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ABSTRACT: The rigid-body fitting of predicted structural
models into cryo-electron microscopy (cryo-EM) density maps is
a necessary procedure for density map-guided protein structure
determination and prediction. We proposed a novel multiobjective
optimization protocol, MOFIT, which performs a rigid-body
density-map fitting based on particle swarm optimization (PSO).
MOFIT was tested on a large set of 292 nonhomologous single-
domain proteins. Starting from structural models predicted by I-
TASSER, MOFIT achieved an average coordinate root-mean-
square deviation of 2.46 A, which was 1.57, 2.79, and 3.95 A lower
than three leading single-objective function-based methods, where
the differences were statistically significant with p-values of 1.65 X
107 6.36 x 1078, and 6.44 X 107'! calculated using two-tail
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Student’s ¢ tests. Detailed analyses showed that the major advantages of MOFIT lie in the multiobjective protocol and the extensive
PSO search simulations guided by the composite objective functions, which integrates complementary correlation coefficients from
the global structure, local fragments, and individual residues with the cryo-EM density maps.

B INTRODUCTION

Obtaining high-resolution protein structures is vital to
understanding the functions of proteins and the mechanisms
of disease pathways they are involved in. Several methods, such
as X-ray crystallography, nuclear magnetic resonance (NMR),
and cryo-electron microscopy (cryo-EM),'”* have been
successfully used to obtain macromolecule structures.” " In
recent years, a revolution has taken place in cryo-EM imaging,
leading to a large amount of cryo-EM density maps, which
often have relatively medium-to-high resolutions (e.g.,, ~3—10
A).">'" Although the resolution of some electron microscopy
(EM)-derived density maps is not sufficiently high, they can
usually provide an accurate topological description of the
molecular structure and, thus, can act as an optimization
restraint for a predicted atomic structure.'” Such a density
map-constrained refinement has been a promising direction in
the field of protein structure prediction.'*™'® This refinement
modeling procedure usually includes three steps, which are (1)
atomic structure prediction using cutting-edge methods such
as 'TASSER,"” which identifies and assembles fragments from
numerous threading templates in order to produce full-length
models, (2) fitting the atomic structure into an EM density
map, and (3) atomic refinement iterations. Fitting the structure
of a protein into a cryo-EM density map is an essential step to
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decrease the conformational search space during the
subsequent atomic refinement step and to ensure that
refinement is accurately guided by the density map. It is
however a nontrivial task, especially for low- and medium-
resolution density maps, and advanced computational
techniques are required to fill the void of misinformation
from cryo-EM density maps in order to obtain high-resolution
protein structures. 18720

Currently, several computational methods have been
developed to fit atomic structures into experimental cryo-EM
density maps. These programs include EMFIT,”" colores of
Situs,”** 3SOM,>* MultiFit,”> ADP_EM,*® Attract-EM,”’
EMatch,”® PowerFit,”® and UCSF Chimera,*® which have
been developed to provide relevant structural insights into
macromolecular complex structures. These programs usually
perform an automated search of all the possible relative
rotations and translations to maximize a cross-correlation
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Figure 1. Flowchart of the MOFIT procedure that rigidly fits a predicted protein structure into a cryo-EM density map. MOFIT includes three
objective functions: E1 (global CC), E2 (fragment-level CC), and E3 (residue-level CC).

function to improve a structure’s fit into a density map. As an
example of these methods, UCSF Chimera® is a program for
the interactive visualization and analysis of molecular
structures and related data that can be used to locally optimize
the fitting of atomic coordinates into a density map.
Additionally, ADP_EM is a multiresolution docking method
that executes a search in rotational space to maximize the
correlation using a fast-rotational matching method.”® More-
over, colores of Situs is a contour-based matching method that
utilizes a six-dimensional search using fast Fourier transforms
to rapidly scan the rigid-body degrees of freedom for a probe
molecule relative to a fixed target density map.”” Lastly,
EMatch performs a fitting using template-matching proce-
dures, which identifies secondary structure elements in the
three-dimensional (3D) EM maps.”®

Although many successes have been achieved, several issues
still limit the efficacy of existing fitting algorithms. First, the
metric used to evaluate the fitting quality is an important
criterion that will guide the search direction. Most existing
algorithms use a linear combination of different objective
functions, such as the structure-map correlation coefficient,”
the protrusion term score between the subunit and density
envelope,31 and molecular contour information,®® as the
optimization criteria. The fitting between a predicted structure
and the EM density map can be very complicated and will
result in different fitted poses due to several complicating
factors, such as the quality of the predicted atomic structure,
the resolution of the density map, the signal-to-noise ratio
(SNR) of the density map, misalignment between the
predicted structure and the density map, and other factors.
Linear combination can consider multiple factors, but generally
it is difficult to derive proper weights in order to balance each
term for different targets. Furthermore, cascading multiple
factors into a single objective function would also weaken the
conflict among different factors, which can be a much more
positive effect to avoid the local optimum in the optimization
iterations. Second, since the search space is large during the
fitting process, an exhaustive search performed without
processing, such as using Fourier techniques or filters, is a
time-consuming component. A heuristic searching algorithm
should help balance the efficiency and robustness of the
procedure.

In this work, we propose a new method named MOFIT,
which utilizes multiobjective particle swarm optimization®”
(PSO) to perform a rigid-body fitting of a predicted structure
into a density map. As shown in Figure 1, the pipeline of
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MOFIT contains three consecutive steps of model generation,
multiobjective particle swarm optimization, and final model
selection. Given the advancement in structure prediction, we
first used '-TASSER'” to generate initial models for the target
sequences. Next, three objective functions, which account for
correct global topology and an accurate local fitting using
fragment- and residue-level information, were constructed to
guide the heuristic PSO search, where the final models are
selected from the knee points of the nondominated Pareto
solutions.”” To carefully examine the strengths and weaknesses
of MOFIT, we performed large-scale benchmark tests with
density maps created from both noise-free and noisy
simulations. The results showed significant advantages of the
MOFIT pipeline for a cryo-EM density map-based protein
atomic structure fitting compared to other state-of-the-art
approaches. The online server and standalone package of
MOFIT, together with a detailed tutorial of how to install and
use the program, are available at www.csbio.sjtu.edu.cn/bioinf/
MOFIT/. Similarly, the I-TASSER server and package are
freely available to academic users at https://zhanglab.ccmb.
med.umich.edu/I-TASSER/.

B METHODS

MOFIT consists of three steps of initial structure generation,
multiobjective particle swarm optimization, and final model
selection. A flowchart of the program is depicted in Figure 1.

Calculated Density Map. When fitting a protein atomic
structure into a cryo-EM density map, the protein structure
must first be translated to a calculated density map in order to
compute the correlation. For a given atomic structure of a
protein that contains only Ca atoms with coordinates x;—xy,
the calculated density map on grid y can be obtained by

p() = Y Cexp(—k-llx, — yI)

x,EN (1)
where k = (z/(24 + 08R))” and C = a:(k/z)"* are
parameters that describe the shape of the Gaussian kernel,**

R, is the map resolution, and a is the mass of the Car atom.

Multiobjective Function. MOFIT uses three different
objective functions that account for the global and local
evaluation of the fitting quality.

Objective Function 1 is the correlation coeflicient between
the calculated density map p. (y) from the atomic structure
and experimental density map p, (y), which can be calculated
by
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where pand pare the average values of the calculated density

CC(r) =

map and experimental density map, respectively. RB (I)
represents all the grid point sets, and r represents all the
residues. The CC is a global score that is sensitive to the shape
of the density map.

Objective Function 2 accounts for the local correlation
coeflicient, which can be calculated by

L+l 1
1? Z1+—1
i L*CC(i)

E2 =1.0 -

(3)

where CC (i) represents the correlation coefficient between
residue i and the corresponding grid point in the density map;
L, represents all residues that have CC (i) > 0; L is the length
of the amino acid sequence for the atomic structure. This
function represents the similarity of the local residues.

Objective Function 3 evaluates the fragments for which all
residues have CC (i) scores greater than 0 and can be
calculated as follows

L,

2 1
E3=10-2) ———

LT+ 55 4)

where CV(i) = Zﬁ:fw“f(i);f(i) =1 CC(i)>0o0rf(i)=0

otherwise; i,, represents continued residues ahead of residue i
with CC (i) > 0; i, represents continued residues after
residue i with CC (i) > 0; L, represents the set for which CC
(i) is greater than 0.

Multiobjective Optimization. Formulating A Density
Map Fitting as a Multiobjective Optimization Problem.
Given the three objective functions (eqs 2—4), a unique
solution probably does not exist that lies at the global optimum
of all the objectives, since the objective functions can have
conflicts for some proteins where optimal decisions need to be
balanced with trade-offs between two or more different
objectives. The fittings for which none of the objective
functions can be improved in value without degrading the
other objectives are called the Pareto solutions. Without
additional subjective preference information, all Pareto optimal
solutions are considered equally good. The multiobjective
optimization problem can be studied from different viewpoints,
and there exist various solution philosophies and goals. A set of
Pareto-optimal solutions can be obtained and quantified with
respect to the trade-offs in satisfying the different objectives.
The standard paradigm for multiobjective models can be
written as

min F(x) = [f,(x), f, (x), f, ()]

s.t. gi(x) >0,i=12,.,L (s)

where f}, f,, and f; are the three objective functions that are
defined in eqs 2—4; g(x) is the corresponding constraint
function; x is the coordinate of the atomic model; and i is the
residue index of the atomic structure.
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Multiobjective Particle Swarm Optimization (MOPSO). In
recent years, multiobjective optimization technology based on
heuristics has been dramatically improved, which is now more
practical and efficient than the classical method.”> The PSO
algorithm is an evolutionary technology based on group
intelligence that simulates social behavior. It has been widely
used in theoretical and engineering optimization due to its
unique search mechanism, excellent convergence performance,
and convenient computer implementation.’® Multiobjective
optimization is an efficient solution to the vast conformation
space that must be searched in our specific problem of protein
structure and density map fitting. We use the multiobjective
particle swarm optimization (MOPSO) algorithm, proposed
by Coello,”” to search for the global best position and the best
position by the dominance swarm relationship, where all
swarms move toward the optimal direction, whose implemen-
tation has three steps.

Step 1. Initialization. The model predicted by I- TASSER will
first be translated into the density map center and then
randomly rotated to generate N different poses. Each pose is
considered one particle in the MOPSO optimization. The ith
particle is represented by a two-dimensional vector C = [t r].
Here, t and r represent the random rigid body translation and
rotation movement scales that range from [—1 A, 1 A] and
[—90°, 90°], respectively.

Step 2. Optimization and Searching. Each model’s position is
updated by rigid-body translation and rotation from the main
simulation’s cycle. In each simulation, the three objective
functions are calculated according to a conformation’s
coordinates. Then, a nondominated solution that has at least
two decreasing objectives functions is put into the Pareto set.
The new conformations are updated according to the particle
formulas of

=0 x4 g xyx (PF -
+o,xyx (GF=ch (6)
where vikis the change of movement in model i at the kth

iteration; Cik = Ct-k_1 + vikis the new conformation of model i
at the kth iteration; w is the inertia weight, which we linearly
decrease from 1.5 to 0.5 during the simulation according to our
local test and recommended empirical value;*® y is a random

value in the range of [0,1], which is used to introduce
perturbation; ¢; and ¢, are set to 2;*’ P,-kis the best

conformation of model i in the previous iteration; and Gikis
randomly selected from the Pareto set in the current iteration
representing the best conformation in the current iteration.

Step 3. Solution Ranking. We rank all the models of the
Pareto set and select the top conformation as the final
structure.

Final Model Selection. Usually, there exist multiple
Pareto-optimal solutions for multiobjective optimization
problems. For single-objective optimization, we can achieve
the best performance for one solution. However, it is not easy
to judge which solution is better in the Pareto set, since all are
so-called nondominated solutions. Here, we rank the Pareto
solution usin% a knee score and select the knee point as the
final solution.”” Knee points can give better answers among the
set of nondominated solutions,*® and they are widely used as a
criterion for a final solution selection from the Pareto set.
However, while the importance of knee points and front
regions have long been recognized in multiobjective

https://dx.doi.org/10.1021/acs.jpcb.0c09903
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optimization, they have not yet been tested in the atomic
structure and density map fitting problem. We also tried to
rank the results from the Pareto set using a clustering
algorithm,”® but the performance was not as good as the knee-
based ranking. Note that the knee algorithm is used to choose
an output model from the larger set of a Pareto solutions, and
it is independent of the multiobjective optimization main
iterations.

After finding the Pareto solutions, each Pareto solution is
projected into a three-dimensional score space with score axes
El, E2, and E3 as defined in eqs 2—4. Knee points are usually
those solutions for which a small deprivation in one objective
will simultaneously cause considerable improvement in other
objectives. The margin utility method*" is used to search for
more essential knee solutions in the Pareto front. The specifics
are described as follows

U,z = My (%) + Aof, (%) + A, (x)

st. A+ A, +A3;=1land 4, 4, 1;>0

(7)
where x is the nondominated solution in the Pareto set, and 4,
Ay and Ay are the weight variants. The knee algorithm is used
to rank the Pareto solutions and select the top conformation as
the final output model. It uses the value of the three objective
functions used for multiobjective optimization to rank the final
Pareto set solution. The expected marginal utilities can be
simply approximated by calculating the marginal utility for all
individuals. Several utility functions are generated by randomly
setting A}, 4,, and A; to random values. The average utility is
expected to be the marginal utility for each nondominated
solution. The conformation with the largest marginal utility is
taken as the final output.

B RESULTS

Benchmark Data Set. To test the performance of MOFIT,
a nonredundant set of 251 single-domain proteins was
collected randomly from the protein data bank (PDB) library
with a pairwise sequence identity less than 30%. In addition,
we randomly selected 41 domains from the CASP12-13
experiments.”” Overall, the test data set contain 292 proteins,
including 48 a-, 36 f-, and 208 af-proteins, following the
structural classification of proteins (SCOP) categorization®
(see list in Table S1). Simulated noise-free density maps were
generated from the target structures using EMAN2,** with
resolutions nearly evenly distributed in the 5—10 A range as
shown in Figure S1 in the Supporting Information. One reason
for choosing this resolution range is that this is the range at
which atomic structure predictors are generally needed, as
high-resolution structure determination is not possible from
the density maps alone.”” Table SI in the Supporting
Information lists the specific resolution of the density map
for each protein, where the resolution for each protein was
randomly selected from the 5—10 A integer range. We also
randomly added Gaussian noise with a standard deviation of
0.01 and an average value of 1 into the simulated density maps
using Xmipp.***’ The cross-correlation between the noise-free
and noisy maps was equal to 0.8, which was the value that was
determined to be the proper setting for mimicking
experimental density maps.”

To assess the effectiveness of our method, we calculated the
coordinate root-mean-square deviations (RMSDs), cRMSD=

N Z,L=1 %, — Z)|2/L, of the superposed models, where L is the
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protein length, Xrepresents the coordinates of the I-TASSER
model superposed onto the target structure using the TM-
score program,”’ and jrepresents the coordinates of the model
fitted into the EM density map by MOFIT. Compared to
RMSD and template modeling (TM)-score, which measure the
similarity between a fitted model and the target structure
directly, the major advantage of using cRMSD is that cRMSD
is not affected by the inherent quality of the ' TASSER models
themselves, since cRMSD measures the distance between the
modeled position and the best position for the same I-TASSER
model obtained by TM-score superposition with the known
native. The value of cRMSD falls in a range from 0 to infinity,
where a cRMSD of 0 indicates a perfect match between the
TM-score superposed structure and the fitted structure
obtained by each atomic structure-density map superposition
method. If a model that is identical with the experimental
(native) structure is used for fitting, the TM-score program
should perfectly superpose the model to the experimental
structure. Therefore, for these cases, the cRMSD will be equal
to the actual RMSD of the fitted model relative to the target
structure.

Control Methods. As a control, we compared MOFIT
with three state-of-the-art density map fitting programs,
including PowerFit (http://www.bonvinlab.org/education/
powerﬁt/),29 Situs (https://situs.biomachina.org/fguide.
html),22 and ADP_EM (https:/ /chaconlab.org/hybrid4em/
adp-em/adpem-user).”® These programs represent a set of
density map fitting methods that are either widely used in the
community or newly developed. Meanwhile, they provide
standalone packages, which are downloadable and very helpful
for us to run them on our own benchmark proteins. A rigid-
body fitting experiment was performed using all control
methods starting from the same set of cryo-EM density maps
and structures predicted by I-TASSER. For PowerFit, a
rotational sampling interval was defined to restrict a sampling
space with the default value (-a 10). For ADP_EM, as
recommended by the user manual, the bandwidth for harmonic
transformation was set to 32, and the density threshold value
for the experimental map was set to 0.06. For Situs, the angular
granularity was set to 8 (-deg 8), and the density map cutoff
value was set to 0.0. All other parameters for the programs
were set to the default values.

Benchmark Results. A reasonable model fitting method
should be capable of fitting most of the native structures into
their cryo-EM density maps. Therefore, we first applied
MOFIT to fit experimentally determined structures into
density maps. As shown in Figure S2, MOFIT fit the
experimental structures into their density maps achieving
cRMSDs < 0.5 A, in the (0.5 A, 1 A) range, in the (1 A, 1.5 A)
range, and greater than 1.5 A for 164, 109, 18, and 1 case(s),
respectively. The average cRMSD of our method (0.56 A) was
higher than that of Situs (0.12 A), while it was lower than that
of both ADP_EM (0.62 A) and PowerFit (1.64 A). One
reason for MOFIT being outperformed by Situs is that
MOFIT was optimized on predicted structure models, while
Situs was parametrized on a native structure. Thus, Situs is able
to perform better on the native structures, but its performance
is worse than MOFIT for fitting predicted structures into
density maps. However, MOFIT was able to outperform
ADP_EM and PowerFit on both experimental and predicted
structures using its effective heuristic searching and the
multiobjective strategy.

https://dx.doi.org/10.1021/acs.jpcb.0c09903
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Figure 2. Histogram distribution for the TM-scores (a) and RMSDs (b) of the I'TASSER models for the 292 benchmark test proteins.

Next, we tested MOFIT on more challenging cases whose
structures were predicted by I-TASSER. For each target, all
homologous templates with a sequence identity greater than
30% to the query sequence were excluded from the I-TASSER
template library. As a result, the average TM-score of the
predicted structural models was 0.698. There were 255 of 292
targets with correct folds, that is, TM-scores greater than 0.5.°
A more detailed TM-score and RMSD distribution of the I-
TASSER models is displayed in Figure 2.

In Table 1 (columns 2 and 3), we present a summary of
fitted models by MOFIT and three control methods on the
noise-free density maps. On average, MOFIT achieved a

Table 1. Summary of Model Fitting Results on the 292 Test
Proteins

noise-free density map noisy density map

cRMSD* cRMSD“
methods (A) (m? p-value® A) (1) p-value®
ADP_EM  345(188) 351 x 107 514 (2000 1.19 x 107
Situs 3.58 (162)  6.35x 107*  3.75 (148) 111 x 1073
PowerFit 443 (262) 792 x 107 6.54 (270) 627 x 107"
MOFIT 2.46 2.57

“cRMSD: RMSD between fitted model and the best-fit position
obtained by TM-score superposed. “n,: Number of cases for which
the cRMSD of MOFIT was lower than that of the control method. “p-
Value: between cRMSDs obtained by MOFIT and the control
methods using two-tailed Student’s ¢ tests.
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cRMSD of 2.46 A, which was 0.99 A lower than that by
ADP_EM (3.45 A), 1.12 A lower than that by Situs (3.58 A),
and 1.97 A lower than that by PowerFit (4.43 A). The
differences were also statistically significant, as the p-values
were 3.51 X 107, 635 x 107% and 7.92 x 107 for the
comparison with ADP_EM, Situs, and PowerFit, respectively,
as determined by a two-tailed Student’s ¢ test between MOFIT
and the control methods. In Figure 3, we also list a head-to-
head comparison of the cRMSD results, where MOFIT
outperformed ADP_EM, Situs, and PowerFit on 64.4%,
55.5%, and 89.7% of the cases, respectively, as determined
by the lower cRMSD values of the MOFIT-fitted models.
The improvements made by MOFIT are mainly due to the
design of the parallel score landscape of MOFIT, which is
driven by global, fragment, and residue-level CC scores
between the structure and the density map. The utilization
of multiple objective functions balances the global, fragment,
and residue-level similarity between the predicted structures
and density maps, which is important for fitting models when
different target and density map combinations are involved. To
further evaluate the stability of our method, we list in Table 1
(columns 4 and S) the model fitting results on density maps
with simulated noise added. Although the noisy data resulted
in reduced performance for all methods (which is expected),
the average cRMSD of MOFIT increased only slightly by 0.11
A (from 2.46 to 2.57 A), which was lower than all three control
methods, that is, 1.69 A for ADP_EM, 0.17 A for Situs, and
2.11 A for PowerFit. The overall cRMSD of MOFIT was also
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Figure 3. Head-to-head cRMSD comparison among different methods on the 292 noise-free density maps (upper row) and 292 noisy density maps
(lower row). (left) MOFIT vs ADP_EM; (middle) MOFIT vs PowerFit; (right) MOFIT vs Situs.
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Figure 4. Head-to-head comparison between each single objective function (x-axis) and the overall multiobjective function (y-axis) for the 292 test
proteins. Each block represents the cRMSD value on the corresponding axis.

significantly lower than the control methods with p-values of
1.19 X 107, 1.11 X 1073, and 6.27 X 107" for the comparison
with ADP_EM, Situs, and PowerFit, respectively. Of the 292
test targets, MOFIT achieved better cRMSDs than ADP_EM,
Situs, and PowerFit for 68.5%, 50.7%, and 92.4% of the cases,
respectively (Figure 3).

To examine the relationship between model quality and the
meaningfulness of structure-density fitting, in Figure S3, we
present the correlation coefficient (CC) of fitted models to the
EM density map versus TM-score of the initial fitted models
for the 292 test proteins. The results show that, when the
initial model has an incorrect fold (i.e., TM-score < 0.5), most
of the fits have a low CC and there is nearly no correlation
between CC and the TM-score (Pearson correlation
coefficient = 0.18). However, for models with a correct fold
(TM-score > 0.5), there is a strong correlation between CC
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and the TM-score (Pearson correlation coefficient = 0.74),
showing such fitting problems are still meaningful even when
the I-TASSER models are not perfect but they have the correct
fold. Fortunately, as shown in Figure 2, the majority (87%) of
the I-TASSER models for the test set had a TM-score greater
than 0.5, which is part of the reason why we mainly
benchmarked our method on the real-world case where the
experimental structure is unknown but predicted structural
models may be used, such as those constructed by I-TASSER.

In Table S2, we provide a summary of the modeling results
by I-TASSER and the follow-up EM density map fitting
methods on an additional set of seven randomly selected
proteins from the EMDR (Electron Microscopy Data
Resource) that have experimentally determined density maps.
For these seven proteins, the average cRMSD of MOFIT was
1.49 A, compared to 2.85 A for ADP_EM, 2.18 A for Situs, and
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Figure S. Illustrative examples of fitting for the C-terminal domain of the MADV?2 fiber from mouse adenovirus 2 (ID: SNC1). (A) The maximum
CC structure (the maximum CC score structure, cyan) with a CC of 0.383 and a cRMSD of 25.33 A and the TM-score superposed model (the best
superposed structure, yellow) with a CC of 0.357 and a cRMSD of 0; native model (red). (B) Different colors represent different fitting results for
all methods. PowerFit fitted model (purple, cRMSD = 20.89 A), Situs fitted model (blue, cRMSD = 25.33 A), ADP_EM fitted model (green,
cRMSD = 2.89 A), MOFIT fitted model (oranges, cRMSD = 2.20 A), and TM-score superposed model (yellow). (C) Different colors represent
different refined models using EM-Refiner. PowerFit refined model with an RMSD of 12.11 A and a TM-score of 0.460 (purple), Situs refined
model with an RMSD of 11.67 A and a TM-score of 0.465 (blue), ADP_EM refined model with an RMSD of 11.69 A and a TM-score of 0.503
(green), MOFIT refined model with an RMSD of 10.60 A and a TM-score of 0.504 (orange) and native structure (red).

3.27 A for PowerFit, respectively. These results show the
robustness of the MOFIT performance on both the simulated
(with/without noise) and experimental density maps.

In MOFIT, the knee algorithm is used to select the final
fitted model after obtaining the Pareto set. We also compared
the results obtained using a clustering algorithm"’ and the knee
algorithm™ on the 292 cases. For the clustering algorithm, the
model closest to the centroid of the largest cluster was the final
output model. For the knee algorithm, we selected the model
with the best score as the final output model. On average, the
cRMSD by the knee algorithm was 2.46 A, which was slightly
better than that obtained by the clustering algorithm (2.56 A).
In Figure S4, we present the three-objective distributions of the
nondominated particles (PDBID: SNC1) in the Pareto set,
where each point indicates a nondominated solution. After the
fitting iterations terminated, MOFIT obtained the non-
dominated particles of the Pareto set in score space, where
the final output structure was selected by the knee algorithm.
For the case of SNC1, the knee point had the largest marginal
utility of all nondominated solutions as shown in Figure S4.
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Comparison between Single-Objective and Multi-
objective Function Optimization. To examine the impact
of using multiple objective functions, we present in Figure 4 a
head-to-head comparison between the fitting performance
obtained by each single-objective function and the overall
multiobjective function used by MOFIT. The subfigures A, B,
and C of Figure 4 show the cRMSD distribution for the 292
targets using the functions E1 (global CC), E2 (fragment-level
CC), and E3 (residue-level CC) versus MOFIT. Overall, there
were 261, 259, and 268 of the 292 cases for which MOFIT
created a fitted model with a lower cRMSD than the single-
objective functions E1, E2, and E3, respectively. As shown in
Table S3, the average cRMSD by MOFIT was 2.46 A, which
was 1.57 A lower than obtained by E1 (4.03 A), 2.80 A lower
than that by E2 (5.26 A), and 3.95 A lower than that by E3
(6.41 A); this corresponds to the p-values of 1.65 X 107, 6.36
x 1078 and 6.44 x 107!, respectively, as determined by two-
tailed Student’s ¢t tests, thereby demonstrating that the
improvement achieved by the multiobjective function is
statistically significant.
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Figure 6. Illustrative examples of superposition affecting the refinement for the single domain of 3aliA using a simulated density map with a S A
resolution. (A) Different colors represent different fitting results. PowerFit fitted model with a cRMSD of 17.06 A (purple), Situs fitted model with
a cRMSD of 17.04 A (blue), ADP_EM fitted model with a cRMSD of 17.04 A (green), MOFIT fitted model with a cRMSD of 2.75 A (cyan), and
the TM-score superposed model (yellow). (B) Different colors represent different refined models using EM-Refiner. PowerFit refined model with
an RMSD of 10.19 A (purple), Situs refined model with an RMSD of 11.72 A (blue), ADP_EM refined model with an RMSD of 10.19 A (green),
MOFIT refined model with an RMSD of 6.34 A (cyan), and native model (red).

In Figure S5, we present a head-to-head comparison
between each individual objective function in order to
determine which single objective function gives the best
results. We found that no single objective function could
achieve a dominantly lower cRMSD than any other function,
and different single scoring functions had different preferences
among all 292 test cases. Further, Figure S6 shows the value of
each objective function at different PSO searching iterations
for a selected protein (PDBID: lefdN). From the figure, it can
be seen that E1, E2, and E3 display asynchronous behavior,
suggesting a conflict between El, E2, and E3 during the
searching iterations. Multiobjective optimization will search
the diverse conformations where optimal decisions need to be
balanced in the presence of the trade-offs between two or more
different objectives. This example case illustrates that E2 and
E3 are important to give favorable cRMSD values and that all
three single objective functions converge by the end of the
simulation. Since models with incorrect folds (like those with
disordered and misaligned regions, among other complicating
factors) interfere with the optimization of objective function 1,
which accounts for the global correlation, the addition of local
correlation functions such as E2 and E3 can improve the fitting
performance by focusing on specific and complementary
correlation regions. Multiobjective optimization enables us to
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utilize the complementarity of multiple objective functions to
realize the distinct point-of-view evaluation of the object.

Case Studies. The overall fitting results indicate that the
correct folding of a predicted structure is important to obtain
the correct superposition conformations. Figure 5 presents
such an example for the C-terminal domain of the MAdV2
fiber from the mouse adenovirus 2 (PDBID: SNC1) (CASP
target ID: T0880) to illustrate the results of different methods
on a challenging target. The resolution of the density map for
this target was S A, but - TASSER generated an initial structure
with an incorrect fold (TM-score = 0.47) compared with the
native structure. The CC between the superposed model and
the density map was 0.357 based on the best superposition
obtained by TM-score superposing the predicted structure
onto the native structure.

However, the pose corresponding to the maximum CC score
was not the pose with the minimal cRMSD when we used the
single CC objective function as the score function for the
fitting simulation. This is particularly true when the I-TASSER
model is low quality with an incorrect fold. In Figure SA, for
example, the maximum CC score structure (cyan) resulted in a
conformation with a cRMSD of 25.33 A. Given that the
correlation between the model and the density map using the
single global correlation function did not reflect the quality of
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the superposition, a single-objective function is most likely not
the best choice for this case and other similar ones.

Figure SB compares the results of MOFIT (multiobjective
optimization) and the three control methods that all utilize a
single-objective optimization. After the superposition, MOFIT
achieved a cRMSD of 2.20 A, which was dramatically lower
than that of PowerFit (20.89 A) and Situs (25.33 A), and
slightly lower than that of ADP_EM (2.89 A). These cases
correspond to the points in Figure 3 that are far away and near
the diagonal lines in Figure 3, respectively. To further illustrate
the impact of density map fitting on the final protein structure
model prediction, we showed in Figure SC the full-length
models constructed by EM-Refiner (https:/ /zhanglab.ccmb.
med.umich.edu/EM-Refiner) ,16 starting from the initial super-
positions obtained by the different density map fitting
programs. Here, EM-Refiner is a recently developed cryo-EM
based structure refinement algorithm, which constructs final
full-length protein structure models using replica-exchange
Monte Carlo (REMC) simulations. Although EM-Refiner has
its own density map fitting algorithm, it is completely different
than MOFIT, because EM-Refiner uses a single CC score
searched by a short REMC simulation, while MOFIT uses
multiple optimization functions (combining local, fragment-
level, and global CC scores) and searches with multiobjective
particle swarm optimization to search the conformational
space.

As shown in Figure 5C, the refined model produced by EM-
Refiner starting from the MOFIT superposition had a TM-
score of 0.504 (RMSD = 10.60 A), compared to a TM-score of
0460 (RMSD = 12.11 A) starting from the PowerFit
superposition, a TM-score of 0.465 (RMSD= 11.67 A) from
the Situs superposition, and a TM-score of 0.503 (RMSD =
11.69 A) from the ADP_EM superposition. These results
indicate that the higher-quality superposition achieved by
MOFIT improved the density map-constrained refinement
results, where our method outperformed PowerFit and Situs at
structure superposition for this example. In fact, on the one
hand, the refined structures starting from the PowerFit and
Situs initial superpositions had worse TM-scores than the
initial model due to the poor structure-map superposition. On
the other hand, both MOFIT and ADP_EM were able to
produce high enough quality initial superpositions to draw the
predicted structural model closer to the native structure,
resulting in a correctly folded model with a TM-score greater
than 0.5. This result demonstrates the importance of utilizing
multiple objective functions, which can help generate higher-
quality fitted models, thus improving the model quality for the
cryo-EM-based protein structure prediction.

Figure 6 shows another example from PDB ID: 3aliA, for
which I-TASSER generated a correct fold with a TM-score of
0.57, where the resolution of the simulated density map was 5
A. As shown in Figure 6A, MOFIT generated a fitted model
with a cRMSD of 2.75 A, which was significantly lower than
that obtained by PowerFit, Situs, and ADP_EM with cRMSD
values of 17.06 A, 17.04 A, and 17.04 A, respectively. Starting
from the MOFIT fitted model, EM-Refiner constructed a full-
length model with a TM-score of 0.59 (RMSD = 6.34 A),
which was significantly closer to the native than those
generated when starting from PowerFit (TM-score = 0.26,
RMSD = 11.19 A), Situs (TM-score = 0.39, RMSD = 11.72
A), or ADP_EM (TM-score = 0.32, RMSD = 10.19 A)
superposition, as shown in Figure 6B. This result further
illustrates the importance of density-map fitting methods. Even
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if the initial predicted structures have a correct fold, different
methods will produce different density map superpositions,
which may result in dramatically different final structure model

quality.

B CONCLUSION

In this work, we proposed a novel rigid-body fitting method,
MOFIT, which performs multiobjective particle swarm
optimization (MOPSO) to fit predicted structures into 3D
cryo-EM density maps, which is an essential procedure for
cryo-EM-based protein structure determination. In our
protocol, three objective functions were used during the
MOPSO process, which enable the method to achieve a better
fitting performance via the introduction of additional scoring
criteria. When fitting a predicted structure into a density map,
we considered both the global and local cross-correlations,
which account for full model-level, fragment-level, and residue-
level correlation scores. MOPSO allows for the presence of
complementary trade-offs among multiple objectives to obtain
optimal fitting solutions,”® where the best solutions are
achieved from the nondominated Pareto set. The global
correlation accounts for the preference of the fit for the overall
protein shape, while the local correlation scores assess the
fitting results in accordance with the correct local topology.
Moreover, our algorithm samples a wide region of conforma-
tional space by starting from diverse initial models with
different poses. The benchmark results on 292 nonhomolo-
gous proteins showed that MOFIT generated fitted models
significantly closer to the optimal positions compared to those
of other state-of-art programs, including ADP_EM, Situs, and
PowerFit, as well as the internal programs based on each
individual MOFIT objective functions. This demonstrates the
effectiveness of the multiobjective functions and the MOPSO
search protocol.

The density map fitting experiments showed that the final
model accuracy depends on both model quality and the
density map resolution. In Figure S7, we present the
correlation between the ¢cRMSD and TM-score of each I-
TASSER model at different density map resolutions. We found
that the Pearson correlation coeflicient between the cRMSD
and TM-score was —0.61, —0.52, and —0.50 for 5—6, 7—8, and
9—10 A maps, respectively. The average cRMSDs were 0.81,
0.97, and 1.13 A for 5—6, 7—8, and 9—10 A resolution density
maps, where the TM-score of the atomic structures used for
fitting were more than 0.5. These data further confirmed that
the major challenge to the fitting experiment mainly comes
from the cases with low-quality structure prediction and low-
resolution density maps. Given the efficiency of multiobjective
optimization, in the future, we will continue to extend the
current MOPSO protocol to cryo-EM-based structure fitting
and refinement with a primary focus on the targets with low
TM-score structure prediction and low-resolution density
maps.
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