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Supplementary Texts 
 

Text S1. The normalized number of effective sequences (Neff) in MSA 

The depth of a multiple sequence alignment (MSA) is measured by the normalized number of 

effective sequence (Neff) in this work: 
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where L is the length of protein, N is the number of sequences in the MSA, 𝑆𝑗,𝑖 is the sequence 

identity between the j-th and i-th sequences. 𝐼[𝑆𝑗,𝑖 ≥ 0.8] equals to 1 if 𝑆𝑗,𝑖 ≥ 0.8, or zero otherwise. 

Therefore, Neff is essentially equal to the number of non-redundant sequences (sequence 

identity<0.8) in the MSA normalized by the protein length. 

 

Text S2. The comparison of Pfam families in Pfam database and supplemented by 

metagenome data 

To examine the advantage of using microbiome sequences, we compared the MSAs from the 

Pfam database and the MSAs built by DeepMSA on metagenome databases on 2,214 Hard Pfam 

families. To make a fair comparison, we did not directly use the existing profile data in the Pfam 

database. Instead, we have reconstructed the MSA based on the Pfam family sequences using the 

DeepMSA program that is that same as what we used in this work. For doing so, we first run 

DeepMSA for each query sequence, and then used the Hidden Markov Model (HMM) generated at 

the second step of DeepMSA to search against the Pfam family sequences downloaded from the 

Pfam database to construct the MSA for the 2,214 Pfam family. 

In Figure S3, we presented a quantitative comparison of the two sets of MSAs. First, due to 

the enlarged sequence database (3,643,924 from Metagenome database vs. 1,015,317 from 2,214 

Pfam families), the average number of sequences for the Metagenome MSA (1645.85±842.45) is 

3.6-fold higher than that of the Pfam MSA (458.58±275.62) (Figure S3A). Accordingly, the number 

of effective sequences (Neff) of Metagenome MSA (75±36.22) is nearly 3-fold larger than that of 

Pfam MSAs (25.50±13.25) (Figure S3C). Although the average sequence identity to the query for 

the Metagenome MSAs (46.70±28.65) is higher than that of Pfam MSAs, the former has a higher 

diversity score (7.62±3.15) than the latter (3.89±1.86) (Figure S3D), when measured by the Meff 

score used in HHblits (1). 

It is natural that searching through a larger sequence database usually costs more CPU time for 

constructing the MSAs. For example, for the Pfam MSAs, the search space was 0.74 TB and the 

average search time is 1.42±0.85 hours. For the Metagenome MSA, the search space was 2.4 TB 

and the average search time is 6.38±2.68 hours (if used without MetaSource). This was one of the 

reasons that motivated us to develop MetaSource to guide metagenome selections. According to our 

benchmark validation on the 204 Pfam families with solved structure, the MetaSource could reduce 

the search time by 3.3 times (=5.44h/1.65h). Thus, although the overall time cost of MetaSource is 

still slightly higher than the Pfam MSA, the MSA quality and contact accuracy are significantly 

improved when combining MetaSource with microbiome databases. 

 

Text S3. Case studies verified the applicability and interpretability of the targeted MetaSource 

model 
Through the case studies, our targeted metaSource model shows a strong applicability and good 

biological interpretability. Among 964 Pfam families (Neff over 16 and C-score over -0.25), 10 Pfam 

families are selected for case studies (Table S4).  

These Pfam families are selected based on the literature review and the comparison of prediction 

result (measured by the Neff score) for four commonly used datasets (Uniref100 (2), IMG(2), Tara 

Oceans (3) and Metaclust (3)). These four datasets are commonly used to assist the structure and function 

prediction for unsolved proteins.  

First, assisted by Soil biome, PF05120 could be supplemented with sufficient homologous sequences 

(Neff score=487.5 and C-score=-0.18). Based on our targeted metasource model, this Pfam family is 

successfully classified into the Soil biome (accuracy: 0.968). However, the other four commonly used 

datasets supply insufficient homologous sequences, reflected by the lower Neff score than the Soil biome 

used in our research: 32.0, 336.8, 69.0 and 178.9 for Uniref100, IMG+ Uniref100, Tara 

Oceans+Uniref100 and Metaclust+Uniref100, respectively. This result indicates that our targeted 



prediction model can accurately predict that Soil biome could be used to supplement the homologous 

sequence of PF05120. Furthermore, this prediction result could be interpreted by its unique biological 

role in Soil biome for PF05120: According to the records in Pfam families, the members in PF05120 are 

annotated as gas vesicles proteins. These gas vesicles proteins are permeable to ambient gases by 

diffusion and provide buoyancy, enabling cells to move based on the air-soil interface (4, 5). This protein 

plays an important role in the communications between different soil microbiome communities(4). 

Second, the accuracy and interpretability of our targeted metaSource model could also be proved by 

other biomes: Among the 964 Pfam families with C-score >-0.25, PF12652 is successfully classified into 

the biome of Fermentor by our metasource model (accuracy: 0.975). Actually, measured by a high Neff 

score (305.6) and C-score (-0.16), our protein structure prediction results also confirm this result. 

However, insufficient homologous could be provided by four datasets for PF12652 (Neff score 232.6, 

264, 295.2, 299.6 for Uniref100, IMG+ Uniref100, Tara Oceans+ Uniref100 and Metaclust+ Uniref100, 

respectively). The fermentor-related function of proteins in PF12652 could explain this result: based on 

the records in PF12652, this Pfam family is related to spore development. The bacteria that enrich the 

spore development function are closely related to anaerobic fermentation, the main function of 

fermenters (6).  

Finally, based on an investigation of the correctly classified Pfam families, great application 

prospects have sprung up using our targeted MetaSource model: PF13822 (classified into Soil biome, 

accuracy: 0.982) is identified as Acyl-CoA carboxylase epsilon subunit, which is involved in the 

biosynthesis of long-chain fatty acids. The long-chain fatty acids are important for Rhizobium 

leguminosarum Growth and Stress Adaptation (7). PF09828 and PF05425 are two important antibiotics. 

These two antibiotics shows the resistance to chromate and copper, which are harmful to the agricultural 

plants and human (8, 9). PF09650 (classified into Soil biome, accuracy: 0.965), is identified as putative 

polyhydroxyalkanoic acid (PHA) system protein, and could produce the bioplastic (10). 

 

Text S4. The construction of “PhylaSource” for guiding the 3D structure prediction 

supplemented by metagenome 

It might be interesting to look at the phylum label instead of biome label to train a “PhylaSource” 

model for guiding the search of homologous sequences from the genome sequences from specific 

Phyla. To do this, we used the same set of 964 Pfam families as MetaSource used to train the 

PhylaSource model. Since the metagenomic data does not contain the phylum label, instead of using 

the biome data from metagenome database, we downloaded all the available Prokaryotic and viral 

genomes (refseq database, https://ftp.ncbi.nlm.nih.gov/genomes/refseq/) as the taxonomical 

database for training the PhylaSource. Here we downloaded Prokaryotic and viral genomes, since 

we found that over 80% the supplemented sequences from the previous 964 MSAs built from 

metagenome database can be assigned as those genomes by blast (version 2.7.1) with a strict 

threshold (E-value 1E-5, sequence identity 90%). The data downloaded from NCBI covers 48 phyla 

and counts for 736GB data with 718,314 protein sequences. These sequences were divided in to 48 

sub-blocks, where each block only contains the sequences belong to one phylum. A “PhylaSource” 

model was constructed using a multi-class logistic regression model (the python package, sklearn) 

to predict the relative probability of every phylum for a given Pfam family, where the phylum 

sample with the highest probability was used for guiding the homologous sequence search. For 

validation, we selected top-10 predicted phylum databases since a single phylum database is too 

small (average size=15.3GB) to give sufficient supplement sequences. We tested the number of 

predicted phylum databases from 1 to 48 phyla (ranked by the relative abundance) and found that 

the highest accuracy of PhylaSource (80.2%) was achieved when the top-10 phyla were used 

(Figure S10A).  

To further examine the practical usefulness of the PhylaSource model for 3D structure 

modeling, we predicted the phylum probability distribution and selected the top-10 phyla by 

PhylaSource to supplement their homology sequence search at the step-3 of DeepMSA. For the 204 

test families with solved structures, PhylaSource was able to predict the phyla which resulted in a 

higher contact accuracy in 69.5% of cases or a higher TM-score in 61.4% of cases, compared to that 

using all genome sequences. The permutation P-value is 0.001, indicating that the difference is 

statistically significant.  

Figure S10B displays the average contact accuracy and TM-score of the C-I-TASSER models 

when using MSAs collected from the all the genome data from NCBI (named as Phyla data) and 

the dataset selected by PhylaSource on the 204 test families. It was shown that, although the volume 

of the sequence database by PhylaSource is much smaller (228 GB/per target and 736 GB/per target 

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/


for PhylaSource and phyla data respectively), using the targeted dataset from PhylaSource resulted 

in a higher contact accuracy (0.488 vs. 0.476) and TM-score (0.617 vs 0.615), which corresponds 

to a P-value=1.5E-5 and 2.3E-5, respectively, in Student’s t-test. These results indicate that the MSA 

from PhylaSource could help depress the sequences from the “wrong” source Phyla. However, with 

a limited phylum data, the PhylaSource had a lower accuracy of target phyla prediction and a smaller 

magnitude of contact/TM-score improvement than the MetaSource, although they both 

demonstrated a similar level of search space and time reduction of sequence databases. 

 

Text S5. The construction of “EvalueSource” for predicting the E-values when collecting 

homology sequences  

The careful E-value selection in finding homologous sequences is often an important procedure 

to MSA construction and subsequent 3D structure prediction. Hence, it would be useful to predict 

an optimal E-value cutoff for collecting the homologous sequences from the metagenome for 

specific Pfam family, from which the reliable 3D structure would be modeled. 

Similar to MetaSource, the EvalueSource was trained on the 964 Pfam families, where the 

features for the training set were based on the species distribution for Pfam families, obtained from 

the Pfam database. We particularly designed a EvalueSource model to predict the E-value cutoff 

combination used by hmmer and HHblits in DeepMSA step 3 (for metagenome searching). In the 

default DeepMSA pipeline (Figure S7), the same E-value (=1E-3) was used for the HHblits and 

hmmer when collecting the homologous sequences from metagenome. In the EvalueSource pipeline, 

eight E-values for HHblits (1E+1, 1E+0, 1E-1, 1E-2, 1E-3, 1E-6, 1E-10, and 1E-30) and six E-

values for hmmer (1E+1, 1E+0, 1E-1, 1E-2, 1E-3, and 1E-4) were selected as predicted labels. 

Hence, one of the paired E-values from 8×6=48 combinations is the final label to be predicted by 

EvalueSource when given a Pfam family, and hence 48 MSAs should be constructed for each Pfam 

families to collect the homologous sequences from metagenome. For each MSA, the sum of the Top 

L long-range contact scores are used to estimate the best combination of E-values for HHblits and 

hmmer for structure prediction, where the E-value cutoff combination associated with the largest 

contact score would be set as the target label for the training set (11). Finally, four-fold cross-

validation shows that the highest accuracy of this model is 82.28% (Figure S10C).  

To further examine the applicability of this model to 3D structure modeling, we used the same 

204 Pfam families with solved structure as the validation dataset. In Figure S10D, we compared the 

modeling results from EvalueSource with that using default E-value combinations (1E-3 and 1E-3, 

named as default combination). It was shown that, using the predicted combinations of E-values 

from EvalueSource resulted in a slightly higher TM-score (0.613) and contact accuracy (0.508) than 

that using the default E-values (0.609 and 0.496), which corresponds to a P-value=0.055 for TM-

score and a P-value=0.062 for contact accuracy in Student’s t-test. These results indicate that the 

EvalueSource could help select target E-values for homologous sequence collections, which have 

resulted in marginal TM-score and contact accuracy improvement. However, EvalueSouce does not 

generate similar effect as MetaSource for improving both speed and accuracy of MSA collection 

and 3D structure prediction. This is probably due to the fluctuation of sequence distances among 

different protein families, while the inherent linkage between protein families and the ecological 

species groups could not be captured by the generic sequence distances such as E-value cutoffs. 

 
  



Supporting Figures 
 

 
Figure S1. TM-scores of the C-I-TASSER models from 168 proteins benchmark dataset for 

MSAs with different Neff values using a base of 2. The black line represents the average TM-

scores under each Neff bin with a bin width of two. 

  



 
Figure S2. Accuracy estimation of predicted models using C-score defined by Eq. (2), in 

Materials and Methods. Represented by TM-score of the first C-I-TASSER model versus C-score. 

 



 
Figure S3. The comparison of Pfam MSA and Metagenome MSA. (A) The number 

of sequences for Pfam families in Pfam database and supplemented by metagenome 

data. (B) The sequence similarity for MSA of Pfam families to the query in Pfam 

database and supplemented by metagenome data. (C) The Neff score distribution for 

Pfam families in Pfam database and supplemented by metagenome data. (D) The Meff 

score distribution for Pfam families in Pfam database and supplemented by 

metagenome data. 

  



 
Figure S4. C-I-TASSER models for 12 cases from 168 proteins benchmark dataset that has 

large Neff but low TM-score. (A) C-I-TASSER models (cyan) and experimental structures (red) 

of 12 cases. (B) 1v1i trimmer complex (three copies are shown as red, grey and yellow) and C-I-

TASSER model (cyan) for the 1v1i_A1 monomer. (C) Predicted contact map (red) and experimental 

contact map, where the inter-chain contacts are shown as blue circle and intra-chain contacts are 

shown as grey points.  

  



 

 
Figure S5. The species richness statistic for four biomes (Fermentor, Gut, Lake and Soil). The 

raw metagenome sequences were assembled, extract the 16s rRNA and clustered by 97% similarity 

to obtain the operational taxonomic units (OTUs) distribution, sequentially. The OTU distribution 

could represent the species richness in corresponding biome. 

  



 

Figure S6. The top 20 importance features (on genus level) for the multiple-classified Random 

Forest model. The importance of features was estimated and ranked by accuracy and Gini index. 

  



 
Figure S7. DeepMSA pipeline for multiple sequence alignment generation. The metagenome 

database in the third step can be the combination of four biomes (Fermentor, Gut, Lake and Soil) or 

each individual biome.    

 



 
Figure S8. Modeling results of C-I-TASSER utilizing genome and metagenome databases. TM-

scores of the first model of C-I-TASSER using Uniclust30 (genome) database (A), 

Uniclust30+Uniref90 (genome) databases (B) and Uniclust30+Uniref90+four biomes metagenome 

(genome+metagenome) databases (C). 

  



 
Figure S9. Head-to-head comparison of the protein folding methods using MetaSource 

selected biome MSA and combined biome MSA. TM-score comparison of C-I-TASSER (A), 

DMPfold (B), trRosetta (C) and AlphaFold2 (D) for the 204 validation Pfam families using 

MetaSource selected biome MSA and combined biome MSA. P-values are calculated by one-tail 

paired Student’s t-test. 

 

  



 
Figure S10. The construction of the PhylaSource and EvalueSource based on 964 Pfam 

families with unsolved structure. (A) The Receiver operating characteristic to multi-class logistic 

regression model. The PhylaSource was constructed by multi-class logistic regression model and 

the area under curve illustrate that the accuracy of the model is 80.2%. (B) The validation test of 

PhylaSource. The validation of the PhylaSource was performed by comparing the Pfam families 

that supplemented by genome data download from NCBI (named as Phyla data) and guided by 

PhylaSource. The quality of MSA was estimated by TM-score and precision of top-L long range 

contacts. (C) The Receiver operating characteristic to multi-class logistic regression model. The 

EvalueSource was constructed by multi-class logistic regression model and the area under curve 

illustrate that the accuracy of the model is 82.2%. (D) The validation test of EvalueSource. The 

validation of the EvalueSource was performed by comparing the Pfam families that supplemented 

by metagenome data by DeepMSA with default E-values (named as default data) and guided by 

EvalueSource. The quality of MSA was estimated by TM-score and precision of top-L long range 

contacts. 

  



 
Figure S11. For the Gut biome, the statistical result based on country distribution. The 911 

samples were collected from 10 countries, covering four continents (Africa, Asia, Europe, 

Americas). 
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Figure S12. Data collection flow from Pfam database for training and validating MetaSource 

and benchmarking the C-I-TASSER. For 8,700 Pfam families with unsolved structure, 1,044 

Pfam families were used to train the MetaSource prediction model after a set of filtration. For 9,229 

Pfam families with solved structure has been randomly selected as benchmark dataset to investigate 

the fold ability of C-I-TASSER, and testing dataset for qualify the performance of MetaSource. 

  



 
 

Figure S13: A schematic of contact potential, 𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑑𝑖𝑗), for a contacting residue pair i and j 

as defined in Eq. (S1). Here, 𝐷 is the protein length-dependent width of the first well and 𝑈𝑖𝑗 is the 

depth of the energy potential that is proportional to the confidence score of the predicted contact 

between the residue pair i and j. 𝑑𝑖𝑗 is the 𝐶𝛽 distance between the residue pair. 
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Figure S14. Workflow for targeted MetaSource model construction. (A) Sequences from 

different biomes were collected, and the biome-sequence associations are also organized. (B) New 

multiple sequence alignment (MSA) is constructed for Pfam families after search the homology 

sequences from different biomes. After the MSA is constructed, the Neff/C-score were calculated to 

evaluate the quality of MSA. (C) The marginal effect is evaluated to quantify the effects of 

metagenome data from different biomes on Pfam families. (D) For each of the Pfam families, the 

normalized taxonomical composition was used as the feature. The biome with highest Neff score 

was used as the data label after supplementing the homology sequences from four biomes 

respectively. (E) The multiclass Random-Forest model construction. To find the best combination 

of model parameters, grid search was applied to exhaustive search over all parameter values and 20 

cross-validation iterations. (F) The validation of MetaSource using Pfam families whose structure 

solved. Assisted by sequences from different biomes, the biome of which the structure that shared 

most similarity to the known structure is compared with the prediction result of MetaSource. 

  



Supporting Tables 
 

Table S1. Wilcox test results for differentiating each pair of two biomes based on species 

distribution. Results shown are P-values of the Wilcox test. 

 

 Fermentor Gut Lake Soil 

Fermentor  2.53E-08 6.75E-10 8.23E-15 

Gut 2.53E-08  4.15E-15 7.23E-18 

Lake 6.75E-10 4.15E-15  6.28E-09 

Soil 8.23E-15 7.23E-18 6.28E-09  

 

  



Table S2. Summary of C-I-TASSER modeling results for 28 Pfam families which has 

solved experimental structure. The comparison results for the solved protein to the C-I-

TASSER model using TM-align and calculate the TM-score between the C-I-TASSER model 

and the map experimental structure. 

 

Target Neff of MSA PDB TM-score C-score 

PF04213 106.2 6JSB_A 0.841 0.35 

PF09139 34.5 6IG4_B 0.763 -1.16 

PF03981 309.7 6RWT_A 0.753 -1.65 

PF05914 19.1 6U42_4Q 0.742 -9.96 

PF01803 28.6 6S9S_A 0.717 -0.99 

PF04031 49.1 6OF2_A 0.716 -1.44 

PF11704 22.8 6ULG_L 0.684 -0.57 

PF12922 48.6 6QJ3_A 0.672 -1.45 

PF18755 261.3 6PBD_B 0.651 -1.74 

PF10785 33 6GCS_X 0.639 -0.6 

PF03381 86.4 6PSY_E 0.635 -0.1 

PF04317 30.5 6NZ4_A 0.607 -3.63 

PF14687 24.1 6SGB_F6 0.6 -1.31 

PF15096 21 6R0X_E 0.556 -4.19 

PF12017 87.8 6P5A_A 0.465 -3.43 

PF13864 57.3 6U42_5S 0.464 -1.99 

PF12357 70 6KZ8_B 0.401 -2.33 

PF14260 101 6P1H_A 0.381 -5.47 

PF04281 32.8 6JNF_C 0.357 -3.97 

PF14636 16.1 6ULG_N 0.322 -2.51 

PF07127 76.8 6U6G_A 0.308 -4.15 

PF03963 196.5 6IEE_B 0.272 -3.66 

PF12542 45.8 5YZG_X 0.255 -3.58 

PF14960 18.4 6J5J_i 0.249 -3.07 

PF14892 24.1 6U42_7H 0.239 -3.7 

PF10172 20.6 6Q0R_E 0.221 -3.26 

PF13868 44.2 6U42_4Y 0.213 -3.8 

PF08648 70.8 6QX9_X 0.182 -3.96 

 

  



Table S3. The contact precision on the 12 cases in the benchmark dataset that has large 

Neff >16 but with low TM-score shown in Figure S1. The nine columns show the top L, L/2, and 

L/5 contacts as well as the long-, medium- and short-range contacts. 

 

Target 
Short range Medium range Long range 

L/5 L/2 L L/5 L/2 L L/5 L/2 L 

3h7i_A2 0.400 0.274 0.216 0.200 0.177 0.120 0.760 0.484 0.312 

1jnr_B 0.793 0.541 0.302 0.655 0.378 0.302 0.966 0.514 0.315 

4u7j_A2 1.000 0.611 0.323 0.911 0.602 0.310 1.000 0.858 0.673 

3fyb_A 0.790 0.388 0.225 0.684 0.306 0.153 0.105 0.204 0.214 

2f5v_A2 0.590 0.354 0.192 0.769 0.505 0.318 0.949 0.838 0.657 

1vmo_A 0.781 0.444 0.227 1.000 0.877 0.540 1.000 0.889 0.755 

2nog_A1 0.588 0.250 0.125 0.647 0.296 0.148 0.882 0.796 0.534 

1got_G 0.273 0.103 0.052 0.000 0.000 0.000 0.000 0.000 0.000 

1r8i_A 0.081 0.075 0.064 0.135 0.054 0.037 0.081 0.054 0.032 

1v1i_A1 0.867 0.730 0.533 0.467 0.297 0.213 0.000 0.000 0.000 

1hfe_S 0.471 0.273 0.159 0.059 0.023 0.011 0.000 0.000 0.000 

1pby_C 0.400 0.333 0.291 0.133 0.077 0.038 0.200 0.128 0.063 

 

 

  



 

Table S4. The statistical result for GO annotations (level 3) which were only detected 

in single biome for the 964 Pfam families. The numbers count for the GO entries that are 

only detected in a specific biome. The proportion of all entries detected in the corresponding 

biome under the specific top GO annotation was calculated. 

 

Biome Biological Process Molecular Function Cellular Component 

Gut 21(30%) 15(22%) 18(25%) 

Lake 18(21%) 11(25%) 17(30%) 

Soil 42(33%) 25(25%) 44(30%) 

Fermentor 48(35%) 18(25%) 30(33%) 

 

  



Table S5. Ten case studies for illustration of the Pfam-biome associations. Ten Pfam families were 

selected based on the record in Pfam database and literature review. “Ferm” refers to “Fermentor”; 

“Data1” to “Uniref100”; “Data2” to “IMG+Uniref100”; “Data3” to “Tara Oceans+Uniref100”; 

“Data4” to “Metaclust+Uniref100”; “This work” to “Specific biom+Uniref100”. Bold fonts highlight 

the best result for each target. 

 
Pfam_ID Source 

biome 

Function Accuracy Neff for different databases 

Data1 Data2 Data3 Data4 This work 

PF12652 Ferm CotJB protein; involed in the 

synthesis of spore coat related 

to anaerobic fermentation 

Ferm:0.992 59.3 264 95.2 99.6058 Ferm:305.6 

PF06135 Gut IreB regulatory 

phosphoprotein, 
cephalosporin resistance 

Gut:0.995 37.6 199.3 68.5 90.0926 Gut:187.6 

PF07593 Lake ASPIC and UnbV Lake:0.961 180.8 881.5 202.5 780.3 Lake:984.4 

PF09650 Soil Putative polyhydroxyalkanoic 

acid(PHA) system protein, 

detect in soil,Production of 
bioplastic 

Soil:0.954 36.6 722.1 612.5 309.7 Soil:728.6 

PF13822  Acyl-CoA carboxylase 

epsilon subunit,involved in 

the biosynthesis of long-chain 

fatty acids 

Soil:0.928 103.7 109.5 160.3 125.6 Soil:309.1 

PF04066  Multiple resistance and pH 

regulation protein F 

Soil:0.936 168.1 844.8 240.502 525.5519 Soil:924.0 

PF09907  HigB_toxin, RelE-like toxic 

component of a toxin-

antitoxin system 

Soil:0.951 80 849.8 313.6 579.4 Soil:927.6 

PF09828  Chromate resistance exported 

protein 

Soil:0.968 28.4 633.6 452.5 287.4 Soil:687.9 

PF05120  Gas vesicle protein G Soil:0.986 32 336.8 69 178.9 Soil:487.5 

PF05425  Copper resistance protein D Soil:0.961 257.2 389.5 364.2 726.1 Soil:807.8 

 

  



Table S6. The validation result of the MetaSource for the 204 Pfam families with solved 

structures. The predicted source biomes by MetaSource are listed together with the biomes that 

resulted in the higher Neff and TM-score for different Pfam families, where accuracies of 79.9% and 

80.2% have been achieved by MetaSource on Neff and TM-score, respectively. Here, “ferm” refers 

to “fermentor”. 

 

Pfam 
Probability of source biome Predicted 

biome 

Result based on 

gut lake soil ferm Neff TM-score 

PF00284 2.13E-01 6.40E-02 6.44E-01 7.80E-02 soil soil soil 

PF00631 8.27E-01 6.45E-02 1.32E-02 9.52E-02 gut gut gut 

PF00647 1.26E-02 8.43E-02 8.22E-01 8.14E-02 soil soil soil 

PF00658 1.09E-01 7.94E-02 7.46E-01 6.60E-02 soil soil soil 

PF00737 6.40E-02 6.44E-01 2.13E-01 7.80E-02 lake lake lake 

PF00827 1.13E-01 5.39E-02 7.75E-01 5.78E-02 soil ferm ferm 

PF00833 1.13E-01 1.53E-01 6.91E-01 4.29E-02 soil lake lake 

PF00838 1.26E-02 8.22E-01 8.43E-02 8.14E-02 lake lake lake 

PF00853 3.88E-02 8.74E-01 4.22E-02 4.53E-02 lake lake lake 

PF00960 1.38E-02 1.66E-01 6.57E-01 1.63E-01 soil soil soil 

PF01049 8.74E-01 4.22E-02 3.88E-02 4.53E-02 gut gut gut 

PF01111 1.09E-01 7.94E-02 7.46E-01 6.60E-02 soil lake lake 

PF01115 1.26E-02 8.43E-02 8.22E-01 8.14E-02 soil ferm ferm 

PF01125 1.09E-01 7.94E-02 7.46E-01 6.60E-02 soil soil soil 

PF01140 7.81E-01 8.27E-02 2.06E-02 1.16E-01 gut gut gut 

PF01191 1.13E-01 5.39E-02 7.75E-01 5.78E-02 soil soil soil 

PF01194 1.09E-01 6.52E-01 1.73E-01 6.60E-02 lake lake lake 

PF01200 1.09E-01 6.52E-01 1.73E-01 6.60E-02 lake lake lake 

PF01213 3.22E-02 8.54E-01 6.81E-02 4.52E-02 lake lake lake 

PF01214 7.46E-01 7.94E-02 1.09E-01 6.60E-02 gut gut gut 

PF01247 1.09E-01 7.94E-02 7.46E-01 6.60E-02 soil soil soil 

PF01267 1.03E-02 8.53E-01 5.58E-02 8.14E-02 lake soil lake 

PF01278 1.04E-01 2.96E-02 8.04E-01 6.19E-02 soil soil soil 

PF01320 1.64E-02 7.86E-01 4.23E-02 1.55E-01 lake lake lake 

PF01340 4.03E-03 1.86E-02 9.51E-01 2.66E-02 soil soil soil 

PF01356 1.16E-01 6.08E-01 1.09E-01 1.67E-01 lake lake lake 

PF01603 7.20E-01 8.82E-02 1.12E-01 7.99E-02 gut gut gut 

PF01716 2.13E-01 6.40E-02 6.44E-01 7.80E-02 soil soil soil 

PF01780 1.09E-01 6.52E-01 1.73E-01 6.60E-02 lake lake lake 

PF01793 9.01E-01 2.57E-02 2.69E-02 4.62E-02 gut gut gut 

PF01815 1.61E-02 7.82E-02 8.17E-01 8.87E-02 soil soil soil 

PF01821 5.13E-01 7.78E-02 3.58E-01 5.13E-02 gut gut gut 

PF01828 8.85E-02 4.91E-02 1.77E-01 6.85E-01 ferm ferm ferm 

PF01893 7.81E-01 8.27E-02 2.06E-02 1.16E-01 gut gut gut 

PF01993 2.06E-02 8.27E-02 7.81E-01 1.16E-01 soil soil soil 

PF02015 2.99E-02 7.56E-01 5.93E-02 1.55E-01 lake lake lake 

PF02064 1.08E-02 9.20E-01 2.95E-02 3.97E-02 lake lake lake 

PF02093 3.58E-01 7.78E-02 5.13E-01 5.13E-02 soil ferm ferm 

PF02100 9.20E-01 2.95E-02 1.08E-02 3.97E-02 gut gut gut 



PF02145 1.37E-02 8.13E-01 6.95E-02 1.04E-01 lake lake lake 

PF02177 8.74E-01 4.22E-02 3.88E-02 4.53E-02 gut gut gut 

PF02209 1.33E-02 8.52E-01 5.15E-02 8.34E-02 lake lake lake 

PF02240 2.06E-02 8.27E-02 1.16E-01 7.81E-01 ferm ferm ferm 

PF02253 0.00E+00 4.13E-03 9.57E-01 3.92E-02 soil ferm ferm 

PF02271 1.07E-01 5.09E-02 7.77E-01 6.60E-02 soil ferm ferm 

PF02284 9.20E-01 2.95E-02 1.08E-02 3.97E-02 gut gut gut 

PF02289 2.06E-02 2.94E-01 4.90E-01 1.96E-01 soil soil soil 

PF02312 3.88E-02 4.22E-02 8.74E-01 4.53E-02 soil soil soil 

PF02315 1.93E-02 3.04E-01 6.04E-02 6.17E-01 ferm soil soil 

PF02531 6.44E-01 6.40E-02 2.13E-01 7.80E-02 gut gut gut 

PF02605 2.13E-01 6.44E-01 6.40E-02 7.80E-02 lake lake lake 

PF02611 1.07E-01 2.62E-02 6.41E-01 2.26E-01 soil ferm ferm 

PF02679 6.81E-02 8.30E-01 2.24E-02 7.93E-02 lake lake lake 

PF02792 1.09E-01 7.46E-01 7.94E-02 6.60E-02 lake lake lake 

PF02840 1.09E-01 7.94E-02 7.46E-01 6.60E-02 soil soil soil 

PF02888 7.61E-01 7.96E-02 9.27E-02 6.68E-02 gut gut gut 

PF02898 2.15E-01 4.74E-02 5.91E-01 1.46E-01 soil soil soil 

PF02921 1.12E-01 8.82E-02 7.20E-01 7.99E-02 soil ferm ferm 

PF02924 0.00E+00 4.13E-03 8.71E-01 1.25E-01 soil lake ferm 

PF02963 1.42E-02 8.32E-01 3.96E-02 1.14E-01 lake lake lake 

PF02974 7.94E-01 5.60E-02 9.33E-03 1.40E-01 gut gut gut 

PF02975 8.27E-03 3.58E-02 8.96E-01 6.04E-02 soil ferm ferm 

PF02979 2.12E-01 7.23E-01 4.02E-02 2.40E-02 lake lake lake 

PF03013 6.51E-01 3.07E-01 4.49E-03 3.71E-02 gut gut gut 

PF03095 7.46E-01 7.94E-02 1.09E-01 6.60E-02 gut gut gut 

PF03110 2.13E-01 6.40E-02 6.44E-01 7.80E-02 soil soil soil 

PF03126 1.09E-01 7.46E-01 7.94E-02 6.60E-02 lake lake lake 

PF03288 3.63E-01 1.60E-02 4.77E-01 1.44E-01 soil soil soil 

PF03411 1.09E-01 1.47E-01 6.25E-01 1.18E-01 soil ferm ferm 

PF03416 1.09E-01 7.94E-02 7.46E-01 6.60E-02 soil ferm ferm 

PF03502 9.51E-01 1.86E-02 4.03E-03 2.66E-02 gut gut gut 

PF03660 1.97E-01 7.32E-02 6.64E-01 6.60E-02 soil ferm ferm 

PF03735 1.10E-01 4.66E-02 7.76E-01 6.80E-02 soil soil soil 

PF03829 2.54E-03 1.12E-01 7.61E-01 1.25E-01 soil soil soil 

PF03870 1.09E-01 7.46E-01 7.94E-02 6.60E-02 lake lake lake 

PF03887 7.13E-03 7.13E-01 3.47E-02 2.45E-01 lake lake lake 

PF03925 1.08E-02 4.09E-02 8.74E-01 7.48E-02 soil soil soil 

PF03974 7.74E-01 4.09E-02 1.08E-02 1.75E-01 gut gut gut 

PF03997 1.09E-01 7.46E-01 7.94E-02 6.60E-02 lake lake lake 

PF04008 1.03E-01 8.11E-01 1.38E-02 7.22E-02 lake lake lake 

PF04038 2.06E-02 8.27E-02 7.81E-01 1.16E-01 soil soil soil 

PF04062 1.07E-01 7.77E-01 5.09E-02 6.60E-02 lake lake lake 

PF04098 0.00E+00 4.58E-02 9.04E-01 5.00E-02 soil soil soil 

PF04216 1.00E-01 1.03E-01 4.87E-01 3.10E-01 soil soil soil 

PF04269 1.08E-02 8.74E-01 4.09E-02 7.48E-02 lake lake lake 



PF04270 7.53E-01 1.67E-01 1.61E-02 6.37E-02 gut gut gut 

PF04300 7.59E-01 4.95E-02 1.03E-02 1.81E-01 gut gut gut 

PF04362 3.97E-02 3.17E-01 5.93E-02 5.84E-01 gut ferm ferm 

PF04386 1.04E-01 1.17E-01 1.18E-02 7.67E-01 gut ferm ferm 

PF04433 7.20E-01 8.82E-02 1.12E-01 7.99E-02 gut gut gut 

PF04502 1.09E-01 7.94E-02 6.60E-02 7.46E-01 gut ferm ferm 

PF04591 8.17E-01 7.82E-02 1.61E-02 8.87E-02 gut gut gut 

PF04621 3.55E-01 5.20E-01 7.58E-02 4.93E-02 lake lake lake 

PF04721 3.88E-02 8.74E-01 4.22E-02 4.53E-02 lake lake lake 

PF04729 1.09E-01 7.94E-02 6.60E-02 7.46E-01 gut ferm ferm 

PF04739 1.09E-01 7.94E-02 6.60E-02 7.46E-01 gut ferm ferm 

PF05005 1.35E-01 7.98E-01 3.73E-02 2.99E-02 lake lake lake 

PF05023 8.52E-03 2.31E-02 8.15E-01 1.53E-01 soil soil soil 

PF05026 7.51E-01 5.96E-02 1.09E-01 7.99E-02 gut gut gut 

PF05153 1.87E-01 2.45E-02 1.60E-01 6.29E-01 gut ferm ferm 

PF05247 8.27E-03 6.87E-01 2.44E-01 6.04E-02 lake lake lake 

PF05280 1.08E-02 6.74E-01 2.41E-01 7.48E-02 lake lake lake 

PF05303 1.03E-02 8.59E-01 4.95E-02 8.14E-02 lake lake lake 

PF05321 1.61E-02 8.17E-01 7.82E-02 8.87E-02 lake lake lake 

PF05354 2.13E-01 6.55E-01 6.07E-02 7.18E-02 lake lake lake 

PF05370 7.81E-01 8.27E-02 2.06E-02 1.16E-01 gut gut gut 

PF05551 2.16E-01 6.54E-01 9.57E-02 3.49E-02 lake lake lake 

PF05854 7.81E-01 8.27E-02 2.06E-02 1.16E-01 gut gut gut 

PF05856 1.09E-01 7.94E-02 7.46E-01 6.60E-02 soil soil soil 

PF05870 8.47E-01 1.73E-02 3.10E-03 1.33E-01 gut gut gut 

PF05983 1.12E-01 7.20E-01 8.82E-02 7.99E-02 lake lake lake 

PF06141 2.29E-01 5.30E-01 1.55E-01 8.62E-02 lake lake lake 

PF06154 1.61E-02 8.17E-01 7.82E-02 8.87E-02 lake lake lake 

PF06175 1.11E-01 1.34E-01 6.78E-02 6.88E-01 gut ferm ferm 

PF06304 2.10E-01 2.09E-01 5.67E-01 1.39E-02 soil soil soil 

PF06384 6.67E-01 4.96E-02 1.07E-01 1.76E-01 gut gut gut 

PF06400 3.58E-02 4.02E-02 8.81E-01 4.33E-02 soil soil soil 

PF06438 1.08E-02 4.62E-02 9.06E-02 8.52E-01 gut ferm ferm 

PF06456 3.88E-02 4.22E-02 4.53E-02 8.74E-01 ferm ferm ferm 

PF06475 2.12E-01 7.06E-01 4.75E-02 3.42E-02 lake lake lake 

PF06482 3.88E-02 4.22E-02 4.53E-02 8.74E-01 ferm ferm ferm 

PF06557 2.06E-02 7.81E-01 8.27E-02 1.16E-01 lake lake lake 

PF06684 3.67E-01 2.17E-01 2.04E-01 2.12E-01 gut gut gut 

PF06844 1.04E-01 1.19E-01 7.41E-01 3.64E-02 soil ferm ferm 

PF06870 7.51E-01 5.96E-02 1.09E-01 7.99E-02 gut gut gut 

PF07072 1.08E-02 3.40E-01 5.90E-01 6.00E-02 soil ferm ferm 

PF07152 1.04E-01 6.67E-01 1.17E-01 1.12E-01 lake lake lake 

PF07262 1.99E-02 8.22E-01 8.37E-02 7.43E-02 lake lake lake 

PF07352 2.38E-03 5.29E-01 4.12E-01 5.71E-02 lake ferm ferm 

PF07361 1.08E-02 3.97E-02 8.90E-01 6.00E-02 soil soil soil 

PF07408 6.69E-01 5.97E-02 1.52E-01 1.19E-01 gut gut gut 



PF07460 1.19E-01 5.82E-02 5.74E-01 2.48E-01 soil soil soil 

PF07472 1.82E-02 5.41E-02 1.16E-01 8.12E-01 gut ferm ferm 

PF07682 2.32E-01 5.97E-02 5.89E-01 1.19E-01 soil soil soil 

PF07828 1.61E-02 7.82E-02 8.17E-01 8.87E-02 soil soil soil 

PF08000 2.04E-01 4.49E-03 2.41E-01 5.50E-01 gut ferm ferm 

PF08127 8.91E-02 7.82E-01 7.26E-02 5.64E-02 lake lake lake 

PF08208 2.98E-02 3.95E-02 4.52E-02 8.85E-01 gut ferm ferm 

PF08536 2.13E-01 6.40E-02 6.44E-01 7.80E-02 soil soil soil 

PF08714 9.51E-03 2.60E-01 4.46E-01 2.84E-01 soil soil soil 

PF08773 2.20E-01 3.84E-02 2.97E-02 7.12E-01 gut ferm ferm 

PF08804 1.08E-02 8.74E-01 4.09E-02 7.48E-02 lake lake lake 

PF08814 2.06E-02 8.27E-02 1.16E-01 7.81E-01 gut ferm ferm 

PF08854 6.31E-01 6.90E-02 2.14E-01 8.64E-02 gut gut gut 

PF08869 6.29E-01 1.07E-01 2.80E-02 2.36E-01 gut gut gut 

PF08883 3.20E-02 3.52E-02 8.51E-01 8.14E-02 soil soil soil 

PF08931 2.06E-02 7.81E-01 8.27E-02 1.16E-01 lake lake lake 

PF08941 3.58E-02 4.02E-02 8.81E-01 4.33E-02 soil soil soil 

PF08958 5.89E-01 5.97E-02 2.32E-01 1.19E-01 gut gut gut 

PF08963 5.89E-01 5.97E-02 2.32E-01 1.19E-01 gut gut gut 

PF08968 5.89E-01 5.97E-02 2.32E-01 1.19E-01 gut gut gut 

PF08974 1.09E-01 5.47E-02 1.26E-01 7.10E-01 gut ferm ferm 

PF08992 8.57E-02 7.22E-02 1.47E-01 6.95E-01 ferm ferm ferm 

PF09001 7.81E-01 8.27E-02 2.06E-02 1.16E-01 gut gut gut 

PF09009 3.20E-02 3.81E-02 1.95E-01 7.35E-01 ferm ferm ferm 

PF09015 9.79E-03 4.47E-02 5.09E-02 8.95E-01 ferm ferm ferm 

PF09021 2.13E-01 1.52E-01 1.60E-01 4.74E-01 ferm ferm ferm 

PF09028 1.82E-02 7.12E-01 1.54E-01 1.16E-01 lake lake lake 

PF09044 1.37E-02 4.67E-02 8.61E-01 7.85E-02 soil soil soil 

PF09056 1.49E-02 6.23E-02 7.96E-01 1.27E-01 soil soil soil 

PF09059 1.08E-02 4.09E-02 8.74E-01 7.48E-02 soil soil soil 

PF09078 1.08E-02 2.41E-01 7.48E-02 6.74E-01 ferm ferm ferm 

PF09082 2.06E-02 8.15E-02 2.01E-01 6.97E-01 ferm ferm ferm 

PF09143 1.37E-02 4.96E-02 8.45E-01 9.18E-02 soil soil soil 

PF09160 1.61E-02 7.82E-02 8.17E-01 8.87E-02 soil soil soil 

PF09194 1.82E-02 5.41E-02 8.09E-01 1.19E-01 soil soil soil 

PF09203 8.69E-01 6.43E-02 1.65E-02 5.06E-02 gut gut gut 

PF09204 8.12E-01 3.46E-02 8.27E-03 1.46E-01 gut gut gut 

PF09208 1.47E-01 7.25E-01 2.24E-02 1.06E-01 lake lake lake 

PF09218 7.81E-01 8.27E-02 2.06E-02 1.16E-01 gut gut gut 

PF09221 9.66E-02 5.97E-02 7.47E-01 9.71E-02 soil lake soil 

PF09223 1.35E-01 1.89E-01 6.04E-01 7.18E-02 soil soil soil 

PF09225 2.10E-01 1.06E-02 4.55E-01 3.25E-01 soil soil soil 

PF09226 1.82E-02 5.41E-02 8.09E-01 1.19E-01 soil soil soil 

PF09233 8.51E-01 5.43E-02 9.25E-03 8.51E-02 gut gut gut 

PF09391 8.25E-01 4.80E-02 1.03E-01 2.46E-02 gut gut gut 

PF09392 9.51E-01 1.86E-02 4.03E-03 2.66E-02 gut gut gut 



PF09393 2.13E-01 1.60E-01 5.14E-01 1.13E-01 soil soil soil 

PF09412 3.83E-02 3.72E-02 3.69E-02 8.88E-01 ferm ferm ferm 

PF09449 2.06E-02 8.27E-02 7.81E-01 1.16E-01 soil gut gut 

PF09628 2.32E-01 5.89E-01 5.97E-02 1.19E-01 lake lake lake 

PF09642 2.32E-01 5.89E-01 5.97E-02 1.19E-01 lake lake lake 

PF10054 1.09E-01 8.22E-01 4.93E-02 2.03E-02 lake lake lake 

PF10120 1.11E-01 7.34E-01 6.89E-02 8.57E-02 lake lake lake 

PF10634 2.54E-03 3.82E-01 6.80E-02 5.48E-01 ferm ferm ferm 

PF11102 9.48E-01 1.86E-02 4.03E-03 2.97E-02 gut ferm ferm 

PF11419 2.06E-02 8.27E-02 7.81E-01 1.16E-01 soil soil soil 

PF11428 2.32E-01 5.97E-02 5.89E-01 1.19E-01 soil soil soil 

PF11429 2.15E-01 3.40E-02 5.84E-01 1.67E-01 soil gut gut 

PF11432 2.06E-02 7.81E-01 8.27E-02 1.16E-01 lake lake lake 

PF11436 2.32E-01 5.97E-02 5.89E-01 1.19E-01 soil gut gut 

PF11497 2.06E-02 8.27E-02 7.81E-01 1.16E-01 soil soil soil 

PF11644 2.06E-02 7.81E-01 8.27E-02 1.16E-01 lake lake lake 

PF11708 1.12E-01 8.82E-02 7.20E-01 7.99E-02 soil gut gut 

PF11724 3.27E-01 1.51E-02 5.63E-01 9.54E-02 soil soil soil 

PF12106 2.38E-01 5.63E-01 9.38E-02 1.05E-01 lake lake lake 

PF12134 1.09E-01 7.94E-02 7.46E-01 6.60E-02 soil soil soil 

PF12924 3.88E-02 4.22E-02 8.74E-01 4.53E-02 soil soil soil 

PF14511 1.68E-02 1.32E-01 7.70E-01 8.07E-02 soil gut gut 

PF14562 2.06E-02 8.27E-02 7.81E-01 1.16E-01 soil ferm ferm 

PF15009 2.20E-01 3.84E-02 7.12E-01 2.97E-02 soil gut gut 

PF18484 1.08E-02 3.41E-01 5.74E-01 7.48E-02 soil gut gut 

PF18681 2.32E-01 5.97E-02 5.89E-01 1.19E-01 soil soil soil 

PF18882 1.11E-01 6.89E-02 7.34E-01 8.57E-02 soil soil soil 

 

  



Table S7. Reasons of the C-I-TASSER generated un-foldable model for 29 cases of 204 Pfam 

validation dataset. “Combined” means MSA used in C-I-TASSER are generated from the 

combined four biomes, “MetaSource” means MSA used in C-I-TASSER are generated from the 

MetaSource selected biome. “Note” column shows the reason why C-I-TASSER failed with this 

target.  

 

Pfam 
TM-score Neff 

Note 
Combined MetaSource Combined MetaSource 

PF00284 0.337 0.487 15.9 9.2 Flexible region in experimental structure 

PF00631 0.301 0.298 100.0 97.5 Flexible region in experimental structure 

PF01049 0.143 0.221 95.0 93.9 Flexible region in experimental structure 

PF01340 0.238 0.259 4.4 3.0 
Low Neff and flexible region in experimental 
structure 

PF01780 0.399 0.454 131.1 114.9 
Bad N/C terminal orientation of C-I-TASSER 

model in N/C terminal due to sparse MSA 

PF02240 0.355 0.409 4.1 3.9 Low Neff 

PF02315 0.297 0.275 6.9 5.5 
Low Neff, flexible region in experimental 

structure and sparse MSA in local region 

PF02888 0.152 0.167 20.6 20.2 Flexible region in experimental structure 

PF02921 0.250 0.204 135.9 122.1 Sparse MSA in local region 

PF02975 0.359 0.346 25.9 23.0 Flexible region in experimental structure 

PF03110 0.255 0.402 61.4 57.7 Flexible region in experimental structure 

PF03660 0.214 0.192 17.5 15.4 Flexible region in experimental structure 

PF04739 0.356 0.344 44.2 41.7 Flexible region in experimental structure 

PF05354 0.456 0.461 108.6 92.8 Flexible region in experimental structure 

PF05370 0.429 0.433 6.4 5.0 Low Neff and sparse MSA in local region 

PF05551 0.371 0.372 168.3 31.7 Sparse MSA in local region 

PF05854 0.488 0.494 19.3 12.0 
One beta strand orientate in a strange direction 

in experimental structure 

PF06844 0.346 0.347 148.6 134.0 
Bad orientation of C-I-TASSER model in N/C 

terminal due to sparse MSA 

PF07352 0.315 0.313 101.0 78.4 Flexible region in experimental structure 

PF07408 0.424 0.430 22.2 18.6 Low Neff and sparse MSA in local region 

PF08127 0.251 0.298 92.7 92.3 Flexible region in experimental structure 

PF08208 0.467 0.457 54.6 52.4 Flexible region in experimental structure 

PF08992 0.284 0.303 15.0 7.0 
Low Neff and flexible region in experimental 
structure 

PF09218 0.434 0.426 9.0 7.2 Low Neff 

PF09642 0.268 0.332 15.3 9.4 Flexible region in experimental structure 

PF11428 0.295 0.318 39.2 37.6 Bad orientation of C-I-TASSER model 

PF11708 0.270 0.284 11.4 11.1 Flexible region in experimental structure 

PF12134 0.442 0.411 6.1 5.8 Low Neff 

PF18484 0.362 0.348 5.1 4.9 Low Neff 

Average 0.329 0.348 51.2 41.7  
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