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Abstract

Three-dimensional structures of proteins can provide important clues into the efficacy of per-

sonalized treatment. We perform a structural analysis of variants within three inherited lyso-

somal storage disorders, comparing variants responsive to pharmacological chaperone

treatment to those unresponsive to such treatment. We find that predicted ΔΔG of mutation

is higher on average for variants unresponsive to treatment, in the case of datasets for both

Fabry disease and Pompe disease, in line with previous findings. Using both a single deci-

sion tree and an advanced machine learning approach based on the larger Fabry dataset,

we correctly predict responsiveness of three Gaucher disease variants, and we provide pre-

dictions for untested variants. Many variants are predicted to be responsive to treatment,

suggesting that drug-based treatments may be effective for a number of variants in Gaucher

disease. In our analysis, we observe dependence on a topological feature reporting on con-

tact arrangements which is likely connected to the order of folding of protein residues, and

we provide a potential justification for this observation based on steady-state cellular

kinetics.

Author summary

Pharmacological chaperones are small molecule drugs that bind to proteins to help stabi-

lize the folded state. One set of diseases for which this treatment has been effective is the

lysosomal storage disorders, which are caused by defective lysosomal enzymes. However,

not all genotypes are equally responsive to treatment. For instance, missense mutants that

are particularly destabilized relative to WT are less likely to respond. The availability of

datasets containing responsiveness data for large numbers of mutants, along with crystal

structures of the protein involved in each disease, make machine learning methods incor-

porating sequence-based and structural data feasible. We hypothesize that data from two

diseases, Fabry and Pompe disease, may be useful for predicting responsiveness of variants
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in the related Gaucher disease. Results suggest that many rare variants in Gaucher disease

could be amenable to existing drugs. Results also suggest that drug responsiveness

depends on protein topology in such a way that mutations in early-to-fold residues are

more likely to be non-responsive to pharmacological chaperone treatment, which is con-

sistent with a simple kinetic model of stability rescue. This study provides an example of

how machine learning can be used to inform further studies towards personalized treat-

ment in medicine.

Introduction

One mechanism by which a missense mutation can exert a pathogenic effect is by destabilizing

the protein in which it is located, leading to deficiency of the protein, not just its enzymatic

activity [1–5]. A smaller amount of the protein is then available to carry out its function, par-

ticularly since the destabilized protein is more likely to be cleared by quality control machinery

[6–8]. One potential treatment for diseases caused by destabilized variants is a small molecule

drug that helps stabilize the mutant protein, called a pharmacological chaperone [9–13]. Phar-

macological chaperones have become popular as potential treatments for several diseases,

including some lysosomal storage disorders, over the past 20 years, and the drug Migalastat

(with the commercial name Galafold) based on this approach, has been approved for treatment

of Fabry disease [14–16]. The drug binds the protein as an inhibitor, assisting folding in the

Endoplasmic Reticulum. This follows an initial observation that the product and inhibitor

galactose, of which Migalastat is an analog, improves activity and patient condition, although

it is not a feasible therapeutic due to the high required dose [9,17]. Non-inhibitory chaperones

have also been proposed and tested at various stages of the approval process [12,18–20], which

may overcome dosing complications introduced by inhibitory effects. For lysosomal storage

disorders of appropriate genotype, oral pharmacological chaperone treatment can replace or

supplement intravenous enzyme replacement treatment, which is expensive and does not

cross the blood-brain barrier.

The lysosomal storage disorders are a set of over 50 rare genetic diseases characterized by

defective processing and build-up of substrates in the lysosome, often due to mutation in a

lysosomal enzyme [21,22], which include Gaucher, Fabry, and Pompe disease. Gaucher disease

[23] is the most common lysosomal storage disorder, consisting of three subtypes, the rarer

two of which include neurological symptoms. Pharmacological chaperone treatment has

shown promise for treatment of the disease [23,24–28], although no pharmacological chaper-

one drugs are currently FDA approved for this purpose.

Some mutants of a given protein are more responsive to pharmacological chaperone treat-

ment than others. For Fabry disease, it has been shown that residues in the active site or those

that grossly destabilize the protein are less likely to be responsive to treatment [16]. An inter-

esting biophysical and bioinformatic question is then whether responsiveness to treatment can

be predicted from molecular properties, utilizing machine learning methods. Previous studies

have demonstrated success in predicting pathogenic variants and/or responsiveness to phar-

macological chaperone treatment for Fabry disease [29–31]. Here, we seek, in particular, to

elucidate how protein structure can inform upon whether a mutation is responsive to treat-

ment. Protein structures have adopted an increasingly important role in many aspects of

genetics, e.g., [32–35]. We hypothesized that pathogenicity would depend with reasonably

high prediction accuracy on aspects obtainable from structure and computation, such as the
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predicted stability change and local topology, and that predictions may be transferrable

between proteins that cause differing lysosomal storage disorders.

Cell-based assays can effectively predict response to pharmacological chaperone treatment. We

analyze datasets for the cases of Fabry and Pompe disease [15,36], for which large numbers of vari-

ants have been tested. We find that free energy change ΔΔG upon mutation predicted by our pro-

gram EvoEF [37] is predictive of responsiveness to treatment, with particularly destabilized

variants more likely to be unresponsive. Furthermore, we find a dependence on a topological mea-

sure which predicts that mutations in residues early to fold will be less likely to be responsive to

pharmacological chaperone treatment, which we rationalize according to cellular folding kinetics.

We train machine learning models on the two datasets, using a combination of sequence-based

and structural features, and we use the resulting models to predict responsiveness for Gaucher dis-

ease variants. We find that many variants of Gaucher disease are predicted to be responsive to

pharmacological chaperone treatment, using tested variants as a point of comparison.

Results

Key structural features of missense mutations

A number of structural features were considered for each of the three proteins associated with

lysosomal storage disorder that were analyzed in this study, as illustrated in Fig 1. First, ΔΔG

was estimated using the program EvoEF [37]. Consistent with previous results [16], mutations

not responsive to pharmacological chaperone treatment showed a statistically significant

increase in mean predicted ΔΔG of the distribution, for both Fabry and Pompe disease pro-

teins (Fig 2). Other information we considered in decision tree analysis was the number of res-

idues in contact with the mutated residue (6 or more heavy atom pairwise contacts within 8

Angstroms), whether the mutated residue was within 5 Angstroms of the ligand in the crystal

structure, the crystallographic B-factor of the alpha carbon, and biomolecular circuit topology

information based on residue-residue contacts.

Circuit topology provides a way to formalize the relationships between pairs of contacts

within a protein or other linear polymer. The interval of a contact is defined as the span of

Fig 1. Illustration of structural features considered in machine learning. Features considered were the number of

residues in contact with the mutated residue, whether the residue is in contact with the ligand at the catalytic site, the

crystallographic B-factor or temperature factor, the change in free energy upon mutation, the “local” circuit topology

of the residue, and whether the residue is located in the catalytic domain.

https://doi.org/10.1371/journal.pcbi.1009370.g001
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sequence between the two contacting residues, along the protein chain. Two contacts may be

in three types of relations: series, parallel, or cross, as illustrated in Fig 1 and described in previ-

ous publications [38–40]. In particular, the parallel relation, relevant to this study, occurs

when one interval is contained entirely within the other. A distinction is made between strict

parallel and inverse parallel. One contact is said to be in parallel with another contact if it is

contained in its interval, while one contact is said to be in inverse parallel with another contact

if it contains its interval (i.e., the outer contact in a parallel relation). We then define local cir-

cuit topology to be the number of contacts with a particular relation relative to any contact

formed by the mutated residue, consistent with (manuscript in preparation).

The domain architecture of each of the three proteins was considered visually in further

detail (S1 Fig). Here, the central residue numbers of secondary structural elements (alpha heli-

ces and beta strands) which interact in three-dimensional space are connected by a curve.

Interestingly, the non-catalytic domain in the case of glucocerebrosidase (Gaucher) consists of

intertwined N- and C-terminal regions of the chain, leading to a large number of contacts in

parallel. It is important to consider that differences in domain structure may affect transfer-

ability of mutational effects.

Decision tree analysis and predictions

Pharmacological chaperone responsiveness, based on enzymatic activity in cellular assays, as

described in referenced publications [15,36], was predicted in this study. A decision tree based

on the Fabry dataset (Fig 3A) was generated using R-part in R, using the default algorithm,

with the complexity parameter determining the number of decision nodes chosen to first opti-

mize the MCC of predictions on the Pompe dataset and then, for equivalent values on the

Pompe dataset, to locally optimize the MCC of the Fabry dataset (S1 Table). The first branch-

ing is according to predicted ΔΔG of the mutation, where destabilization greater than 1.7 kcal/

mol predicts non-responsiveness to pharmacological chaperone treatment. Next, if the

mutated residue is in contact with the ligand in the crystal structure, non-responsiveness is

also predicted. Otherwise, if the number of contacts is sufficiently small, the mutation is pre-

dicted as responsive. For greater numbers of contacts, the tree again branches at ΔΔG, where

values smaller than 0.94 but greater than -1.4 kcal/mol are predicted as responsive. The most

stabilizing mutations are predicted to be non-responsive. For values of ΔΔG greater than 0.94

(but still less than 1.7 kcal/mol), the number of inverse parallel relations determines respon-

siveness, where greater numbers of inverse parallel relations predict non-responsiveness.

The decision tree correctly predicts responsiveness or non-responsiveness for three

Gaucher disease mutations to the chemical chaperone N-nonyl-deoxynojirimycin in a cell-

based assay (Table 1). Specifically, N370S and G202R are predicted to be responsive, while

L444P is predicted to be non-responsive, consistent with known mutational effects [24].

Fig 2. Stability change and domain location features of treatment responsive and non-responsive variants. Shown

are stability histograms, comparing variants responsive to treatment (blue) and non-responsive to treatment (yellow).

(A) ΔΔG for Fabry disease (kcal/mol). (B) ΔΔG for Pompe disease (kcal/mol).

https://doi.org/10.1371/journal.pcbi.1009370.g002
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Table 2 shows several structural properties of these mutations. Notably, the non-responsive

mutation L444P is predicted to be the most destabilizing of the first three mutations, above the

1.7 kcal/mol threshold of the decision tree. (Additional table columns are explained in later

sections of the text.) The tree is less effective on predicting the responsiveness of additional

variants to Ambroxol [41,42], correctly predicting only N188S (last four mutations of Table 1).

Although non-responsive to N-nonyl-deoxynojirimycin, L444P was shown to be responsive in

other cases [43,44].

An important aspect of the decision tree is the branching according to the number of

inverse parallel relations, for intermediate ΔΔG values. The inverse parallel relation and impli-

cations for folding are depicted in Fig 3B and 3C. Considering intervals between contacting

points, the contact in inverse parallel relation (orange) is outside of the first contact (gray, Fig

3B). Formation of the gray contact will then shorten the distance along the chain of the con-

tacting points of the orange contact (Fig 3C). The gray contact is then expected to form first

during the folding process, with the contact in inverse parallel folding later on.

To verify that residues with a large number of inverse parallel relations tend to be early to

fold, we referenced hydrogen-deuterium exchange mass spectrometry experiments for a TIM

barrel protein [45]. We found that residues in regions conferring the strongest protection

Fig 3. Decision tree of structural features and importance of the inverse parallel relation. (A) Decision tree

constructed in R-part from the Fabry dataset, MCC = 0.39 on Fabry dataset, MCC = 0.49 on Pompe dataset. Tree

predicts whether the mutation is responsive (yes) or non-responsive (no) to pharmacological chaperone treatment.

Units of ΔΔG are kcal/mol. (B) The orange contact is in inverse parallel (P-1) relation with the gray contact. An

example curve satisfying this condition (left) and topology diagram for this relation (right) are shown. (C) Model of

folding of the parallel relation, with the gray contact forming first, facilitating formation of the orange contact. The top

diagram shows the contacting points of the unfolded chain, with complementary points in the same color; bottom

diagrams show a partially folded chain with the inner, gray contact formed (left) and a folded chain with both contacts

formed (right).

https://doi.org/10.1371/journal.pcbi.1009370.g003

Table 1. Predicted responsiveness of Gaucher disease mutations.

Observed responsive Single tree responsive Fabry ML responsive (p1) Pompe ML Responsive (p1)

N370S yes yes (0.60) yes (0.41) yes (0.44)

L444P no� no (0.28) no (0.24) yes (0.42)

G202R yes yes (0.60) yes (0.36) yes (0.60)

F213I yes no (0.34) yes (0.62) no (0.30)

R120W yes no (0.28) no (0.05) no (0.24)

N188S yes yes (0.60) yes (0.66) no (0.31)

D409H no yes (0.60) yes (0.38) yes (0.42)

�Although non-responsive to N-nonyl-deoxynojirimycin, L444P was shown to be responsive in other cases [43,44].

https://doi.org/10.1371/journal.pcbi.1009370.t001
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from exchange (first to fold) have a higher number of inverse parallel relations on average, fol-

lowed by residues exhibiting intermediate protection, followed by other residues (S2 Fig). This

suggests that residues that are earlier to fold tend to have a larger number of inverse parallel

relations for the TIM barrel fold, which is found in the proteins associated with lysosomal stor-

age disorders referenced in this study.

Glycine to arginine is a severe mutation in terms of change in charge, size, and torsional

propensity. It is one of the most common pathogenic mutations and has a strong bias towards

pathogenicity, according to the ADDRESS database of over 20K pathogenic and benign vari-

ants [3]. However, the position of glycine 202 within a loop in the structure of glucocerebrosi-

dase prevents the mutated residue from strongly clashing with other residues in the protein,

and the predicted ΔΔG is in fact negative. In the ADDRESS dataset, benign glycine to arginine

mutations are shifted towards more negative ΔΔG relative to pathogenic ones (Fig 4A), and

the probability of pathogenicity for a stabilizing mutation is 0.69 vs. 0.91 for a destabilizing

mutation, indicating that the small ΔΔG value for G202R causes the mutation to more likely be

benign. Notably, G to R mutations exhibit a wide range of ΔΔG values, with many predicted

highly destabilizing (predominantly pathogenic) mutations, as well as many predicted stabiliz-

ing (predominantly benign) ones. The EvoEF optimized structure predicts in fact that G202R

is highly solvent exposed. Interestingly, two arginine residues, including the mutated residue,

are in close vicinity, such that ΔΔG may be more positive than predicted.

Kinetic model of folding in the Endoplasmic Reticulum

To establish whether the dependence of drug responsiveness on the number of inverse parallel

relations could be explained by kinetics of the folding and interaction system, we constructed a

simple kinetic model. Referencing Fig 3B and 3C, residues that fold early in the folding process

are expected to have a large number of contacts in inverse parallel relation. According to the

two-state folding model [46,47], mutation of such early folding residues is expected to change

Table 2. Structural properties of Gaucher disease mutations.

EvoEF ΔΔG (kcal/mol) Binds ligand Number of contacts Catalytic domain P-1 relations

N370S 0.28 No 3 Yes 183

L444P 1.96 no 2 No 43

G202R -1.00 No 2 Yes 219

F213I 1.05 No 5 Yes 219

R120W 2.18 No 10 Yes 145

N188S 0.42 No 2 Yes 208

D409H 0.55 No 2 Yes 79

https://doi.org/10.1371/journal.pcbi.1009370.t002

Fig 4. Glycine to arginine mutation statistics and predicted structure. (A) Histograms of ΔΔG (kcal/mol) from the

ADDRESS database for glycine to arginine mutations. T-test p-value = 2x10-10. (B) EvoEF optimized structure for the

G202R mutation (using the BuildMutant command within EvoEF).

https://doi.org/10.1371/journal.pcbi.1009370.g004
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the folding rate, rather than the unfolding rate. Intuitively, we might expect that mutations

that speed the unfolding rate (i.e., with few inverse parallel relations) could be more easily res-

cuable by stabilizing molecules that bind to the folded state. This would be consistent with the

results of the decision tree in Fig 3, which predicts responsiveness for few numbers of parallel

relations but non-responsiveness for large numbers of parallel relations.

A kinetic model quantifying this argument is shown in Fig 5. Unfolded protein, U, is pro-

duced on polyribosomes and enters the Endoplasmic Reticulum (ER). The protein folds to

state F with rate kf, or is degraded at rate kp. From the folded state, the protein may unfold

back to state U with rate ku. It may also bind the pharmacological chaperone ligand with rate

konL, or it may be exported from the ER with rate kout to state E. From the chaperone-bound

state FB, the protein may dissociate from the chaperone and re-enter state F, or it may also be

exported to state E. Steady-state results for parameter values given in the methods section,

according to Eqs 1–3, are shown in Fig 5B, for mutations destabilizing the protein by speeding

the unfolding rate (blue, cyan) or slowing the folding rate (red, magenta). Mutations that

speed the unfolding rate are seen to be more responsive to treatment for a given ΔΔG value.

While in actuality, mutations are likely to have fractional phi values, affecting both folding and

unfolding rates to some extent, and the protein is likely to have multi-state folding properties,

this model suggests that the dependence on number of inverse parallel relations may be

explainable by protein folding propensities. While it is possible that additional biophysical fac-

tors contribute to the trend of circuit-topology-dependent responsiveness, it is interesting that

both a kinetic model based on a reasonable model of enzyme supply to the lysosome and the

observation that large numbers of inverse parallel relations decrease the chance of responsive-

ness are consistent with a picture in which speeding of the unfolding process is more likely to

be rescued by pharmacological chaperone treatment than slowing of the folding process, for

equivalent ΔΔG.

F ¼
kf P

kp þ kf
ku þ kon þ kout �

kf ku
kp þ kf

�
koff kon

koff þ kout

 !

ð1Þ

FB ¼
konF

koff þ kout
ð2Þ

dE
dt
¼ kout F þ FBð Þ ð3Þ

Fig 5. Kinetic model of ER folding and export, with and without pharmacological chaperone (PC). (A) The kinetic

model, including unfolded state, U, folded state F, folded state bound to chaperone FB, and protein exported from the

ER E. P is the rate of production of unfolded protein, kf is the folding rate, ku is the unfolding rate, konL is the rate of

chaperone binding, koff is the rate of dissociation of protein and chaperone, and kout is the rate of export. (B) Steady

state solutions for rate of export, dE
dt , for mutations affecting the folding or unfolding rate, with or without

pharmacological chaperone (PC) treatment.

https://doi.org/10.1371/journal.pcbi.1009370.g005
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Machine learning of responsiveness to pharmacological chaperone

treatment

Machine learning was carried out using the Auto-ML capability of h2o. For the Fabry dataset,

the best performing model was an ensemble of methods, while for the Pompe dataset it was an

XGBoost method (S2 Table). Cross-validation AUC was high in both cases: 0.829 and 0.881,

respectively (Table 3). The MCC on the same dataset (assessing performance on the cross-vali-

dated data of the entire collection of mutations) was 0.839 for Fabry and 0.712 for Pompe. In

addition to cross validation on the same dataset, we obtained the MCC using the other dataset

as the test set. (i.e., training on the Fabry dataset and testing non the Pompe dataset, or training

on the Pompe dataset and testing on the Fabry dataset). The MCC for the performance of the

Fabry-trained model on the Pompe dataset was 0.609, while the MCC of the Pompe-trained

dataset on the Fabry data is substantially lower (0.282), likely because of a smaller amount of

training data that does not encompass the full feature space of the Fabry dataset.

We predicted drug responsiveness for Gaucher disease variants based on the other two

datasets. 105 of 203 mutations were predicted by both methods to be responsive to treatment,

and 47 were predicted as non-responsive by both methods, with an MCC comparing the pre-

dictions of the two methods on the Gaucher dataset of 0.455. The prevalent mutation N370S

was predicted to be responsive to treatment by both the Fabry and Pompe dataset based meth-

ods, as was G202R. L444P, which is known to be more difficult to treat via pharmacological

chaperones [24], was predicted as non-responsive by the Fabry based method and responsive

by the Pompe based method (although it had the lowest p1 of the three mutations, see

Table 1). Complete predictions are given in S3 Table.

In general, based on our statistics and properties of the training data and models, we might

expect the machine learning (H2O) results based on the Fabry dataset to yield the highest accu-

racy results. We in fact see better performance of the Fabry machine learning model on the

additional Ambroxol responsiveness variants (last four mutations, Table 1). Of the two muta-

tions incorrectly predicted, D409H had a relatively low p1 value. R120W, however, was shown

experimentally to be responsive to Ambroxol despite a very low p1. Table 2 shows that this var-

iant has several properties predicted to increase the propensity to be non-responsive to treat-

ment, including a ΔΔG of greater than 1.7 kcal/mol and a large number of contacts involving

the mutated residue. It could be informative to study this mutant in further detail using

computational and/or experimental methods. The larger dataset of Fabry disease, combined

with the sophisticated machine learning method, yields increased performance over the other

methods described.

A molecular dynamics study [29] reported that glycine residues in particular had lower

residual activity than might be expected based on RMSF, in relation to other residues. Glycine

in general may be expected to have high flexibility, due to the large amount of torsional acces-

sibility in the Ramachandran map relative to other residues; in addition, referencing our work

summarizing mutations in 70,597 proteins [3], and as also seen previously [48], mutations

from glycine to other residues tend to be pathogenic more often than mutations from most

other residues (see S3 Fig), which could be a reason for the observed anomalous behavior of

glycine mutations.

Table 3. Results of cross validation incorporating H2O Auto-ML.

Dataset AUC same MCC same MCC other

Fabry 0.829 0.734 0.609

Pompe 0.881 0.712 0.282

https://doi.org/10.1371/journal.pcbi.1009370.t003
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Discussion

Pharmacological chaperone treatment has been explored in the case of several diseases

[9,10,21], with much of the focus centering on certain lysosomal storage disorders. For such dis-

orders, the small molecule chaperone helps to stabilize destabilized but still potentially enzymat-

ically active variants of an enzyme. In drug-amenable proteins, key residues for catalytic activity

are intact, while the variants affect the stability of folding. Prediction of which variants are ame-

nable to such treatment has similarities to the prediction of pathogenicity, and factors such as

excessive destabilization and ligand-contact, which contribute towards pathogenicity, tend also

to contribute towards lack of rescue. However, the range of these values across variants is intrin-

sically shortened in the case of chaperone responsiveness, since all mutations are pathogenic.

It was suggested that the L444P variant was non-responsive to treatment due to its location in

a domain other than the one containing the active site which is bound by the drug [24]. However,

referencing the Fabry dataset [15], we see that mutations in residues not contained in the active

site domain are often responsive to pharmacological chaperone treatment. The leucine to proline

mutation type generally has a strong bias towards pathogenicity [3]. Therefore, the mutation type

and stability change of the L444P mutation may be the source of pathogenicity, rather than (or in

addition to) domain location. Considering these factors, it may be useful to test for responsiveness

of other mutants in the non-catalytic domain of glucocerebrosidase. For instance, R463C, which

comes in contact with the catalytic domain, is predicted to be responsive to treatment.

We note that our machine learning approach does not explicitly account for amino acid

change propensities in ADDRESS [3]; these may be considered in addition to the given predic-

tions. For instance, although arginine to cysteine mutations are most often pathogenic, these

mutations are common and are benign in many cases. In fact, in the case of Fabry disease, sev-

eral arginine to cysteine mutations show residual basal activity and responsiveness to pharma-

cological chaperone treatment [13]. Since similar propensities that cause a mutation to be

pathogenic also cause it to be non-responsive to treatment (e.g., strong destabilization), a

transfer learning approach, utilizing data on pathogenicity may be applicable.

It is interesting that the G202R mutation, which is known to be rescuable by pharmacological

chaperone treatment, is predicted to stabilize, rather than destabilize the protein. Referencing Fig 2,

this is the case for many variants. It is possible that some variants detrimentally affect folding with-

out increasing the locally computed ΔΔG. For instance, a mutation may make the protein more

prone to misfold upon global unfolding. The bound drug would decrease the propensity for

unfolding, reducing the propensity for misfolding and degradation. Kinetics may also be important

[6,49]. A mutation that approximately equally slows unfolding and slows folding may have a patho-

genic effect, for instance, if there is a particular importance of folding (vs. unfolding) rate. Although

variants that are predicted to be especially stabilized are more likely to be non-responsive to treat-

ment, the case of enzymes with ΔΔG predicted as sufficiently stabilizing to drive the prediction of

non-responsiveness is fairly rare across clinically observed disease-causing mutations.

Our results support the key biological insight that kinetics of folding and binding in the cel-

lular environment plays an important role in determining the responsiveness of variants to

pharmacological chaperone treatment in the case of lysosomal storage disorders. Kinetic infor-

mation is contained in circuit topology features derived from the crystal structure; contacts with

many inverse parallel relations are assumed to be early to fold. According to a kinetic model

built to approximate folding and drug binding in the cell, early to fold contacts are more diffi-

cult to rescue. This is consistent with the observation that mutants of residues with a large num-

ber of inverse parallel relations are statistically less likely to be responsive to pharmacological

chaperone treatment. These factors link cellular kinetics and protein topology and demonstrate

that both are likely important in determining drug responsiveness in this system.
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It will be important to assess how results of molecular dynamics [29,50] and monte carlo

simulations (e.g., RMSF or number of native contacts at point of residue unfolding) correlate

with residue-based circuit topology. In the case that they are somewhat redundant, circuit

topology measures might be a quick alternative to more computationally intensive simula-

tions, suitable for analysis of large numbers of proteins at once, and in the case that they pro-

vide unique information, they might serve complementary roles in structure-based analysis.

Our results and models suggest that different systems might depend differently on the num-

bers of relations of a given type, depending on details of the kinetics of the system.

It will be interesting to investigate the transferability of information from these lysosomal

storage disorders, along with larger amounts of information on pathogenicity of human vari-

ants, to the proteins involved in other pharmacological-chaperone-amenable diseases. Predic-

tions on responsiveness of variants can be used when considering whether a treatment may be

effective, as well as for gauging the difficulty of the target when pursuing drug design. While

we have utilized crystallographic structures in this study, NMR structures and computationally

predicted structures and ligand binding sites may also be utilized in future studies of other pro-

teins. Ultimately, protein-centric methods can be extended to other disease types, including

cancers, with the aim of improving precision medicine based treatment decisions and facilitat-

ing drug discovery.

Methods

Datasets and structures

Existing datasets were referenced for response to pharmacological chaperones for Fabry [15]

and Pompe [36] diseases. A list of Gaucher disease variants was obtained from a published arti-

cle [23]. Crystal structures 2V3D (Gaucher [51]), 3GXT (Fabry [52]), and 5NN5 (Pompe [53])

were referenced.

Domain divisions

For 2V3D and 3GXT, Pfam was referenced to determine domain divisions, and the catalytic

domain was identified by visual inspection. For 5NN5, Pfam incorrectly determined domain

divisions. This structure was aligned to the first two structures using TM-align [54], and

domain divisions were determined according to the alignment. The ending residue of the cata-

lytic domain was different for alignment to the two structures, and the average sequence posi-

tion was chosen as the ending point.

Protein free energy change upon mutation

Change in free energy upon mutation, ΔΔG, was estimated using the program EvoEF [37].

The mutant protein was built and refined in EvoEF, following refinement of the WT protein

and subsequent calculation of reference free energy for comparison.

Contact information

Number of residues in contact with the mutated residue was calculated for each residue type

by considering the number of residues forming greater than or equal to five atom-atom pair-

wise contacts of any type within 4.5 Angstroms. Circuit topology relations were calculated

using existing code and methods [38]. For each residue, the number of relations of a given

type with respect to any contact formed by the mutated residue was considered as “local” cir-

cuit topology for that residue.
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PSSM generation

To construct the PSSM, multiple sequence alignments (MSAs) for the query sequence were

first generated by DeepMSA2, which utilizes HHblits [55,56], Jackhmmer [57] and

HMMsearch [58] to iteratively search two whole-genome sequence databases (Uniclust30 [59]

and UniRef90 [60]) and four metagenome sequence databases (Metaclust [61], BFD [62],

Mgnify [63], and IMG/M [64]). DeepMSA2 contains three approaches, dMSA, qMSA, and

mMSA, where the dMSA pipeline is equivalent to the DeepMSA [65] pipeline.

For the dMSA pipeline, HHblits2, Jackhmmer and HMMsearch were used to search the

query against Uniclust30 (version 2017_04), UniRef90 and Metaclust, respectively. In Stage 2

and 3 of dMSA, homologs identified by Jackhmmer and HMMsearch, respectively, were gath-

ered into a custom HHblits format database, which would be searched by HHblits2 using the

MSA input from the previous stage to generate new MSAs. As an extension of dMSA, qMSA

(which stands for “quadruple MSA”) performs HHblits2, Jackhmmer, HHblits3, and

HMMsearch searches against Uniclust30 (version 2020_01), UniRef90, BFD, and Mgnify,

respectively, in four stages. Similar to dMSA Stage 2 and 3, the sequence hits from Jackhmmer,

HHblits3 and HMMsearch in Stage 2, 3 and 4 of qMSA were converted into HHblits format

database, against which the HHblits2 search based on MSA input from the previous stage is

performed. In mMSA (or “multi-level MSA”), the qMSA Stage 3 alignment was used as a

probe by HMMsearch to search through the IMG/M database and the resulting sequence hits

were converted into a sequence database. This mMSA database was then used as the target

database, which was searched by HHblits2 with three seed MSAs (MSA from dMSA stage 2,

qMSA stage 2 and 3), to derive three new MSAs. These steps resulted in 10 MSAs in total (i.e.,

3 from dMSA, 4 from qMSA, and 3 from mMSA), which were scored by TripletRes [66] con-

tact prediction, where the MSA with the highest probabilities for top 10L (L is the sequence

length) all range contacts (Cβ-Cβ distances<8Å) were be selected.

The final MSA from DeepMSA2 is formatted as “a3m” file. This “a3m” format file was first

converted to Blast [67] format database. Then, the query sequence was used to search this data-

base, using PSI-Blast, and finally the PSSM file was generated by PSI-Blast.

Kinetic model

Equations for the kinetic model are given in the main text. Kinetic parameters were chosen as:

P = 0.1, kp = 10, konL = 0.1 (or 0.00001 without chaperone), koff = 0.01 (or 0.00001 without

chaperone), kout = 0.01, ku = 0.01 or ranging from 0.005 to 10 in increments of 0.0005, kf = 10

or ranging from 0.01 to 20 in increments of 0.001, ΔΔG = 4.0963–0.593�ln(kf/ku).

Machine learning

The machine learning feature set consisted of the type of residues mutated from and to

(employing one-hot encoding), the number of residues of each type in contact with the

mutated residue, the crystallographic B-factor of the alpha carbon, the EvoEF-predicted ΔΔG

of mutation, whether each residue was within 5 Angstroms of the active site ligand, and the

deep-Multiple-Sequence-Alignment PSSM data for a given residue.

AutoML was performed using the program h2o, with 10-fold cross validation, using default

options, and a maximum runtime of 500 seconds.
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