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Abstract

In this article, we report 3D structure prediction results by two of our best server

groups (“Zhang-Server” and “QUARK”) in CASP14. These two servers were built

based on the D-I-TASSER and D-QUARK algorithms, which integrated four newly

developed components into the classical protein folding pipelines, I-TASSER and

QUARK, respectively. The new components include: (a) a new multiple sequence

alignment (MSA) collection tool, DeepMSA2, which is extended from the DeepMSA

program; (b) a contact-based domain boundary prediction algorithm, FUpred, to

detect protein domain boundaries; (c) a residual convolutional neural network-based

method, DeepPotential, to predict multiple spatial restraints by co-evolutionary fea-

tures derived from the MSA; and (d) optimized spatial restraint energy potentials to

guide the structure assembly simulations. For 37 FM targets, the average TM-scores

of the first models produced by D-I-TASSER and D-QUARK were 96% and 112%

higher than those constructed by I-TASSER and QUARK, respectively. The data anal-

ysis indicates noticeable improvements produced by each of the four new compo-

nents, especially for the newly added spatial restraints from DeepPotential and the

well-tuned force field that combines spatial restraints, threading templates, and

generic knowledge-based potentials. However, challenges still exist in the current

pipelines. These include difficulties in modeling multi-domain proteins due to low

accuracy in inter-domain distance prediction and modeling protein domains from

oligomer complexes, as the co-evolutionary analysis cannot distinguish inter-chain

and intra-chain distances. Specifically tuning the deep learning-based predictors for

multi-domain targets and protein complexes may be helpful to address these issues.
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1 | INTRODUCTION

Despite significant effort and achievement in the field of protein 3D

structure prediction, it has remained a central unsolved problem in

computational biology. Based on whether homologous template struc-

tures from the PDB library are used in the prediction, the computa-

tional methods that aim to solve this problem can be categorized as

template-based modeling (TBM) or template-free modeling (FM). In

previous Critical Assessment of Protein Structure Prediction (CASP)

experiments,1-4 two major pipelines, “Zhang-Server” and “QUARK”Wei Zheng, Yang Li, and Chengxin Zhang contributed equally to this work.
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were developed by our group. The first version of the “Zhang-Server”
pipeline was based on the I-TASSER algorithm, which is a TBM

method that constructs models by first identifying homologous tem-

plate structures through alignment of the query sequence to the

structures (i.e., “threading”) and then assembling those template struc-

tures into the full-length model using Replica Exchange Monte Carlo

(REMC) simulations.5-7 The earlier version of the “QUARK” server

was based on the QUARK algorithm, which is an FM method that

builds models from scratch by assembling short structural fragments

without using global template structures.8,9 Since their development,

the capabilities of these two pipelines have been consistently

extended by introducing new features and components, most notably,

the introduction of contact maps into the assembly simulations. A

contact has been defined as a pair of residues where the distance

between their Cα or Cβ atoms is ≤8 Å, provided they are separated by

at least five residues in the sequence. Inspired by rapid progress in

residue-residue contact map prediction based on multiple sequence

alignments (MSAs), the predicted contacts from several deep learning

predictors10-13 were integrated into “Zhang-Server” and “QUARK”
through a newly developed contact energy potential,10,14,15 which sig-

nificantly improved the modeling quality for both servers. However,

the model quality quickly approached a ceiling, due to the limited

information provided by binary contact prediction (i.e., it can only tell

whether the distance between the Cβ atoms from two residues is

below 8 Å, without providing the actual distance). Thus, how to use

deep learning predictors to predict more accurate spatial information,

and how to utilize the information to efficiently guide the structural

assembly simulations were two central issues that we wanted to

address after CASP13.

In CASP14, four newly developed components were integrated

into the Zhang-Group servers, which includes “Zhang-Server,”
“QUARK” and the other three newly developed frameworks (“Zhang-
CEthreader,” “Zhang-TBM,” and “Zhang_Ab_Initio”). First, we

extended our iterative MSA construction program, DeepMSA,16 to

DeepMSA2 by adding two additional pipelines, which search large

whole-genome and metagenome databases and a contact-based scor-

ing mechanism to rank MSAs generated by the three MSA pipelines.

Second, a predicted contact-based domain partitioning program,

FUpred,17 was incorporated into the servers in combination with the

previously implemented threading-based domain predictor,

ThreaDom18 to create a more accurate composite domain partition

prediction. Third, a deep residual convolutional neural network-based

predictor, DeepPotential, was developed to predict residue-to-residue

spatial restraints including contact maps, distance maps, inter-residue

orientations, and hydrogen-bond networks. Finally, new log-odds

potentials were designed for implementing these spatial restraint pre-

dictions and were subsequently integrated with the existing I-

TASSER/QUARK energy potentials, including threading-based energy

terms and the inherent knowledge/physics-based potentials, in order

to balance the performance for both TBM targets and FM targets.

With these new developments, the modeling quality of “Zhang-
Server” and “QUARK” has been significantly improved when com-

pared with the pipelines utilized in previous CASPs. The new “Zhang-

Server” and “QUARK” pipelines have been named as D-I-TASSER and

D-QUARK, which represent the new distance-guided aspects of I-

TASSER and QUARK, respectively.

2 | METHODS

2.1 | Overview of the Zhang-Group pipelines used
in CASP14

In CASP14, Zhang-Group had five servers that participated in the ter-

tiary structure prediction category. These servers are “Zhang-Server”
based on the D-I-TASSER algorithm, “QUARK” based on the D-

QUARK algorithm, “Zhang-CEthreader” based on DEthreader,

“Zhang-TBM” based on LOMETS3, and “Zhang_Ab_Initio” based on

the D-QUARK-FM algorithm.

The overall procedures of the protein structure prediction

methods used by the Zhang-Group servers during CASP14 are

depicted in Figure 1. Starting from a query sequence, the domain

boundaries were predicted by FUpred17 and ThreaDom,18 which are

based on the predicted contact maps (for FM targets) and the

threading template coverage (for TBM targets), respectively. Then,

the DeepMSA2 pipeline was used to construct multiple sequence

alignments for the full-length protein and each domain sequence by

iteratively searching genomics and metagenomics sequence data-

bases. The MSA was then passed to DeepPotential to predict geomet-

ric restraints, including contact maps, distances, inter-residue

orientations, and hydrogen-bond networks, for the domain level and

full-length query sequences. These predicted geometric restraints,

along with the DeepMSA2 MSA, were used for template detection by

LOMETS3 for all query sequences, where the domain-level targets

were defined as “Trivial,” “Easy,” “Hard,” or “Very Hard”19 based on

the quality and number of threading alignments detected by

LOMETS3. For the “Zhang-Server,” “Zhang-CEthreader,” and “Zhang-
TBM” servers, the decoy conformations were generated by D-I-

TASSER folding simulations, which is based on a Replica Exchange

Monte Carlo (REMC) simulation guided by the full set of C-I-TASSER

force fields10,15 plus the newly added negative logarithm style dis-

tance, orientation, and hydrogen bond-network energy potentials.

However, the threading templates and spatial restraints used by these

three servers were different (See Section 2.8). For the “QUARK” and

“Zhang_Ab_Initio” servers, the decoys were built from D-QUARK

folding simulations guided by the full set of C-QUARK10,14 energy

potentials plus the distance and orientation energy potentials, similar

to D-I-TASSER. The major difference between “QUARK” and

“Zhang_Ab_Initio” is whether threading-based templates/fragments

are used in the folding simulations (see Section 2.8 and Data S1).

Decoy structures from the REMC simulations are then clustered by

SPICKER20 and refined by FG-MD21 or ModRefiner22 to derive the

full-atom structure models. Lastly, the side-chains of the models are

repacked by FASPR23 to remove steric clashes. For multi-domain pro-

teins, both individual domain structures and a rough full-length struc-

ture are first generated by D-I-TASSER/D-QUARK. The individual
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domain structures are then assembled into the final full-length struc-

ture using a modified DEMO24 protocol that uses the original DEMO

energy function, but instead of using structure templates as a guide

for domain assembly, the previously generated rough full-length

model is used.

2.2 | Multiple sequence alignment construction by
DeepMSA2

Multiple sequence alignments (MSAs) for the query sequence are gen-

erated by DeepMSA2, which utilizes HHblits,25 Jackhmmer,26 and

HMMsearch26 to iteratively search two whole-genome sequence

databases (Uniclust3027 and UniRef9028) and four metagenome

sequence databases (Metaclust,29 BFD,30 Mgnify,31 and IMG/M32)

(see Figure 2(A)). DeepMSA2 contains three approaches, dMSA,

qMSA, and mMSA), where the dMSA pipeline is short for the Deep-

MSA16 pipeline which we used in CASP13.

In the dMSA pipeline, HHblits2, Jackhmmer, and HMMsearch are

used to search the query against Uniclust30 (version 2017_04), Uni-

Ref90, and Metaclust, respectively. In Stages 2 and 3 of dMSA, homo-

logs identified by Jackhmmer and HMMsearch, respectively, are

constructed into a custom HHblits formatted database, which is

searched through by HHblits2 using the MSA input from the previous

stage to generate new MSAs. As an extension of dMSA, qMSA (which

stands for “quadruple MSA”) is composed of four stages that perform

F IGURE 1 An overview of the common procedures shared by the five automated pipelines of Zhang-Group servers in CASP14 (“Zhang-
Server,” “QUARK,” “Zhang-CEthreder,” “Zhang-TBM,” and “Zhang_Ab_Initio”) on target classification, domain splitting, and multi-domain
structure assembly
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HHblits2, Jackhmmer, HHblits3, and HMMsearch searches against

Uniclust30 (version 2020_01), UniRef90, BFD, and Mgnify, respec-

tively. Similar to dMSA Stages 2 and 3, the sequence hits from Jack-

hmmer, HHblits3, and HMMsearch in Stages 2, 3, and 4 of qMSA are

converted into HHblits formatted databases, against which the

HHblits2 search based on the MSA input from the previous stage is

performed. In mMSA (or “multi-level MSA”), the qMSA Stage 3 align-

ment is used as a probe by HMMsearch to search through the IMG/M

database and the resulting sequence hits are converted into a

sequence database. This mMSA database is then used as the target

database, which is searched by HHblits2 with three seed MSAs (MSAs

from dMSA Stage 2 and qMSA Stages 2 and 3), to derive three new

MSAs. These steps result in 10 MSAs in total (i.e., 3 from dMSA,

4 from qMSA, and 3 from mMSA), which are scored by TripletRes12

contact prediction, where the MSA with the highest probabilities for

the top 10L (L is the sequence length) all range contacts (Cβ-Cβ

distances < 8 Å) is selected as the final MSA.

2.3 | Spatial geometric restraint prediction by
DeepPotential

The spatial geometric restraints used in the D-I-TASSER and D-

QUARK folding simulation include contact maps, distances, inter-

residue orientations, and hydrogen-bond networks. These four kinds

of restraints are predicted by DeepPotential, NeBcon,10,13 ResPRE,11

ResTriplet,33 and TripletRes.12 Since the later four are previously

established pipelines for contact map prediction, we only introduce

the newly developed DeepPotential pipeline in this section.

In the DeepPotential pipeline (see Figure 2(B)), a set of

co-evolutionary features are extracted from the MSA obtained by

DeepMSA2. These co-evolutionary features, which are inherently

two-dimensional, include the raw coupling parameters from the

pseudo likelihood maximized (PLM) 22-state Potts model34 and the

raw mutual information (MI) matrix. The 22 states of the Potts model

represent the 20 standard amino acids, the non-standard amino acid

type and the gap state. The corresponding parameters for each resi-

due pair in the PLM and MI matrices are also extracted as additional

features that measure query-specific co-evolutionary information in

an MSA. The field parameters and the self-mutual information are

considered as the one-dimensional features, incorporated with Hid-

den Markov Model (HMM) features. The one-hot representation of

the MSA and other descriptors, such as the number of sequences in

the MSA, are also considered. These one-dimensional features and

two-dimensional features are fed into deep convolutional neural net-

works separately, where each of them goes through a set of one-

dimensional and two-dimensional residual blocks,35 respectively, and

are then tiled together. The feature representations are considered as

the inputs of another fully residual neural network which outputs sev-

eral inter-residue interaction terms. The Cα–Cα contacts, Cβ–Cβ

F IGURE 2 (A) DeepMSA2 pipeline for multiple sequence alignment (MSA) generation, which contains four approaches, dMSA, qMSA, mMSA,
and MSA selection. (B) DeepPotential pipeline for generating spatial geometric restraints, which include contact maps, distances, orientations, and
hydrogen-bond networks. (C) The illustration of the hydrogen-bond definition used in D-I-TASSER and D-QUARK
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contacts, Cα–Cα distances, Cβ–Cβ distances, Cα–Cβ torsional angle

terms, and Cα-based hydrogen-bond network geometry descriptors

between residues are considered as prediction terms. The contact,

distance, orientations, and hydrogen-bond geometry values are dis-

cretized into binary descriptors; using these binary values, the neural

networks were trained using cross-entropy loss. For the Cα–Cα dis-

tances and Cβ–Cβ distances, four thresholds were selected as the

upper range for the distance prediction, including 10, 13, 16, and

20 Å, while for inter-residue orientations and hydrogen-bonds, the

thresholds are 20 and 10 Å.

2.4 | Template detection by LOMETS3

The templates for most of the Zhang-Group servers (except for

“Zhang-CEthreader” and “Zhang_Ab_Initio,” see Section 2.8) were

detected by LOMETS3, an updated meta-threading server based on

LOMETS236 that currently contains six profile-based threading

methods37-42 and five contact-/distance-based methods.43-46 The

MSA generated by DeepMSA2 was used to produce sequence pro-

files (or profile HMMs) for the six profile-based threading methods

and to predict contact maps by DeepPotential for the five contact-

based threading methods in LOMETS3. The running speed of the

contact-based threading methods are much slower than the profile-

based threading methods, due to algorithm design limitations. There-

fore, to speed up the contact-based threading approaches, we isolated

the top 1000 templates identified by HHsearch,39 and then re-ranked

only these templates by the five contact-based threading methods

individually. For proteins that were defined as “Hard” or “Very Hard”
targets by the original LOMETS3 threading methods, the predicted

contacts were used to re-rank the templates identified by the profile-

based threading methods using the contact map overlap score44

(CMO). The final 110 templates (10 templates from each individual

threading method) were used as the initial conformations for the D-I-

TASSER folding simulations.

2.5 | Distance and hydrogen-bond energy
potential

Three kinds of energy potentials based on the predicted spatial

restraints provided by the deep learning predictors, including the dis-

tance energy potential, orientation energy potential,47 and hydrogen-

bond energy potential, were newly implemented with the full set of

C-I-TASSER and C-QUARK force fields to guide the folding simula-

tions in D-I-TASSER and D-QUARK, respectively.

For distances, four upper limit threshold distances were

predicted by DeepPotential, including 10, 13, 16, and 20 Å. Consid-

ering that DeepPotential tends to have a higher confidence for dis-

tance models with shorter distance cutoffs, four sets of distance

(i.e., likelihoods that the true inter-residue distance fall within

predefined distance bins) were generated with distance ranges from

(2, 10), (2, 13), (2, 16), and (2, 20) Å, where the four ranges were

divided into 18, 24, 30, and 38 distance bins, respectively; only the

distance profiles from the lower distance cutoffs were selected, that

is, distances from (2–10) Å were selected from model Set-1, dis-

tances from (10–13) Å from Set-2, (13–16) Å from Set-3, and (16–

20) Å from Set-4. The combined distances were then converted into

a negative logarithm style function used as the distance potential as

described by Equation (1):

Edistance dij
� �¼�log

Pij dij
� �þPNij
2PNij

 !
ð1Þ

Here, for a residue pair (i and j), dij is the distance between i and j,

which follows a predicted probability distribution Pij, where Pij dij
� �

is

the probability that the distance dij is located at, and PNij is the proba-

bility of the last distance bin below the upper threshold (i.e., 10,

13, 16, and 20Å).

The inter-residue orientation definitions are the same as defined

by previous research,47 and the energy potential used by our servers

can be found in Data S1 and Equation (S1).

The hydrogen-bonds6 used in D-I-TASSER are defined as the

inner cross products of two local Cartesian coordinates system

formed by a residue pair i and j (Figure 2(C)). For residue i, three unit

direction vectors, Ai, Bi, and Ci are used to define the local coordinate

system that describes the hydrogen direction. Here Bi is the direction

vector of the plane formed by three neighboring atoms Cαi�1, Cαi,

and Cαi+1, and Ai , Ci are mutually perpendicular vectors located in

the plane. The DeepPotential pipeline predicts the angles between

the corresponding unit vectors of residue i and residue j (i.e., Ai and Aj,

etc.) if the distance between i and j is below 10 Å. The predicted prob-

ability distribution of angles is then converted into an energy potential

with a similar form as the distance energy, where the potential is

described in Equation (2):

EHB θij
� �¼�log

Pij θij
� �þε

PNij þ ε

 !
ð2Þ

where θij is the hydrogen angle between i and j, which follows a

predicted probability distribution Pij, where Pij θij
� �

is the probability

that the angle θij is located at, and ε =1.0�E-04 is a pseudo count

introduced to avoid the logarithm of zero.

2.6 | D-I-TASSER folding pipeline

The “Zhang-Server” pipeline in CASP14 was based on the new pro-

tein folding algorithm, D-I-TASSER, which is an extension of I-TASSER

and C-I-TASSER that integrates deep learning-based distance and

hydrogen-bond networks with iterative threading assembly simula-

tions (see Figure 3(A)).

In the D-I-TASSER pipeline, starting from the query sequence of

the domain-level or full-length protein, an MSA is constructed by

DeepMSA2. The MSA is then passed to LOMETS3 and DeepPotential

for template detection and geometric restraint prediction,
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respectively. Fragments are extracted from the aligned regions of the

template structures and assembled into models using a modified

REMC simulation procedure. A force field, which combines the spatial

restraints obtained from the LOMETS3 templates and deep learning

predictors with the inherent knowledge-based energy terms, is used

to guide the D-I-TASSER structural assembly simulations.

F IGURE 3 (A) D-I-TASSER pipeline, which is an extension of I-TASSER and C-I-TASSER that integrates deep learning-based distance and
hydrogen-bond networks with iterative threading assembly simulations. (B) D-QUARK pipeline, which is an extension of QUARK and C-QUARK
that integrates deep learning-based distance and orientation predictions with replica-exchange Monte Carlo fragment assembly simulations
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Three types of REMC simulations (labeled as “A,” “M,” and “F”)
are run depending on a target's category, that is, “A” keeps all Cα

atoms on a 0.87 Å lattice with the REMC simulations starting from

random conformations; “M” freely rotates and translates fragments

excised from the threading alignments; and “F” keeps the threading-

aligned fragments frozen with changes only to the unaligned regions.

“M” and “F” are implemented only for “Trivial” and “Easy” targets

whose template alignments have a higher confidence. For each pipe-

line, five REMC simulations are performed, where the structural

decoys from eight (or three for “Hard” and “Very Hard” targets) low-

temperature replicas are submitted to SPICKER for structure cluster-

ing and model selection.

The SPICKER clusters are refined at the atomic level using

fragment-guided molecular dynamics (FG-MD) simulations,21 and finally,

the side-chain rotamer structures repacked by FASPR.23 To select

models generated from different pipelines, a set of six model quality

assessment programs (MQAPs), including the D-I-TASSER C-score,15

the satisfaction rate of predicted contact maps, structural consensus

measured by pair-wise TM-score,48,49 and three statistical potentials

(RW, RWplus,50 and Rotas51), are implemented. The final model quality

is determined by a meta-MQAP consensus score, calculated as the sum

of the rank of the six MQAP scores. The top five models with the low-

est consensus MQAP scores are selected for submission. The residue

level quality of these models is estimated by ResQ,52 a Support Vector

Regression-based predictor to predict the deviation of each residue

position in the models from the native residue positions.

2.7 | D-QUARK folding pipeline

The tertiary structure prediction of the “QUARK” server in CASP14 is

based on D-QUARK, an extension of QUARK and C-QUARK, which

integrates deep learning-based distance and orientation predictions

with replica-exchange Monte Carlo fragment assembly simulations

(Figure 3(B)).

In the D-QUARK algorithm, the query sequence is first passed to

DeepMSA2 to construct an MSA, which is then used by

DeepPotential to generate geometric restraints.

Meanwhile, continuous fragments ranging from 1 to 20 residues

are generated by two different approaches. In the “QUARK” server,

all fragments are generated by gapless threading of the query through

the PDB structure library.8 In addition to position-specific local frag-

ments, for “Hard,” “Easy,” and “Trivial” targets, LOMETS3 is utilized

for template detection, which are used to collect restraints and create

initial conformations for the REMC folding simulations.

Three types of REMC simulations (labeled as “QE,” “QN,” and

“QT”) are run depending on a target's category, that is, “QE” runs the
ab initio D-QUARK protocol with initial conformations created from

random fragment connection, without including the LOMETS-based

restraints in the force field. “QN” is similar to “QE” but with the initial

conformations created from the LOMETS templates. “QT” is similar to

“QN” but with LOMETS-based restraints included in the force field.

“QE” is run for Very Hard and Hard targets, “QN” for Hard and Easy

targets, and “QT” for Easy and Trivial targets, respectively. For each

pipeline, five REMC simulations are performed, where the structural

decoys from the 10 lowest-temperature replicas are submitted to

SPICKER20 for structure clustering and model selection. The atomic

model generation step and model selection step of the D-QUARK

algorithm are the same as the D-I-TASSER pipeline, but the models

are first refined by ModRefiner22 before refinement by FG-MD.21

2.8 | Other servers and human groups

In addition to “Zhang-Server” and “QUARK,” there were three other

servers from the Zhang-Group. Among them, the “Zhang-CEthreader”
and “Zhang-TBM” servers used a similar pipeline to D-I-TASSER and

“Zhang_Ab_Initio” used a similar workflow to D-QUARK. For the

“Zhang-CEthreader” server, the threading algorithm was based on

CEthreader44 and DEthreader, instead of using LOMETS3. The

DEthreader algorithm is extended from CEthreader, in which we added

a distance map-based energy term to guide the template search through

dynamic programming. Here, the predicted distance map for a query is

estimated from the DeepPotential residue-residue distance distribution.

For a residue pair (i, j), the central distance value of the bin with the larg-

est predicted probability is used as the estimated distance between resi-

due i and residue j. The “Zhang-TBM” server was based on the

LOMETS3 threading algorithm with a major focus on the threading

components. For example, the contact map-based threading methods

were directly used to scan the whole database instead of a subset (see

LOMETS3 in the Section 2). Because of this strong focus on threading,

the folding simulation of the “Zhang-TBM” sever was run for a shorter

time compared to the “Zhang-Server” pipeline, and the upper threshold

of the predicted distances used for guiding the simulations was 20 Å

instead of combining multiple distance thresholds together. The

“Zhang_Ab_Initio” server focused purely on free modeling, thus only

“QE” simulations without any LOMETS3 information were used; in

addition, the fragments library was only built from L-BFGS, without any

fragments from the PDB database (see Data S1).

Two human groups from the Zhang-Group, “Zhang” and

“DeepPotential,” participated in CASP14. Since “DeepPotential” will

be separately reported in another paper in this special issue,53 this

section mainly introduces “Zhang.” The “Zhang” human group used

essentially the same pipeline as our “Zhang-Server” group, except that
the whole set of structure models generated by the CASP servers,

instead of the in-house LOMETS3 templates, were used as the

starting models of the D-I-TASSER pipeline. In addition, a bug in the

MSA generation pipeline, which affected the first 22 targets for

“Zhang-Server” (and “QUARK”), was identified and corrected in the

Zhang human group.

3 | RESULTS

In the results section, we will mainly focus on two of our best per-

forming server groups, “Zhang-Server” (D-I-TASSER) and “QUARK”
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(D-QUARK), for the analysis since the other three servers and human

groups used similar pipelines. Ninety-one domains from 65 targets

were assessed in this work. Based on the difficulty of modeling, these

91 domains were categorized as 26 “TBM-easy” targets, 28 “TBM-

hard” targets, 14 “FM/TBM” targets, and 23 “FM” targets by the offi-

cial CASP definitions. In the following analysis, we treated “TBM-

easy” and “TBM-hard” targets as TBM targets, while “FM” and “FM/

TBM” targets were treated as FM targets.

3.1 | Overall performance of Zhang-Group servers

Five automatic servers from the Zhang-Group participated in the ter-

tiary structure prediction section of CASP14, the performance of the

first models and the best models among the top five submitted

models of those servers are listed in Table S1. Overall, “Zhang-Server”
(D-I-TASSER) and “QUARK” (D-QUARK) were ranked as the best two

servers, followed by the “Zhang-CEthreader,” “Zhang-TBM,” and

“Zhang_Ab_Initio” servers based on the average TM-scores of the

first models. TM-score is a measure used to assess the global similarity

of a structural model relative to its native structure. The TM-score

ranges between 0 and 1, with TM-scores ≥0.5 indicating that the

structure models have correct global topologies. In CASP14, “Zhang-
Server” utilized a new folding approach, namely, D-I-TASSER, which

takes advantage of the strengths of both threading templates and

sequence-based spatial restraints derived from our deep learning

approach (DeepPotential). D-I-TASSER is an extended pipeline of the

classic template-based I-TASSER algorithm and the contact-associated

C-I-TASSER algorithm, where “Zhang-Server” was based on I-TASSER

before CASP12, and on C-I-TASSER for CASP12 and CASP13. Similar

to “Zhang-Server,” the “QUARK” server utilized the D-QUARK pipe-

line in CASP14, which also combines the restraints from threading

templates and the predicted spatial restraints from deep learning. The

classic fragment-assembly version of QUARK was used before

CASP12 for the “QUARK” server, while the version of C-QUARK

based on predicted contacts from direct coupling analysis (DCA) was

used in CASP12 and predicted contacts from deep learning

approaches was used in CASP13 by the “QUARK” server.
To confirm the effect of implementing the new deep learning-

based spatial restraints, especially for the distance maps, orientations,

and hydrogen-bond networks, into D-I-TASSER and D-QUARK, we

ran C-I-TASSER (I-TASSER) and C-QUARK (QUARK) for each CASP14

target using the same domain partitions and the same set of templates

used by D-I-TASSER and D-QUARK during CASP14. The results of

the head-to-head comparison are shown in Figure 4. For the 54 TBM

targets, the first models of 43 (46) targets obtained by D-I-TASSER

(D-QUARK) were better than the corresponding C-I-TASSER (C-

QUARK) models and 45 (45) targets were better than the

corresponding I-TASSER (QUARK) models. The average TM-score of

the D-I-TASSER (D-QUARK) first models was 0.7757 (0.7694), which

was 9% (8%) better than that of the C-I-TASSER (C-QUARK) models

with a p-value of 1.44E-07 (6.23E-08), and was 13% (11%) better than

that of the I-TASSER (QUARK) models with a p-value of 5.41E-08

(1.55E-07). Interestingly, the improvement from C-I-TASSER to D-I-

TASSER (9%) was larger than that from I-TASSER to C-I-TASSER (3%),

indicating that adding distance and hydrogen-bond prediction infor-

mation can provide more helpful restraints than contact information

for TBM targets. A larger improvement can be observed for the

37 FM targets when compared with the TBM targets. For instance,

the average TM-score of the first models generated by D-I-TASSER

was 0.6055, which was 32% and 96% higher than those of C-I-

TASSER's and I-TASSER's first models (p-value = 8.00E-10 and 5.09E-

11). In particular, 24 FM targets were foldable48 (TM-score > 0.5) by

D-I-TASSER, which was 60% (300%) higher than the number (15 tar-

gets) of targets that were foldable by C-I-TASSER (6 targets by

I-TASSER) (see Table S2 for details). In addition, 24 of the 37 FM tar-

gets were successfully folded by D-QUARK, while C-QUARK

(QUARK) could only fold 11 (2) of the targets. The average TM-score

of D-QUARK's first models was 0.6084 for the 37 FM targets, which

was 49% (112%) higher (with p-value = 1.51E-09 and 8.95E-08) than

that for C-QUARK (QUARK) (see Table S3 for details). These data

show that inclusion of the predicted spatial restraints (especially dis-

tance maps, orientations, and hydrogen-bond networks) from deep

learning can improve the modeling performance, in particular for the

FM targets.

To more specifically examine the contribution from the deep

learning-based distance maps, and hydrogen-bond networks (orienta-

tions) to FM targets in the D-I-TASSER (D-QUARK) pipeline, we com-

pared the historical data of CASP FM targets based on the best

models generated by either the “Zhang-Server” or “QUARK” server

(see Figure S1). Here, pure fragment-assembly-based I-TASSER and

QUARK could only fold 10% (3 of 30) of the FM targets with an aver-

age TM-score of 0.36 in CASP11. With the DCA-based contacts or

deep learning-based contacts added to the C-I-TASSER and C-

QUARK pipelines, 43% and 66% of the FM targets were foldable in

CASP12 and CASP13, respectively. In CASP14, with the further inclu-

sion of residue-residue distance maps, orientations, and hydrogen-

bond networks to D-I-TASSER and D-QUARK, 70% of the 37 FM tar-

gets were foldable, and the average TM-score of the CASP14 FM

targets was 77.8%, 39.1%, and 18.5% better than those from

CASP11-13, respectively. It is remarkable that each time a new fea-

ture is added, the average TM-score can be improved by around 0.1

during the last four CASPs. Figure S2 further summarizes the TM-

scores of the best “Zhang-Server” or “QUARK” models vs the target

lengths in CASP11-14. In CASP11, only two targets with lengths

greater than 100 residues were correctly folded, while in CASP12 and

CASP13, 10 and 25 targets with lengths greater than 100 residues

were foldable through the introduction of residue-residue contact

prediction. It is notable that both C-I-TASSER in CASP13 and D-I-

TASSER in CASP14 could fold more than 20 FM targets. Furthermore,

the quality of the models generated by D-I-TASSER for targets with

lengths ranging from 100 to 300 residues was better than that for C-

I-TASSER. For example, the average TM-score for this length range

was 0.6359 for D-I-TASSER models, which was 12% better than that

of C-I-TASSER models (0.5665). These data demonstrate that inclu-

sion of deep learning predicted distance maps, orientations and
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hydrogen-bond networks is able to improve the modeling quality of

“Zhang-Server” and “QUARK,” especially for the large FM targets.

3.2 | Deep learning-based distance prediction and
interplaying predicted distance restraints and template
information improve the modeling quality

The high accuracy modeling quality of “Zhang-Server” and “QUARK”
may be attributed to the newly added deep learning-based spatial

restraints predicted by DeepPotential, in particular the predicted

residue-residue distance maps.

Figure 5(A) provides a closer look at the impact of residue-residue

distances on the predicted structural models, where the x-axis repre-

sents the mean absolute error between distances derived from experi-

mental structures and predicted distances (MAEn, see definition in

Data S2) for the long-range top 5L distances (L is the length of the

protein) from DeepPotential, and the y-axis represents the quality of

the first models produced by D-I-TASSER (black points) and D-

QUARK (gray points). Here, MAEn represents the predicted distance

error, where the lower the MAEn value is, the better the distance pre-

diction from DeepPotential is. Figure 5(A) shows a strong correlation

between the quality of predicted structural models from D-I-TASSER

(D-QUARK) and the MAEn values, as the Pearson correlation coeffi-

cient (PCC) is �0.72 (�0.73). It is remarkable that 96% (96%) of the

targets were foldable by D-I-TASSER (D-QUARK) when the predicted

distance error MAEn was less than 2 Å. Another key factor for produc-

ing successful models is whether D-I-TASSER (D-QUARK) simulations

can generate models that fit the DeepPotential predicted distances,

that is, whether the newly added distance energy potential can guide

the models to fold towards the conformation that fits well with the

DeepPotential predicted distances. Figure 5(B) summarizes the rela-

tionship between the model quality of D-I-TASSER (D-QUARK) and

the model fitting error, MAEm, which is defined as the mean absolute

F IGURE 4 Head-to-head comparisons between (A) D-I-TASSER and I-TASSER, (B) D-QUARK and QUARK, (C) D-I-TASSER and C-I-TASSER,
(D) D-QUARK and C-QUARK. C-I-TASSER, I-TASSER, C-QUARK, and QUARK were run using the same domain partitions and the same set of
templates used by D-I-TASSER and D-QUARK during CASP14
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F IGURE 5 (A) The relationship between the model quality of D-I-TASSER/D-QUARK and MAEn, which represents the mean absolute error
between distances derived from the experimental structures and predicted distances for the long-range top 5L distances (L is the length of the
protein) from DeepPotential. (B) The relationship between the model quality of D-I-TASSER/D-QUARK and MAEm, which is defined as the mean
absolute error between the distances calculated from the model and predicted distances for the long-range top 5L distances from DeepPotential.
(C) The experimental structure of T1094-D2. (D) The superposition between the experimental structure and the best template (PDB ID: 4bj1A)
identified by LOMETS3 for T1094-D2. (E) The residue-residue distance map prediction for T1094-D2, where the predicted distance map is
shown in the upper triangle matrix and the distance map derived from the experimental structure is shown in the lower triangle matrix. The D-I-
TASSER and D-QUARK models (F), the C-I-TASSER and C-QUARK models (G) and the I-TASSER and QUARK models (H) of T1094-D2
superposed with the experimental structure. (I) The experimental structure of T1026-D1. (J) The D-I-TASSER and D-QUARK models of

T1026-D1 superposed with the experimental structure. (K) The residue-residue distance map for T1026-D1, where the predicted distance map is
shown in the upper triangle matrix and distance map calculated from the experimental structure is shown in the lower triangle matrix. (L) The
superposition of the experimental structure and the high-quality templates identified by LOMETS3 for T1026-D1. (M) The D-I-TASSER and D-
QUARK models for T1026-D1 after excluding good templates superposed with the experimental structure
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error between distances calculated from the models and the predicted

distances for the long-range top 5L distances from DeepPotential (see

Data S2 for details). In general, a better fit (i.e., lower MAEm values)

resulted in better model quality, where the PCC was �0.68 (�0.67)

between the model quality and MAEm value, and similar with Figure 5

(A), when the fitting error was lower than 2 Å, 88% (88%) of targets

were foldable by D-I-TASSER (D-QUARK).

It is clear that the high accuracy of predicted distances from

DeepPotential lead to better final model quality. For example,

T1094-D2, is an FM target that contained 207 residues. It is an α + β

protein with 11 α-helices and 7 β-strands (Figure 5(C)). The best tem-

plate (PDB ID: 4bj1A) identified by LOMETS3 had a low TM-score of

0.18 (Figure 5(D)), indicating that this target is very difficult to model

solely based on the information from threading templates. However,

the residue-residue distance map prediction was very accurate for this

target (Figure 5(E), the predicted distance map is shown in the upper

triangle matrix and the distance map derived from the experimental

structure is shown in the lower triangle matrix), where the MAEn by

DeepPotential was 0.96 Å. The D-I-TASSER (D-QUARK) model fit to

the predicted distance map very well, as the MAEm was 0.52 Å

(0.54 Å). As a result, the D-I-TASSER (D-QUARK) model (Figure 5(F))

achieved a very high TM-score of 0.91 (0.91). To demonstrate that

the predicted distances were critical for successfully folding this tar-

get, we also predicted the structure of this target using C-I-TASSER

(C-QUARK) and I-TASSER (QUARK), with the same set of contact pre-

dictions and templates utilized in CASP14. As a result, the first models

generated by C-I-TASSER (C-QUARK) only had a TM-score of 0.71

(0.70) (Figure 5(G)), while I-TASSER (QUARK) had a TM-score of 0.26

(0.16) (Figure 5(H)). This target demonstrates the importance of

predicted distances from deep learning, especially when good tem-

plates are not detected.

Even though deep learning-based distance prediction is a criti-

cal feature for generating successful predicted models, template

information from LOMETS3 is still a very important factor, espe-

cially for TBM targets. For example, T1026-D1, is a β-protein that

contains 146 residues that form 8 β-strands (Figure 5(I)). D-I-

TASSER (D-QUARK) folded this target where the final model had a

TM-score of 0.78 (0.75) (Figure 5(J)). The successful models pro-

duced by D-I-TASSER and D-QUARK were not due to the

predicted distances, since the MAEn of this target was 3.2 Å. As

shown in Figure 5(K), the predicted distance map generated by

DeepPotential (upper triangle) was obviously different from the

distance map derived from the experimental structure (lower trian-

gle). The low accuracy of the predicted distance map for this target

was mainly due to poor MSA quality, as the number of detected

homologous sequences was 22 and the number of effective

sequences (Neff, see definition in Data S3) was 0.8. Although it

was a relatively hard target for deep learning methods to generate

correct distance predictions, T1026-D1 was defined as an “Easy”
target by LOMETS3. As a result, 20 good templates48 (TM-scor-

e > 0.5) were detected and the best template (PDB ID: 6f2sH) had

a TM-score of 0.71 (Figure 5(L)). The I-TASSER (QUARK) model,

which depends mainly on the templates, had a TM-score of 0.761

(0.765). Thus, the success of D-I-TASSER (D-QUARK) for this tar-

get was mainly from the template contributions identified by

LOMETS3. To investigate the influence of LOMETS3 template

quality on T1026-D1 modeling, we ran two control tests for this

target after CASP14. For the first test, we excluded all 20 good

templates and utilized the same predicted distances from

DeepPotential that were used in CASP14 by D-I-TASSER. For the

second test, we ran the D-QUARK pure ab initio folding approach

without using any LOMETS3 templates. The purpose of these two

tests is to remove the influence of the high-quality templates, and

primarily use the predicted distances to guide the simulations. As a

result, D-I-TASSER and D-QUARK could only fold this target with

TM-scores of 0.43 and 0.41 (Figure 5(M)), respectively. These

results suggest that the identification of good templates is still an

important component for protein structure prediction when the

deep learning predicted distances are not accurate.

We noticed that for two TBM targets, T1030-D1 and T1030-D2,

the accuracies (MAEn = 16.3 Å and MAEn = 9.6 Å) of the predicted

distances from DeepPotential were much worse than the rest of the

TBM targets (MAEn < 3.3 Å). This was because “Zhang-Server” (D-I-

TASSER) and “QUARK” (D-QUARK) server had an issue when running

DeepMSA2 to generate the MSA for target T1030. The failed MSA

also affected LOMETS3 (see Section 2 for LOMETS3), and thus all of

the detected templates were incorrect. This made both “Zhang-
Server” and “QUARK” fail for these two targets, as the TM-scores of

the first models by D-I-TASSER and D-QUARK for T1030-D1 were

0.27 and 0.26, and for T1030-D2 they were 0.40 and 0.32. After

CASP14, we re-ran D-I-TASSER (D-QUARK) for target T1030 using

the correctly generated MSA by DeepMSA2 (Figure S3), where the

models for T1030-D1 and T1030-D2 generated by D-I-TASSER (D-

QUARK) achieved TM-scores of 0.66 (0.64) and 0.69 (0.62).

The data shown in Figure 5 demonstrate that the predicted dis-

tances from deep learning are a key factor for generating correct

models, and template information is also still a very important compo-

nent of D-I-TASSER and D-QUARK. Furthermore, the two cases for

T1094-D2 and T1026-D1, highlight the careful balance of the contri-

butions from templates and predicted distances, which is a major rea-

son why D-I-TASSER and D-QUARK achieved good results in both

TBM and FM target modeling.

3.3 | Deeper MSA construction improves the
modeling quality

The high accuracy of predicted residue-residue distances used in

“Zhang-Server” and “QUARK” may be attributed to the newly added

deep learning-based spatial restraint prediction method,

DeepPotential. The features of DeepPotential are derived from the

co-evolutionary information obtained from multiple sequence align-

ments (MSA) of homologous proteins. Hence, a sufficient number of

homologous sequences is critical to ensure the accuracy of predicted

distances, and to further ensure the quality of 3D structure construc-

tion. In CASP14, we utilized a new MSA construction method,
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DeepMSA2, which is an extension of DeepMSA, to collect homolo-

gous sequences from several metagenomics databases. To examine

the influence of DeepMSA2 on the distance prediction and tertiary

structure prediction, we ran a control test after CASP14. In the con-

trol test, we re-ran D-I-TASSER and D-QUARK using MSAs from the

DeepMSA pipeline as input and used the same version of the tem-

plate library that was used during CASP14. To make a fair comparison,

we corrected the modeling results for T1030-D1 and T1030-D2 by

DeepMSA2, which was mentioned in Section 3.2.

Table S4 summarizes the information from MSAs generated by

DeepMSA2 and DeepMSA for the 91 CASP14 targets. In general,

DeepMSA2 detected more homologs than DeepMSA for both TBM

and FM targets. For TBM and FM targets, the number of effective

sequences (Neff ) increased 40% and 150%, respectively, when utiliz-

ing DeepMSA2. These data indicate DeepMSA2 can generate

“deeper” MSAs than the former MSA collection pipeline. To check the

influence of DeepMSA2 on distance prediction, we made a head-to-

head comparison of predicted distance errors (MAEn) using MSAs

from DeepMSA2 or DeepMSA as input, which is shown in Figure 6

(A). By utilizing DeepMSA2 MSAs, the MAEn of the predicted dis-

tances for 62 targets was improved. Particularly for the 37 FM targets,

the error of the predicted distances (average MAEn = 2.1 Å) from

DeepPotential starting from MSAs generated by DeepMSA2 was sig-

nificantly lower than that (average MAEn = 3.2 Å) obtained by starting

from MSAs generated by DeepMSA, with a p-value of 4.88E-06 (see

detailed data in Table S5). These results indicate the MSAs from

DeepMSA2 can improve the accuracy of predicted distances

from DeepPotential.

To further investigate the impact of DeepMSA2 on protein struc-

ture prediction, we show the comparison of the first models gener-

ated by D-I-TASSER (D-QUARK) which used the MSAs from

DeepMSA2 and DeepMSA as input, respectively, in Figure 6(B)

(Figure 6(C)). For D-I-TASSER (D-QUARK), the model quality of

68 (76) targets was improved after using DeepMSA2. Especially for

the FM targets, the average TM-score of D-I-TASSER (D-QUARK)

models increased from 0.4842 (0.4751) to 0.6055 (0.6084). Such sig-

nificant (p-value = 3.71E-06 and 1.86E-06) improvement for FM tar-

gets is understandable, because the accuracy of distance prediction

from deep learning is more important for FM targets where threading

templates are not reliable. Thus, the quality of the MSAs has a larger

effect on the structure prediction for FM targets. The detailed data

can be found in Table S6 (for D-I-TASSER) and Table S7 (for D-

QUARK). Figure 6(D) lists 12 FM targets, including T1031-D1,

T1035-D1, T1037-D1, T1042-D1, T1053-D2, T1082-D1, T1090-D1,

T1093-D1, T1093-D3, T1094-D2, T1096-D1, and T1096-D2, where

the TM-score differences of D-I-TASSER (D-QUARK) models were

over 0.05 when using different MSA pipelines.

In summary, the newly developed MSA generation pipeline,

DeepMSA2, can generate “deeper” MSAs when compared with our

CASP13 MSA collection algorithm (DeepMSA). The better quality of

the MSAs can help DeepPotential produce more reliable distance pre-

diction, which can further result in more accurate protein structure

prediction, especially for FM targets.

3.4 | Domain boundary prediction and domain
assembly effect structure prediction quality

The domain partitioning and domain assembly procedures remain

important factors that affect the structure modeling quality. In

CASP14, 19 multi-domain targets were released, and we assessed the

domain partition results for 17 of these targets whose experimental

structures are available. In the Zhang-Group server pipelines, the

domain partitions for multi-domain targets was based on ThreaDom

and FUpred, where ThreaDom split domains depending on threading

alignment coverage and FUpred predicted the domain boundaries

based on contact maps from deep learning (Figure 1). FUpred is a

newly added domain boundary predictor and achieved state-of-the-

art performance on discontinuous domain boundary detection.17

Table S8 lists a comparison of the Zhang-Group domain boundary

predictions and actual domain splits based on the experimental struc-

tures. Here, the normalized domain overlap score54 (NDO-score)

implemented in the former CASP assessment was utilized to assess

the domain boundary prediction accuracy. The NDO-score evaluates

the overlap between the predicted domain regions and the true

domain regions. On average, the NDO-score was 0.865 for the

17 multi-domain targets. Compared with the value for CASP13 tar-

gets10 generated by ThreaDom solely, the NDO-score increased 17%.

In particular for the targets containing discontinuous domains, the

NDO-score increased 34%. Using the new domain partition pipeline,

the performance of boundary prediction for discontinuous domain

targets was slightly lower than that for continuous domain targets, as

the NDO-score was 0.82 for discontinuous domains and 0.90 for con-

tinuous domains. In contrast, the value for discontinuous domains was

much lower than that from continuous domains in CASP1310 (0.61

vs. 0.79).

Here we took T1094 as an example to illustrate that the correct

domain partition and assembly will lead to correct domain-level and

full-length models. T1094 was a 496-residue protein that contained

two domains. The first domain, T1094-D1 was a discontinuous

domain with two fragments 1–126 and 334–484, and the second

domain, T1094-D2 was a continuous domain starting from residue

127 to 333 (Figure 7(A)). FUpred correctly predicted T1094 as a two

domain protein and gave a relatively accurate domain boundary (1–

143, 298–496, and 144–297) with an NDO-score of 0.76 (Figure 7

(B)). As a result, D-I-TASSER (D-QUARK) generated models for these

two targets with TM-scores of 0.64 (0.63) and 0.91 (0.91) even

though these two targets were FM targets (Figure 7(C)). Furthermore,

the relatively good inter-domain distance prediction from

DeepPotential (Figure 7(D)) led to a high quality rough full-length ref-

erence model (TM-score = 0.71) from D-I-TASSER. Finally, the two

domain-level models were assembled by DEMO using the reference

rough full-length model as the template, and the final assembled full-

length model (Figure 7(E)) from D-I-TASSER (D-QUARK) for T1094

had a very good quality with a TM-score of 0.74 (0.73).

On the other hand, the wrong domain partition and assembly can

result in poor structure modeling quality. For example, T1061 con-

tained three domains, T1061-D1, T1061-D2, and T1061-D3
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F IGURE 6 (A) The head-to-head comparison of predicted distance errors (MAEn) between MSAs from DeepMSA2 and DeepMSA. (B) The
head-to-head comparison of the model quality generated by D-I-TASSER between MSAs from DeepMSA2 and DeepMSA. (C) The head-to-head
comparison of the model quality generated by D-QUARK between MSAs from DeepMSA2 and DeepMSA. (D) 12 FM targets, where the TM-
score differences of the D-I-TASSER (D-QUARK) models were over 0.05 when using different MSA pipelines

1746 ZHENG ET AL.



(Figure S4A), where the first domain T1061-D1 was a discontinuous

domain with two fragments from residues 1–170 and 442–735. How-

ever, ThreaDom and FUpred predicted T1061 to be a five-domain pro-

tein with boundaries “1–170; 160–455; 445–580; 570–735; 725–838”
(Figure S4B). That is, T1061-D1was divided into three fragments in our

domain partition (here, we name these three fragments as

“T1061-D1_f1,” “T1061-D1_f1,” and “T1061-D1_f3”). For these three

fragments, D-I-TASSER generated all correct foldable models with TM-

scores of 0.76, 0.67, and 0.74, respectively (Figure S4C). However, the

distances among these three fragments from the full-length sequences

were not accurate, which resulted in the wrong orientation in the final

assembled model by DEMO. Thus, the D-I-TASSER model for

T1061-D1 only had a TM-score of 0.45 (Figure S4(D)).

In summary, the domain partitioning and domain assembly

largely affect the structure modeling quality, particularly for the full-

length models. In Table S8, we also summarized the TM-scores of

the full-length models for each target and the average TM-score of

the component domains of each target. The D-I-TASSER and D-

QUARK model quality for full-length targets (TM-score = 0.583 or

0.586) was considerably worse than the domain-level model quality

(TM-score = 0.733 or 0.733). Here, full-length model quality

depends on the accuracy of predicted inter-domain distances. How-

ever, the number of inter-domain distances (<20 Å) was much less

than that of intra-domain distances, resulting in the difficulty in the

training procedure for deep learning. This is why the current results

for full-length modeling were worse than domain-level modeling.

Thus, designing a deep learning predictor (i.e., enlarging the weights

for inter-domain distances in the loss function) that specifically opti-

mizes the accuracy of inter-domain distances could be one solution

to solve this issue.

F IGURE 7 (A) The experimental structure and domain partition for T1094. (B) The illustration of predicted domain boundaries by FUpred
based on the DeepPotential contact map. (C) The D-I-TASSER and D-QUARK models for two domains of T1094 superposed with the
experimental structures. (D) The residue-residue distance map predicted from DeepPotential (upper triangle) and the distance map calculated
from the experimental structure (lower triangle) for T1094. (E) The D-I-TASSER and D-QUARK full-length models of T1094 superposed with the
experimental structures
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3.5 | Problems with modeling proteins from
oligomers or complex structures

As we mentioned in Section 3.3, the targets, especially FM targets,

with better MSA quality usually result in better structure models.

Hence, we analyzed the relationship between the MSA Neff values

and TM-scores of the final D-I-TASSER (D-QUARK) models for the

37 FM targets. As shown in Figure S5, the final model TM-scores

were positively correlated with the MSA Neff values. We noticed that

five targets had low TM-scores (TM-score < 0.5), although most of

the targets with Neff > 8 were foldable by D-I-TASSER (D-QUARK).

Among those five targets, T1061-D1 had a low TM-score mainly due

to the domain partition and assembly problem as we discussed in Sec-

tion 3.4, T1029-D1 had good local fragment packing but wrong N-

terminal and C-terminal orientations because of the sparse MSA in

the terminal regions (see Figure S6), while the remaining three targets

were all from protein complexes or oligomers. The failure of modeling

these three targets is because the deep learning distance predictor

cannot correctly deal with the inter-chain distances and intra-chain

distances from complexes or oligomers. Here, we used T1070-D1 as

an example to explain the issue of the current pipeline in modeling

proteins from oligomer complexes.

F IGURE 8 (A) Three copies (named here as chain A, B, and C) of the same monomer protein of T1070-D1 form a symmetric oligomer

complex. (B) The D-I-TASSER model of T1070-D1 superposed with the experimental structure. (C) The local segments of β-strands S5 and S6
from the D-I-TASSER model and the T1070-D1 oligomer structure. (D) The predicted distance map by DeepPotential and the distance map
calculated from the T1070-D1 oligomer complex. The bottom left and upper right matrices are two intra-chain distance maps for two T1070-D1
monomer copies, chains A and B, respectively, where the two upper triangle matrices are the predicted distance maps and the lower triangle
matrices are derived from the experimental oligomer structures. The bottom right matrix is the inter-chain distance map formed by chains A
and B, which was calculated from the T1070-D1 oligomer complex. (E) The illustration of the intra-chain and inter-chain distances between
residue 39 and residue 54 in the experimental structure and the D-I-TASSER model
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T1070-D1, was a β-protein that contained 79 residues that

formed eight β-strands, where three copies (named here as chain A, B,

and C) of the same monomer protein formed a symmetric oligomer

complex, similar to a triple helix (Figure 8(A)). In monomer T1070-D1,

the last three β-strands (S6, S7, and S8) formed an anti-parallel

β-sheet, while the other five strands (S1–S5) formed a parallel β-sheet

with the other strands from the symmetric copies. For example, the

strands S1 from chain B, S2 from chain A, and S3 from chain C formed

one parallel β-sheet as shown in Figure 8(A). The topology adopted by

T1070-D1 is very different from the generally existing monomer

structures, which often form local secondary structure segments by

intra-chain residues. The D-I-TASSER model for this target had a very

low TM-score of 0.34 (Figure 8(B)). Examining the local segments of

the D-I-TASSER model and the T1070-D1 oligomer structure, it can

be easily observed that the strand S5 of the D-I-TASSER model (struc-

ture in blue in Figure 8(C)) should not be close to strand S6 in the

experimental structure (structure in red in Figure 8(C)), but appeared

in the position of S5 from another copy (structure by yellow in

Figure 8(C)), and formed an anti-parallel sheet with S6. The wrong

position of S5 was mainly due to the incorrect distances predicted

from DeepPotential. In Figure 8(D), we show the predicted distance

map by DeepPotential and the distance map calculated from the

T1070-D1 oligomer complex. Here, the two upper triangle matrices

are the predicted distance maps for two T1070-D1 monomer copies,

chain A and chain B. The lower triangle matrix shows the distance

maps derived from the experimental oligomer structures, containing

two intra-chain distance maps for chains A and B, and the inter-chain

distance map formed by chains A and B. From the DeepPotential dis-

tance map, a 5 Å distance between intra-chain residue 39 and residue

54 was predicted. However, in the experimental distance map, the

intra-chain distance of these two residues was around 11 Å. When

we re-checked the inter-chain distance map, the 5 Å distance can be

observed from residue 54 of chain A and residue 39 from chain

B. The co-evolutionary relationship should exist between residues

from S6 of copy A and residues from S5 of the neighboring copy B,

but the co-evolution-based analysis cannot classify it as inter-chain

co-evolution or intra-chain co-evolution when the complex is a homo-

oligomer. Since the main input features of DeepPotential are co-

evolutionary features, it is not unexpected for the distances to be

incorrectly predicted. As a result, during the D-I-TASSER modeling,

residue 39 of strand S5 and residue 54 of strand S6 were brought

together to form a 5 Å distance (Figure 8(E)) as DeepPotential

predicted. The other stands (S1–S4) of the D-I-TASSER model had a

similar issue as S5 and S6 during the folding simulations, and thus a

very compact segment packing can be found in the N-terminal region,

while that region of the experimental structure had an extended pack-

ing. Thus, the D-I-TASSER model had very poor quality in the N-

terminal region.

This case demonstrates that incorrect distance predictions for

oligomer structures may lead to incorrect local folding. Furthermore,

the incorrect distance prediction is mainly because the co-evolution-

based analysis cannot classify it as inter-chain co-evolution or intra-

chain co-evolution, which is an obvious methodology-level limitation

in current deep learning-based distance prediction methods that use

features from co-evolution-based analysis when dealing with homo-

oligomer complexes.

4 | CONCLUSIONS

In CASP14, five fully automated protein structure prediction servers

from Zhang-Group, including “Zhang-Server,” “QUARK,” “Zhang-
CEthreader,” “Zhang-TBM,” and “Zhang_Ab_Initio,” were deployed.

Here, we mainly report the results from two servers, “Zhang-Server”
and “QUARK,” which were built on the D-I-TASSER and D-QUARK

algorithms, respectively. D-I-TASSER and D-QUARK are the extended

versions of the previously established I-TASSER and QUARK pipelines

with four major developments, including an extended deep MSA gen-

eration method, a new domain partition system, a deep learning-based

predictor for spatial restraints (contact maps, distance maps, inter-

residue orientations and hydrogen-bond networks), and a newly opti-

mized folding force field including balanced deep learning spatial

energy potentials, template-based energy potentials, and knowledge-

based potentials.

The performance analysis demonstrated that the high model qual-

ity of D-I-TASSER and D-QUARK may mainly be attributed to the

careful balance of template information from LOMETS3 and spatial

restraints (especially the residue-residue distance maps) from the deep

learning-based predictor, DeepPotential. Furthermore, the newly

developed MSA generation method, DeepMSA2, can generate

“deeper” MSAs with more effective sequences by searching more and

larger metagenomics databases, and thus produce more accurate evo-

lutionary coupling information for distance prediction. Hence, the

MSA generation method is also a vital factor to help improve

the accuracy of protein structure prediction, especially for FM targets.

Moreover, the new domain partition and assembly system, which

combined the threading template-based method ThreaDom and

predicted contact-based method FUpred for domain boundary predic-

tion, and DEMO for domain assembly, showed remarkably accurate

performance on the domain boundary prediction and the full-length

model assembly for multi-domain targets. With the help of these new

developed components, the final models from D-I-TASSER and D-

QUARK had significantly better accuracies than the models from the

previous C-I-TASSER/I-TASSER and C-QUARK/QUARK pipelines,

especially for FM targets.

However, significant challenges still remain in the current pipe-

lines. First, although the new domain partition and assembly system

works better than what we used in CASP13, multi-domain protein

modeling performance was still not satisfactory; in particular the

inter-domain distance prediction often had low accuracy, which

impacted the full-length model assembly performance. The second

problem of the D-I-TASSER and D-QUARK pipelines came from the

modeling of protein domains from oligomer complexes, which was

mainly because the co-evolution-based features used by

DeepPotential could not distinguish inter-chain and intra-chain dis-

tances. Thus, how to utilize the specifically tuned deep learning-based
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predictors for multi-domain proteins or proteins from oligomer com-

plexes should be considered in the future to help address these issues.

The third problem is the limited computational resources. Currently,

DeepPotential is trained with only a single GPU and 10 GB of memory

usage. Thus, we have discarded one group of useful features, a raw

Precision matrix (PRE), which was used by TripletRes in CASP13 and

exhibited excellent performance. Furthermore, we did not consider

deeper/wider neural networks. Thus, more computational resources

are needed in the future to help improve the accuracy and scalability

of DeepPotential. Finally, with the rapid increase in the size of meta-

genomics databases, the MSA collection stage took longer and

required more resources than previous CASPs. For instance, the MSA

construction by DeepMSA from the MetaClust (�100 GB) database

took around 1 h using 1 CPU for a 150-residue protein, while it took

around 4 h using 50 CPUs for the same length protein by searching the

5TB IMG/M metagenome database in DeepMSA2. Most recently, we

analyzed the metagenome assisted Pfam family structure modeling data

and found that there is an inherent linkage between the microbiome

niches and their homologous protein families.55 When using MSAs con-

structed from an individual biome that is the most closely linked with

the target protein family, the amount of memory requested and

searching speed of MSA construction was significantly improved, com-

pared to the more expensive MSA search from the whole set of the

combined microbiome genome database. Meanwhile, the quality of the

3D structure modeling of the Pfam families was simultaneously

improved compared to the latter. This result provides an interesting and

promising avenue to improve both quality and speed of future MSA

construction, which is especially important when the rapid accumulation

of sequences in the metagenome databases makes a comprehensive

sequence database search increasingly prohibitive.
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