1/75 for class 0/1) will have negligible effect on the final 
training result and hence we only used the weights that are most naturally derived 
from statistics result. During the training, the Adam optimizer is used to enhance 
learning efficiency with a learning rate of 0.0005. To reduce overfitting, random 
dropout is also used with a drop_rate of 0.2, and the batch sizes are set to 1.

The network was trained on two datasets to obtain two network models 
separately. To obtain the first training dataset, we download the file ‘cullpdb_
pc20_res1.6_R0.25_d190404_chains3470.gz’ from http://dunbrack.fccc.edu/Guoli/
pisces_download.php, which contains 3,470 nonredundant proteins and was then 
randomly split into a training (3,088 proteins) and a validation (382 proteins) set at 
a ratio of roughly 9:1 to prevent overfitting. The density map for the first dataset is 
simulated by

ρ (y) =
∑

i

Ai
√

2πσ2
e−

|y−xi|
2

2σ2 (2)

where σ = R/
√

2π  with R being the resolution parameter randomly taken from 
[1, 15 Å], y is the coordinate vector of the density map, xi and Ai indicate the 
coordinate vector and atomic number of ith atom of the protein, respectively. 
The second training dataset contains 3,600 targets with experimental density 
maps whose resolutions range from 2.1 to 10.0 Å. These experimental maps were 
generated from 36 large complexes with well-superposed experimental structures 
by randomly segmenting them into small maps with a size of 50 × 50 × 50 Å3. To 
make the training process focus more on Cα atoms, we set a filter of these small 
maps by containing at least 250 Cα atoms. This can avoid the issue of containing 
too few Cα atoms in a map, which could happen in the marginal parts of 
experimental maps. Through the 3D-CNN networks, the first model was trained 
on the simulated training set with more than 720 epochs. We calculated the average 
CRscore loss from the validation set every 30 epochs and stopped the training 
if: (1) training epochs >500 and maximum average CRscore >0.8 and the latest 
average CRscore was 0.02 less than the maximum average CRscore, or (2) training 
epochs >2,000. After stopping training, we selected the model with the max 
CRscore (708 epochs, Supplementary Fig. 11a). The second model started from the 
first model and was trained on the experimental training set for 217 more epochs, 
where the average loss against training epochs is shown in Supplementary Fig. 11b. 
The loss in the first model started to saturate around 600–700 epochs, while that in 
the second model did so after 800 epochs, probably because of the relatively higher 
complexity associated with the experimental maps.

Following the 3D-CNN model, a quick procedure was designed to convert 
the Cα possibility map into Cα atom coordinates (Supplementary Fig. 10b). The 
procedure first locates the grid with the highest possibility and labels it as the 
first Cα atom. It then iteratively searches for the next Cα atom with the highest 
possibility at the grids with a distance no less than 3.3 Å from all the labeled Cα 
atoms. The procedure repeats to ensure at least L (query length) Cα atoms are 
located. It will continue until 1.2 × L Cα atoms are located if the next highest 
possibility is >0.9.

Initial template identification by LOMETS. We used LOMETS21, a meta-threading 
method containing 11 leading fold-recognition programs, to identify homologous 
and analogous templates from the PDB. For each query sequence, the top 300 
templates were collected based on the normalized Z-score (Zn), which measures the 
significance of query-template alignments by each program. Accordingly, a target 
was defined as ‘Easy’ if there was on average one or more good templates with 
Zn > 1 for each program, while others were labeled ‘Hard’ due to the lack of good 
templates.

Inter-residue contact-map prediction. ResPRE33 is used to predict the 
residue-residue contact maps. From a query sequence, ResPRE first uses 
DeepMSA34 to collect MSAs from the whole-genome and metagenome sequence 
databases, where the inter-residue contact maps are then predicted from the 
inverse covariance matrix derived from the MSAs, based on deep residual 
convolutional network training19.

Deep learning-based template selection and regeneration. We designed two 
procedures using the deep learning-based Cα conformations to improve initial 
template quality of CR-I-TASSER through template reselection and model 
regeneration, respectively.

Template reselection by Cα and density map matching. LOMETS creates multiple 
threading templates, but the best templates do not always rank at the top by the 
Z-score. We rerank the top 300 template structures based on their match with 
the Cα conformations predicted by the 3D-CNN from a cryo-EM density map, 
using a procedure outlined in Supplementary Fig. 12. Because the 3D-CNN Cα 
conformation has no sequence index assigned, the matching procedure starts with 
the calculation of the ‘fingerprint’ for each Cα atom in a given LOMETS template 
and Cα conformation, where a fingerprint vector of ith Cα atom ⇀

F
temp(or Cα)

(i) is 
defined as a set of 20 ascending-ranking intradistances between ith Cα atom and 
20 nearest Cα atoms in the template (or Cα conformation). A pairing score of ith 
atom at template with jth atom at Cα conformation is then calculated by

Fscoreij =
∣

∣

∣

∣

⇀

F
temp

(i) −
⇀

F
Cα
(j)

∣

∣

∣

∣

2
(3)

The lower the Fscoreij is, the more similar the environment two atoms (i, j) are 
in, indicating a higher probability for (i, j) to be correctly paired. Therefore, we 
initially select the Cα atom pairs with the minimum Fscoreij and pair them in the 
ascending order, where each atom can only be paired once. Generally, if ith and iith 
Cα atoms from the template are correctly paired to jth and jjth Cα atoms from the 
Cα conformation, the intradistance between ith and iith Cα atoms, d(i, ii), should 
be close to that between jth and jjth Cα atoms, d(j, jj). Based on this assumption, we 
further refine the initial pairing using a weighted matching score S(i, j) defined by

S (i, j) =
∑

ii ̸= i

jj ̸= j







W (i, ii) if |d (i, ii) − d (j, jj)| ≤ 1
W(i,ii)

(d(i,ii)−d(j,jj))2 if |d (i, ii) − d (j, jj)| > 1
(4)

Here, W (i, ii) = w(i)w(ii), where w(i) is the weight for ith Cα atom from 
the template, which is initially set at 1 and updated iteratively by an algorithm 
outlined in Supplementary Fig. 12. After the convergence, only the pairs with a 
matching score S (i, j) > S0 are selected, where the threshold S0 is defined by the 
two-mean clustering of the matching scores. Based on the selected Cα pairing, the 
Kabsch r.m.s.d. superposition of template and Cα conformation is performed35, 
where the interchain distance dij < 10 Å will be used as a new condition to select 
Cα pairing in addition to equations (3–4). This new pairing will be used as the 
input of pairing refinement and Kabsch superposition to generate a newer pairing. 
The procedure will repeat until the final pairing and structure superposition 
converge (Supplementary Fig. 13). Overall, the idea of the superposition 
process described above is to identify the correct pairs of atoms between Cα 
conformation (index-free) and template alignments (indexed) by comparing their 
intraenvironments.

Finally, the CRscore is calculated for each template with the 3D-CNN Cα 
conformation based on the selected Cα pairing, where the 300 LOMETS templates 
selected by Z-score are reranked based on the calculated CRscores. A template 
will be defined as a ‘good’ template if the CRscore >0.5. Up to 30 good templates 
(Nrank ≤ 30) are selected from this template reselection procedure.

Initial Cα trace model generation from 3D-CNN Cα conformations. Since 
CR-I-TASSER uses 40 replicas in the replica-exchange Monte Carlo (REMC) 
simulations and each replica starts with different templates, we generate 
Ngen = 40 − Nrank new templates directly from the 3D-CNN Cα conformations; 
this contains two steps of Cα-trace connection and sequence-trace mapping 
(Supplementary Fig. 14).

For Cα-trace connection, we first connect all neighboring Cα atoms that 
have a distance below a bond length db. All connections to a Cα atom that has 
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the number of connections (nconn ≤ 2) are considered as ‘true’ connections (for 
example, connections to atoms 1, 3, 5, 7 and 8 in Supplementary Fig. 14a), while all 
other connections that contradict with the true connections and make nconn > 2 
for other atoms are removed (for example, connections 2–4 in Supplementary 
Fig. 14a). After this scan, if a Cα still contains >2 connections, this atom will be 
removed from the trace (for example, atom 6 in Supplementary Fig. 14a). As shown 
in Supplementary Fig. 14b, the remaining Cα trace pattern will depend on the 
selection of db. In CR-I-TASSER, we implement the procedure under 18 different 
cutoffs of db = 3.8, 3.9, …, 5.5 Å separately, and keep only the connections with a 
frequency of occurrence >40% in the final Cα connection.

This connection procedure creates multiple Cα fragments, where up to 
1,000,000 Cα traces are generated by randomly connecting the fragments,  
until no atom is available for the next connection. This could happen at the true 
end of the protein, if there is no available atom in the probing radius (5.5 Å) or 
if there are other atoms but are already fully connected in an unused fragment. 
Although the constraints involved in the connection process can help improve 
the accuracy of the template generation on average, it cannot always result in 
a full-length Cα trace model because the growth could stop anywhere under 
the constraints. To address this issue, CR-I-TASSER provides an alternative 
‘keep-tracing mode’ to improve the fragment-tracing success rate for some special 
cases by partially releasing some of the restraints or additional iterations (see 
Supplementary Text 23 for details).

Assuming that each fragment is continuous, we map the query sequence to 
each Cα trace by gapless threading and calculate the Cα–Cα contact map using a 
distance cutoff d < 8 Å. The top 300 Cα traces are selected based on the Pearson 
correlation coefficient (PCC) of the Cα–Cα contact map with the predicted contact 
map from ResPRE, as well as the PCC of the template structure with the target 
density map (Supplementary Text 26). Finally, Ngen templates are selected from the 
300 traces based on the PCC of the template structure with the target density map. 
This PCC is also used to rerank all top 40 templates including those from template 
reselection and regeneration.

It is noted that two 3D-CNN models have been trained on the simulated and 
experimental density map datasets separately, which generates two sets of Cα 
conformations for each target. If the two conformations are close, that is, with 
the CRscore between them >0.85, which usually indicates good quality of the 
conformations, we will take the average for each Cα atom pair to generate the 
final Cα conformation and use it for the template reselection and regeneration 
as described above. In case the Cα conformations are different (CRscore <0.85), 
which, while rare, happens in some cases with low-resolution experimental cases 
and usually indicates that the predicted Cα conformation is not reliable, we 
skip the Cα conformation-based template reselection and regeneration. Instead, 
we match each of the LOMETS templates directly with the density maps using 
the Broyden–Fletcher–Goldfarb–Shanno algorithm (Supplementary Text 27) 
followed by a short Metropolis Monte Carlo simulation under the guidance of 
template-density correlation as defined in Supplementary Text 26, with movements 
including 2,000 rigid-body translations/rotations. The top 40 templates are then 
selected based on the correlation coefficients from high to low.

Density map-guided structural assembly simulations. CR-I-TASSER performs 
REMC simulations to assemble full-length structure models, under a composite 
energy force field of

ECR−I−TASSER = EI−TASSER + WtempEtemp + WEMEEM + WCNN
EM ECNNEM (5)

where EI−TASSER is the inherent knowledge-based potential extended from 
I-TASSER20 and described in Supplementary Text 28, Etemp contains four aspects 
of distance and contact restraints collected from the top templates determined by 
LOMETS and 3D-CNN models (Supplementary Text 29). EEM counts for the global 
correlation between structure conformation and experimental density map ρ0 by

EEM = −

∑

y
ρ0 (y) ρ (y) (6)

where ρ(y) is calculated by equation (2). The ECNNEM  counts for the correlation 
between structure conformation and the 3D-CNN predicted Cα conformation:

ECNNEM = −

∑

y
ρ
CNN
0 (y) ρ (y) (7)

where ρCNN
0  is the density maps calculated by equation (2) for the 3D-CNN Cα 

conformation. This term is performed only when CRscore between the two 
3D-CNN conformations is >0.85, which is designed to enhance the convergence 
of simulations to the consensus Cα conformations. It is noted that the negative 
cross correlation in equations (6–7) instead of PCC defined in Supplementary Text 
26 is implemented because the former is computed as being faster than the latter. 
Additionally, benefiting from the linear combination form of equations (6–7), 
energy terms need to be computed only for the local segment involved in each 
movement, which is much faster than the calculations on the entire chain after 
each movement. The resolution for ρ(y) and ρ0(y) calculations is automatically 
detected and set by a short-trained 3D-CNN predictor for resolution prediction. 

Our benchmark results showed that the final model quality is not sensitive to 
the value of setting resolution. The weight parameters in equation (5), as well as 
those in the inherent knowledge-based I-TASSER force field, are determined in a 
separate training protein dataset, which is nonhomologous to the test proteins of 
this work, by maximizing the average TM score of the final models.

Final model selection and model quality estimation. The structure 
conformations generated by CR-I-TASSER (referred to as ‘decoys’) in eight 
low-temperature replicas are clustered using SPICKER to select the states 
corresponding to the lowest free energy states36. Specifically, an all-to-all r.m.s.d. 
matrix is calculated among all decoys where a pair of decoys are considered as 
neighbors if their r.m.s.d. is within a cutoff. The decoy with the largest number 
of neighbors is selected as the center of the first cluster and the representative 
centroid model for the cluster is obtained by averaging all decoys included. The 
second cluster is obtained in a similar way on the remaining decoys after excluding 
all decoys from the first cluster, and the procedure repeats until five clusters are 
obtained. Thus, a decoy cluster captures the inherent statistics of the Monte Carlo 
process, that is, the larger the size of the decoy cluster, the higher the convergence 
and, accordingly, the lower the uncertainty of the model sampling. As the cluster 
centroid models from SPICKER often contain steric clashes, the centroids of the 
five biggest clusters are reassembled by a second round of REMC simulation to 
improve the hydrogen-bonding network and local structural geometry. The lowest 
energy conformations are selected from the second-round simulations and further 
refined at atomic level by the fragment-guided molecular dynamics37 to create final 
models.

To evaluate the quality of predicted structures, we calculate the estimated TM 
score (eTM score) of the mth CR-I-TASSER model relative to the target structure 
by

eTMscorem = 0.18 + 0.82max
(

Cm,max
n̸=m

(TMscoremn − 0.5 (1 − Cn))

)

(8)

where TM scoremn is the TM score between mth and nth predicted models. The 
confidence score Cm is defined as

Cm =
CRscorem

1 + 0.05 (Mtot⟨r.m.s.d.⟩m) /Mm
(9)

where Mtot is the total number of decoy conformations submitted to SPICKER, 
Mm is the number of decoys at mth cluster, ⟨r.m.s.d.⟩m is the average r.m.s.d. of the 
decoys to the cluster centroid and the CRscorem is the matching score of the model 
with the 3D-CNN predicted Cα conformation by equation (1).

Supplementary Fig. 16 displays the data of eTM score versus the actual 
TM scores on the first predicted models of all 530 test proteins with high-/
low-resolution density maps, where most of the data points are located near  
the diagonal line, showing a strong linear correlation. The PCC and cosine 
similarities between eTM and TM scores are 0.858 and 0.989, respectively.  
If we use an eTM score of 0.5 as a cutoff to split ‘positive’ and ’negative’ cases,  
the numbers of cases for true positive, false negative, true negative and false 
positive are 856, 44, 119 and 41, respectively, which correspond to the true positive, 
false negative, true negative and false positive rates of 95.1, 4.9, 74.4 and 25.6%, 
and the overall Matthews correlation coefficient (MCC) of 0.710. The strong 
correlation indicates that eTM score can be used to reliably estimate the quality of 
predicted models.

In addition to the eTM score for overall quality estimation, we introduce two 
metrics, local PCC and local confidence, to estimate the local agreement to the 
density for the final models. First, the local PCC for ith-residue modeling quality 
from the mth predicted model is defined as

LPCC (m, i) =

∑

y [ρm (y, i) − E [ρm(i)]]
[

ρ′

m (y, i) − E
[

ρ′

m(i)
]]

{

∑

y [ρm (y, i) − E [ρm(i)]]2
∑

y [ρ
′

m (y, i) − E [ρ′

m(i)]]2
}1/2

(10)

where ρm (y, i) is the density on grid y calculated by equation (2) but only from the 
ith residue of the mth predicted model. Equation (10) is very similar to the normal 
PCC (Supplementary Text 26) except that we use a modified density ρ′

m instead of 
the experimental density ρ0:

ρ
′

m (y, i) = ρ0 (y) ·
ρm (y, i)

∑

j ρm (y, j) (11)

The reason we use the modified density to compute local PCC for the ith 
residue is because the experimental density ρ0 (y) on grid y contains contributions 
from all residues, where equation (11) is designed to decouple the experimental 
density for ith residue specifically. Toy model results shown in Supplementary Fig. 
17 demonstrate that the ρ′

m (y, i) is more reasonable than ρ0 (y) when computing 
the local PCC.

Second, the local confidence for ith residue from the mth predicted model is 
defined by integrating eTM score and local PCC:
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LC (m, i) = T (m, i)
∑

j

eTMscorem
T (m, j) (12)

where T(m, i) is defined as

T (m, i) =
(LPCC (m, i) + 1)

Nmodel

Nmodel
∑

n=1

eTMscoren
1 + (di (m, n) /d0)2

(13)

Here, Nmodel is the distance of ith residue between mth and nth models, and d0 
is a scaling parameter from TM score (Supplementary Text 4). Nmodel is the number 
of final models predicted by CR-I-TASSER, which is no more than five.

As an illustration, Supplementary Fig. 18 displays the local PCC and local 
confidence scores on two end-to-end study proteins (PDB 6tsk-B and 7dk5), 
where Supplementary Table 5 lists the average correlation coefficients between the 
local quality scores and the local error of predicted models from the experimental 
structure for all 248 test proteins with experimental density maps. The data 
show that both scores can be used for local model quality estimation. Although 
the local confidence shows a slightly higher correlation with the local modeling 
errors, CR-I-TASSER output both scores for alternative local quality estimations. 
In addition, CR-I-TASSER produces up to five models that allow the user to 
estimate the global/local quality using other methods such as ensemble structure 
comparison.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All training and testing data are available at https://zhanggroup.org/CR-I-TASSER/ 
and https://zenodo.org/record/5774563#.YbWYaNPJeXA (https://doi.org/10.5281/
zenodo.5774563). Source data are provided with this paper.

Code availability
The standalone package of the CR-I-TASSER programs, including library 
and manual documents, are available to download at https://zhanggroup.
org/CR-I-TASSER/download.html and https://zenodo.org/record/5774535#.
YbWYudPJeXA (https://doi.org/10.5281/zenodo.5774535).
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