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Abstract

X-ray crystallography is the major approach for determining atomic-level protein structures. Because not all proteins can be
easily crystallized, accurate prediction of protein crystallization propensity provides critical help in guiding experimental
design and improving the success rate of X-ray crystallography experiments. This study has developed a new
machine-learning-based pipeline that uses a newly developed deep-cascade forest (DCF) model with multiple types of
sequence-based features to predict protein crystallization propensity. Based on the developed pipeline, two new protein
crystallization propensity predictors, denoted as DCFCrystal and MDCFCrystal, have been implemented. DCFCrystal is a
multistage predictor that can estimate the success propensities of the three individual steps (production of protein material,
purification and production of crystals) in the protein crystallization process. MDCFCrystal is a single-stage predictor that
aims to estimate the probability that a protein will pass through the entire crystallization process. Moreover, DCFCrystal is
designed for general proteins, whereas MDCFCrystal is specially designed for membrane proteins, which are notoriously
difficult to crystalize. DCFCrystal and MDCFCrystal were separately tested on two benchmark datasets consisting of 12 289
and 950 proteins, respectively, with known crystallization results from various experimental records. The experimental
results demonstrated that DCFCrystal and MDCFCrystal increased the value of Matthew’s correlation coefficient by 199.7%
and 77.8%, respectively, compared to the best of other state-of-the-art protein crystallization propensity predictors. Detailed
analyses show that the major advantages of DCFCrystal and MDCFCrystal lie in the efficiency of the DCF model and the
sensitivity of the sequence-based features used, especially the newly designed pseudo-predicted hybrid solvent accessibility
(PsePHSA) feature, which improves crystallization recognition by incorporating sequence-order information with solvent
accessibility of residues. Meanwhile, the new crystal-dataset constructions help to train the models with more
comprehensive crystallization knowledge.
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Introduction
Accurate determination of protein three-dimensional (3D)
atomic structures is critical for understanding protein biological
function and drug design [1]. As the major approach for solving
protein 3D structures, X-ray crystallography [2] has contributed
approximately 80–90% of the structures deposited in the Protein
Data Bank (PDB) [3]. However, X-ray crystallography cannot be
used to determine the structures of all proteins. Specifically,
the success rate of X-ray crystallography is less than 10% in
protein structure determination [4]. The reason is that numerous
proteins cannot pass through all three successive steps
(production of protein material, purification and production of
crystals) in the protein crystallization process [5]. As a result,
large amounts of time and resources are wasted on non-
crystallizable proteins that fail in the crystallization process.
Therefore, accurate prediction of the crystallization propensity
of proteins from their sequences is significantly important for
improving the efficiency of X-ray structural biology studies.
In view of this, a number of protein crystallization propensity
predictors have been developed in recent decades.

Most existing predictors use statistical and machine-learning
algorithms with protein sequence information to estimate pro-
tein crystallization propensity. These predictors can be roughly
grouped into two categories, single-stage and multistage, accord-
ing to their prediction modes.

Single-stage predictors only predict whether a query protein
can be crystallized. Specifically, a protein will be predicted as a
crystallizable protein only when the predictor estimates that the
protein can pass through all three steps in the crystallization
process. In the early stage, single-stage predictors dominated the
field of crystallization propensity prediction, including CRYS-
TALP [6], TargetCrys [7], SVMCRYS [8], ParCrys [9], CRYSTALP2
[10] and XtalPred [11]. However, single-stage predictors have a
common drawback: they cannot predict the success propensity
of each individual protein crystallization step (production of
protein material, purification or production of crystals), which
seriously restricts their applicability.

To overcome the defects of single-stage predictors, a few
multistage predictors have been developed in recent years. Mul-
tistage predictors can estimate not only the success propen-
sity of the entire crystallization process but also the success
propensity of each individual crystallization step for a protein.

To the best of the authors’ knowledge, only three multistage
predictors are available: PPCpred [5], PredPPCrys [12] and Crysalis
[13]. Although these predictors have made great progress in pre-
dicting multistage protein crystallization propensity, challenges
remain.

First, the prediction accuracy of existing multistage predic-
tors is still not satisfactory, and there remains an urgent need
for new, high-performance multistage predictors. Specifically,
by revisiting the three existing multistage predictors, it was
found that all use traditional machine-learning models such as
the support vector machine (SVM) [14] as the base prediction
model. Moreover, these predictors use simple sequence-based
features, such as amino acid composition and physiochemical
properties, as input to machine-learning models. In view of
these observations, it would be promising to use more advanced
machine-learning models or to design novel effective discrimi-
native features to improve prediction performance. In addition,
the datasets used by these predictors were actually slightly out
of date because they were constructed from data deposited into
crystallization databases before 2011. As time goes on, previously
mistakenly annotated data are corrected, and large volumes
of new annotated data accumulate. Hence, constructing a new
high-quality dataset is necessary.

Second, there is an urgent need to design a specific crys-
tallization propensity predictor for membrane proteins (i.e. the
proteins appearing in cell membranes). Membrane proteins play
vital roles in various biological processes and account for more
than one-quarter of the human proteome [15]. Therefore, pre-
dicting the crystallization propensity of membrane proteins is
especially useful for further determining their structures using
X-ray crystallography. Nevertheless, predicting crystallization
propensity for membrane proteins is much more difficult than
for non-membrane proteins. At present, only two predictors are
available, MEMEX [16] and TMCrys [15], which were specially
designed to predict membrane protein crystallization propen-
sity. MEMEX utilized a naïve Bayes classifier [17] as the base
prediction model and incorporated amino acid composition and
physiochemical properties as the input of the model. Although
MEMEX achieved some success, it cannot meet the current appli-
cation requirement due to two potential defects. First, naïve
Bayes can perform well under the condition that the input
features are independent of each other. However, there may be
an interrelationship or dependency between most of the input
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features in MEMEX because they belong to the physiochemical
properties of amino acids. As a result, the naïve Bayes clas-
sifier cannot achieve the optimal performance. Moreover, the
dataset used for training the prediction model of MEMEX was
out of date. TMCrys was a recently released predictor, which
used the extreme gradient boosting [18] algorithm to ensemble
multiple decision tree models [19] on the newly constructed
dataset and made great progress for membrane protein crys-
tallization propensity prediction. Nevertheless, two potential
drawbacks of TMCrys motivated us to develop a new mem-
brane protein crystallization propensity predictor in this study.
First, the dataset used for training TMCrys included some non-
membrane proteins selected from the TargetTrack database [20,
21]. As TMCrys was trained on a dataset of mixed membrane and
non-membrane proteins, it may have decreased prediction per-
formance on membrane proteins. Second, decision tree, as one of
the most simplified machine-learning models, cannot learn the
hidden knowledge among the input features, thereby leading to
suboptimal performance in most cases. Therefore, it is possible
that more advanced machine-learning methods, such as deep
learning, may further improve the prediction performance.

This study has tried to improve prediction performance of
protein crystallization propensity from two aspects: designing
a new effective feature representation and applying powerful
deep learning techniques. In particular, a new feature, pseudo-
predicted hybrid solvent accessibility (PsePHSA), has been
proposed, which combines the sequence-order information
with the solvent accessibility of residues in a protein. This
newly designed feature was then integrated with other
existing sequence-based features to form a more discriminative
feature representation. Next, a new pipeline for crystallization
propensity prediction was designed by applying a recently
developed powerful deep learning model, i.e. the deep-cascade
forest (DCF) [22], together with the newly developed feature
representation. Because of the importance of dataset quality
to prediction performance, two new high-quality bench-
mark datasets, BD_CRYS and BD_MCRYS, were constructed.
BD_CRYS is a general dataset, and BD_MCRYS is a specially
constructed dataset consisting of membrane proteins. Finally,
two new crystallization propensity predictors, DCFCrystal and
MDCFCrystal, were implemented on BD_CRYS and BD_MCRYS,
respectively, using the proposed pipeline. DCFCrystal is a
multistage predictor for general proteins, and MDCFCrystal is
a single-stage predictor for membrane proteins. (The reason
that MDCFCrystal cannot be implemented as a multistage
predictor is explained in Section ‘Pipeline for crystallization
propensity prediction’.) The predictors and benchmark datasets
are freely available at http://csbio.njust.edu.cn/bioinf/dcfcrystal/
or http://202.119.84.36:3079/dcfcrystal/. Experimental results
on benchmark datasets have demonstrated the efficacy of the
proposed predictors, and the following three observations can
be made: first, the proposed PsePHSA feature helps to improve
the prediction accuracy of protein crystallization propensity;
second, DCF outperforms several popular traditional machine-
learning models and is a suitable deep learning technique for
predicting crystallization propensity; and third, DCFCrystal
and MDCFCrystal outperform other state-of-the-art protein
crystallization propensity predictors.

Materials and methods
Benchmark datasets

Four benchmark datasets, BD_CRYS, BD_MCRYS, CRYS7172 and
CRYS2000, were used to examine the efficacy of the proposed

Table 1. Statistical composition of MF_DS, PF_DS, CF_DS and CRYS_DS

Dataset Subset Num_P a Num_N b

MF_DS MF_TR 5769 14 022
MF_TE 1399 3548

PF_DS PF_TR 1840 5559
PF_TE 458 1391

CF_DS CF_TR 1581 603
CF_TE 403 143

CRYS_DS CRYS_TR 1234 18 557
CRYS_TE 321 4626

aNum_P is the number of positive samples.
bNum_N is the number of negative samples.

methods. CRYS7172 and CRYS2000 were datasets taken from
[5, 6], and BD_CRYS and BD_MCRYS were datasets newly con-
structed in this study.

BD_CRYS

BD_CRYS consists of four subsets, MF_DS, PF_DS, CF_DS and
CRYS_DS, which were constructed as follows. First, 50 275
recently deposited proteins were extracted from the TargetTrack
database [20] and divided into four classes: production of protein
material failed (MF), purification failed (PF), production of
crystals failed (CF) and crystallizable (CRYS) (see details in Texts
S1 and S2 in the Supplementary Information available online at
https://academic.oup.com/bib). Specifically, MF proteins fail in
the first crystallization step; PF proteins succeed in the first step
but fail in the second step; CF proteins succeed in the previous
two steps but fail in the last step; and CRYS proteins can pass
through all three crystallization steps. For each class, the CD-HIT
software [23] was used to remove redundant sequences and to
keep proteins below 40% sequence identity. After this step, the
numbers of MF, PF, CF and CRYS proteins were 18 523, 7164, 815
and 2106, respectively.

Then four datasets were constructed (MF_RDS, PF_RDS,
CF_RDS and CRYS_RDS) using the strategy proposed in [5]. In
MF_RDS, MF proteins were used as negative samples, and the
remaining proteins (PF, CF and CRYS) were used as positives;
in PF_RDS, the negative set consisted of PF proteins, and the
positive set consisted of CF and CRYS proteins; in CF_RDS, only
CF proteins were considered as negatives, and CRYS proteins
were used as positives; and in CRYS_RDS, CRYS proteins were
selected as positives, and MF, PF and CF proteins were used as
negatives.

For each constructed dataset, the CD-HIT software was used
with a threshold of 40% to further remove redundant sequences.
In this way, four nonredundant datasets, MF_DS, PF_DS, CF_DS
and CRYS_DS, were generated. For each nonredundant dataset,
20% of the sequences were randomly selected to form a test
subset, and the remaining sequences formed a training subset.
The training subsets were denoted as MF_TR, PF_TR, CF_TR and
CRYS_TR, and the test subsets were denoted as MF_TE, PF_TE,
CF_TE and CRYS_TE. Table 1 shows the details of the statistical
composition of these datasets.

BD_MCRYS, CRYS7172 and CRYS2000

BD_MCRYS is a specifically curated benchmark dataset for
membrane protein crystallization propensity prediction (refer
to details in Text S3 in the Supplementary Information available
online at https://academic.oup.com/bib). BD_MCRYS consists of
a training subset (MC_TR) and a test subset (MC_TE). CRYS7172
includes TRAIN3587 (training subset) and TEST3585 (test subset),
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Table 2. Statistical composition of BD_MCRYS, CRYS7172 and
CRYS2000

Dataset Subset Num_P a Num_N b

BD_MCRYS MC_TR 511 3569
MC_TE 129 891

CRYS7172 TRAIN3587 1204 2383
TEST3585 1204 2381

CRYS2000 TRAIN1500 756 744
TEST500 244 256

aNum_P is the number of positive samples (crystallizable proteins).
bNum_N is the number of negative samples (non-crystallizable proteins).

while CRYS2000 contains TRAIN1500 (training subset) and
TEST500 (test subset). A statistical summary of these datasets is
provided in Table 2.

Feature representation

In this work, a newly developed feature, pseudo-predicted
hybrid solvent accessibility (PsePHSA), and four existing
sequence-based features, including amino acid composition
(AAC) [6], dipeptide composition (DPC) [24], pseudo-amino acid
composition (PseAAC) [25] and pseudo-position specific scoring
matrix (PsePSSM) [26], were used to predict crystallization
propensity.

Given a protein with L residues, the corresponding AAC, DPC,
PseAAC, PsePSSM and PsePHSA features can be represented as
five types of vectors with dimensionalities of 20, 400, 68, 180
and 54, respectively. These vectors can then be serially combined
to form a final vector with the dimensionality of 722 as the
input to the machine-learning model. A detailed description of
AAC, DPC, PseAAC and PsePSSM is provided in Text S4 in the
Supplementary Information available online at https://academi
c.oup.com/bib, and details of PsePHSA are given in the following
paragraph.

Previous studies [27] have demonstrated that a protein’s
microscopic surface properties have a critical impact on
the protein’s crystallization behaviour. Specifically, release
of structured water from the protein’s surface is the main
driving force for crystallization. Therefore, there may be a
close relationship between solvent accessibility (i.e. accessible
surface area (ASA) [28]) of a residue and crystallization for a
protein. In other words, the information extracted from the
ASA of a residue may help to predict crystallization propensity.
However, when predicting crystallization, there is no real
information about ASAs of residues in proteins. Therefore, the
predicted ASAs of residues generated by the SANN software
[29] were used to replace the real ASAs of residues, and a new
predicted-ASA-based feature, pseudo-predicted hybrid solvent
accessibility (PsePHSA), was further designed as described
below.

Give a protein with L residues, the first step was to use SANN
to generate its predicted hybrid solvent accessibility (PHSA) pro-
file (L rows and six columns), denoted as Fphsa = (qi,j )L×6, where
qi,1 , qi,2 and qi,3 are, respectively, the probabilities that the ith
residue belongs to three solvent accessibility classes (buried (B),
intermediate (I) and exposed (E)) and qi,4 , qi,5 and qi,6 are the
ASA, relative ASA (RASA) [28] and Z-score values for RASA pre-
diction [29] for the ith residue, respectively. Then, the PsePHSA
feature of this protein, denoted by FPsePHSA, can be generated in
the following two steps.

Step I. Calculate the PHSA composition:

The PHSA composition, represented as sphsa, is a 6D vector and
can be formulated as:

sphsa = (s1, s2, . . . , s6)
T (1)

where sj = ∑L
i=1 qi, j/L and T represents the transpose of the

vector.

Step II. Calculate the correlation factors:
The u-tier correlation factor, denoted as ηu

j , for the jth column
of Fphsa can be calculated by coupling the u-most contiguous
PHSA scores along the protein sequence as follows:

ηu
j =

L−u∑
i=1

(
qi,j − qi+u,j

)2
/ (L − u) (2)

Let ηu = (ηu
1 , ηu

2 . . . , ηu
6 )T be the 6D u-tier correlation factor vec-

tor and U (U < L) be the maximum value of u(u = 1, 2, . . . , U);
then FPsePHSA can be generated by serially combining sphsa

with U correlation factor vectors as follows: FPsePHSA = (sphsa, η1,
η2, . . . , ηU)T.

In this work, the value of U was set to 8. Hence, the dimen-
sionality of FPsePHSA was 6 + 6 × 8 = 54.

Deep-cascade forest

The deep-cascade forest (DCF) model, which has been recently
proposed by Zhou et al. [22], was used as the base model to
predict protein crystallization propensity. DCF consists of mul-
tiple cascade levels, each of which contains multiple random
forests (RFs) [30] and complete-random tree forests (CRTFs) [31].
Moreover, each level of DCF receives the feature information
processed by its preceding level and sends its processing result
to the next level. Figure 1 illustrates the DCF workflow.

As shown in Figure 1, let f1 be the original input feature vector
with M dimensionality, N be the number of cascade levels, C
be the number of classes and n1 and n2 be the numbers of RFs
and CRTFs at each level, respectively. Initially, each forest (RF or
CRTF) in the first level is fed with f1 to output a class vector with
dimensionality C, including the probabilities of belonging to C
classes. Then all class vectors are serially combined with f1 to
form a new feature vector f2 with dimensionality M + (n1 + n2)C.
Subsequently, f2 is fed to all forests in the second level, and the
corresponding class vectors are serially combined with f1 to form
a new vector f3 with dimensionality M + (n1 + n2)C, which is
used as the input feature vector to the third level. This procedure
continues until the Nth level, and the average value of the output
class vectors for all forests at the Nth level is used as the final
prediction result.

In this work, the values of M, C , n1 and n2 were 722, 2, 3
and 3, respectively. Moreover, the value of N is automatically
determined as follows: after expanding a new level, the per-
formance of the whole cascade is re-evaluated; if there is no
significant performance improvement, the training procedure is
stopped. The DCF source code can be downloaded at https://gi
thub.com/kingfengji/gcForest.

Pipeline for crystallization propensity prediction

A new pipeline has been proposed in this study, which applies
the DCF model with multiple types of sequence-based features
to predict protein crystallization propensity. Figure 2 illustrates
the workflow of this pipeline.

As shown in Figure 2, in the training stage, a training
sequence set is transformed into a training feature vector set
by feature representation and serial combination strategies
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Figure 1. Deep-cascade forest workflow.

Figure 2. Proposed pipeline for protein crystallization propensity prediction

using DCF with multiple types of sequence-based features.

(see details in Section ‘Feature representation’). Then, a DCF
model is trained on the generated feature vector set as the final
prediction model. In the prediction stage, for a query sequence, a
discriminative feature vector can be generated by the strategies
used in the training stage; this feature vector is then used as
input to the trained DCF to output the prediction result.

Based on the proposed pipeline, two further protein crys-
tallization predictors, denoted as DCFCrystal and MDCFCrys-
tal, were developed. DCFCrystal is a multistage predictor for
general proteins. Specifically, DCFCrystal is composed of four
sub-predictors, MFCrystal, PFCrystal, CFCrystal and CRYSCrys-
tal, which are trained on MF_TR, PF_TR, CF_TR and CRYS_TR,
respectively. MFCrystal, PFCrystal and CFCrystal are separately
used to predict the success propensities of the three individual

crystallization steps (production of protein material, purifica-
tion and production of crystals); CRYSCrystal is used to pre-
dict the success propensity of the entire protein crystallization
process. MDCFCrystal is trained on MC_TR as a single-stage
predictor and is specially designed for membrane proteins. The
reason that MDCFCrystal cannot be implemented as a multi-
stage predictor is the following: as described in Text S3 in the
Supplementary Information available online at https://academi
c.oup.com/bib, the number of membrane proteins belonging to
class CF in BD_MCRYS is very limited. Therefore, the proteins in
BD_MCRYS were divided into two classes (crystallizable and non-
crystallizable proteins) rather than into four classes (MF, PF, CF
and CRYS proteins). As a result, only one training dataset, MC_TR,
could be constructed and used to implement a single-stage
predictor in BD_MCRYS.

Evaluation indices

To evaluate the performance of the proposed methods, four com-
monly used evaluation indices [32–41] (sensitivity (Sen), speci-
ficity (Spe), accuracy (Acc) and Matthew’s correlation coefficient
(MCC)) were used as described below:

Sen = TP/ (TP + FN) (3)

Spe = TN/ (TN + FP) (4)

Acc = (TP + TN) / (TP + FP + TN + FN) (5)

MCC = (TP × TN − FP

× FN)/
√

(TP + FP) × (TN + FN) × (TP + FN) × (TN + FP) (6)

where TP, FP, TN and FN represent true positives, false positives,
true negatives and false negatives, respectively.

These four indices are threshold-dependent. Therefore,
selecting an appropriate threshold for fair comparisons among
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Figure 3. MCC and AUC for DCF models with two feature combinations on seven training datasets over cross-validation and on seven test datasets over independent

validation.

various methods is important. In this study, the threshold T was
chosen, which maximizes MCC on the training datasets over 5-
fold cross-validation. In addition, the area under the receiver
operating characteristic curve (AUC) was used as another
important evaluation index.

Results and discussion
PsePHSA is helpful in predicting protein crystallization
propensity

This section examines to what extent the proposed PsePHSA fea-
ture can help to predict crystallization propensity. Specifically,
two separate serial feature combinations, ADPP (AAC + DPC +
PseAAC+PsePSSM) and ADPPP (AAC + DPC+ PseAAC+PsePSSM+
PsePHSA), were used as the inputs to four machine-learning
models, SVM, RF, CRTF and DCF, and the performance of each
model was then evaluated. Figure 3 illustrates the performance
of MCC and AUC for DCF models with two feature combinations
on seven training datasets over 5-fold cross-validation and seven
test datasets over independent validation (the performance of
the other three indices, including Sen, Spe and Acc, is given in
Text S5 in the Supplementary Information available online at
https://academic.oup.com/bib). In addition, the performance of
the other three models (SVM, RF and CRTF) with two feature
combinations is summarized in Text S5.

Figure 3 shows that PsePHSA helps improve protein crystal-
lization propensity prediction accuracy. Specifically, over cross-
validation, DCF-ADPPP (the DCF model using ADPPP as input)
achieved 8.5% and 2.1% average improvements of MCC and
AUC, respectively, on seven training datasets, compared to DCF-
ADPP (the DCF model using ADPP as input). Over independent
validation, the MCC and AUC values of DCF-ADPPP were also
higher than those of DCF-ADPP on each test dataset.

The good performance of PsePHSA can be mainly attributed
to the possible close relationship between the ASA of residue and
crystallization for a protein. To further investigate this point, the
following two computational experiments were carried out.

Experiment I. Given a dataset, it was split into a positive-class
and a negative-class subset using the class labels of the samples.
For each subset, the average values of ASA and RASA, denoted
as asavg_pl and rasavg_pl, respectively, were calculated from the
protein-level viewpoint as follows:

asavg_pl =
Np∑
i=1

Li∑
j=1

asai,j

/
Np (7)

rasavg_pl =
Np∑
i=1

Li∑
j=1

rasai,j

/
Np (8)

where Np is the number of protein sequences in this subset, Li is
the length of the ith protein and asai,j and rasai,j are the values of
ASA and RASA, respectively, of the jth residue in the ith protein.

Experiment II. Given a dataset, it was split into positive-
class and negative-class subsets. For each subset, the average
values of ASA and RASA, denoted as asavg_rl and rasavg_rl,
respectively, were calculated from the residue-level viewpoint as
follows:

asavg_rl =
Np∑
i=1

Li∑
j=1

asai,j

/ Np∑
i=1

Li (9)

rasavg_rl =
Np∑
i=1

Li∑
j=1

rasai,j

/ Np∑
i=1

Li (10)

Figure 4 shows asavg_pl, rasavg_pl, asavg_rl and rasavg_rl for
two classes on seven training datasets. Figure 4 indicates that
proteins with lower ASA and RASA values are more easily crys-
tallized. This can be explained by the following observation: on
five of the seven datasets (MF_TR, PF_TR, CF_TR, CRYS_TR and
TRAIN3587), asavg_pl and rasavg_pl for the positive-class subset
were lower than the corresponding values for the negative-class
subset. Moreover, on six datasets (excluding MC_TR), asavg_rl
and rasavg_rl of the positive-class subset were lower than those
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Figure 4. Values of asavg_pl, rasavg_pl, asavg_rl and rasavg_rl for positive and negative classes on seven training datasets.

of the negative-class subset. This phenomenon can be further
explained according to previous work [27] as follows. Release of
structured water from a protein’s surface is the main thermo-
dynamic driving force for crystallization. A protein with smaller
ASA values releases water molecules more easily from its sur-
face; as a result, this protein is more easily crystallized. However,
it cannot escape notice that the values of asavg_pl, rasavg_pl,
asavg_rl and rasavg_rl for the positive-class subset were higher
than the corresponding values for the negative-class subset on
MC_TR. This result can be explained as follows: MC_TR had
the fewest positive-class proteins among all seven datasets (see
details in Section ‘Benchmark datasets’); the insufficiency of
positive-class proteins resulted in MC_TR showing a contrary
phenomenon to the other datasets.

In addition, the other four sequence-based features (AAC,
DPC, PseAAC and PsePSSM) also helped improve crystallization
propensity prediction accuracy. The contributions of these four
features are carefully analysed in Text S6 in the Supplementary
Information available online at https://academic.oup.com/bib.

Performance comparison between different prediction
models

This study compared the performance of the four machine-
learning models (DCF, SVM, RF and CRTF). Specifically, the ADPPP
feature combination was used as input to these models to eval-
uate their performance. Table 3 displays the performance of the
four models on seven test datasets over independent validation.
In addition, the performance of these models on seven training
datasets over 5-fold cross-validation is illustrated in Text S7 in
the Supplementary Information available online at https://aca
demic.oup.com/bib.

Table 3 shows that the performance of DCF was superior
to that of the other three models. Specifically, DCF had the
highest Acc, MCC and AUC values among all four models on
each test dataset. Taking CF_TE as an example, DCF achieved
6.5%, 15.4% and 1.4% average enhancements of Acc, MCC and
AUC values, respectively, compared to the other three models.
In addition, DCF shared the highest Sen values on CRYS_TE,
MC_TE and TEST500 and the highest Spe values on MF_TE,

PF_TE and TEST3585. However, SVM obtained the highest Spe
values on CRYS_TE and MC_TE, but the corresponding Sen values
were obviously lower than those for the other three models.
The reason for this was that too many positive samples were
predicted as negatives by SVM.

The superior performance of DCF can be mainly attributed
to its deep-cascade structure. Specifically, each layer in DCF
receives the feature information processed by its preceding
level, which helps improve prediction performance (see details
in [22]).

Performance comparison with the existing predictors

Performance comparison with the existing single-stage predictors

The predictors proposed in this study, i.e. DCFCrystal and
MDCFCrystal, were compared with seven existing single-stage
predictors, including ParCrys [9], OB-score [42], CRYSTALP2 [10],
SVMCRYS [8], TargetCrys [7], fDETECT [43] and DeepCrystal [44],
on two constructed test subsets, i.e. CRYS_TE and MC_TE. For
the purpose of fair comparison, the following two points should
be noted.

First, DCFCrystal is a multistage predictor and cannot be
directly compared with existing single-stage predictors. There-
fore, CRYSCrystal, which is the sub-predictor of DCFCrystal and
can be viewed as a single-stage predictor (see details in Section
‘Pipeline for crystallization propensity prediction’), was selected
as the prediction engine of DCFCrystal for purposes of compari-
son with the above predictors.

Second, some existing predictors cannot accept proteins with
longer length. For example, TargetCrys cannot accept proteins
with a length of more than 1000; DeepCrystal can only accept
proteins of length less than 800. Therefore, it is impossible
to compare the proposed predictors directly with them on
CRYS_TE and MC_TE. In view of this, the proteins that could
not be accepted by the existing predictors were removed from
CRYS_TE and MC_TE to form four new datasets: CRYS_TER1000,
CRYS_TER_800, MC_TER1000 and MC_TER800 (see details in
Text S8 in the Supplementary Information available online at
https://academic.oup.com/bib).
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Table 3. Performance of DCF, SVM, RF and CRTF on seven test datasets over independent validation

Dataset Model Sen (%) Spe (%) Acc (%) MCC AUC

MF_TE DCF 63.6 74.2 71.2 0.354 0.757
SVM 65.1 71.8 69.9 0.341 0.749
RF 70.8 65.2 66.8 0.326 0.740
CRTF 70.4 64.6 66.2 0.316 0.741

PF_TE DCF 40.4 89.3 77.2 0.333 0.762
SVM 57.6 76.6 71.9 0.318 0.753
RF 58.7 74.6 70.7 0.305 0.755
CRTF 71.0 66.0 67.2 0.322 0.753

CF_TE DCF 80.6 62.2 75.8 0.409 0.783
SVM 86.4 44.1 75.3 0.325 0.775
RF 77.2 65.7 74.2 0.398 0.777
CRTF 59.8 79.7 65.0 0.348 0.764

CRYS_TE DCF 60.4 88.4 86.6 0.339 0.863
SVM 55.1 88.6 86.5 0.309 0.845
RF 60.4 87.3 85.5 0.322 0.856
CRTF 59.5 87.8 86.0 0.324 0.857

MC_TE DCF 77.5 96.2 93.8 0.725 0.940
SVM 63.6 97.2 92.9 0.659 0.928
RF 72.1 96.5 93.4 0.698 0.929
CRTF 72.1 96.1 93.0 0.684 0.922

TEST3585 DCF 65.4 91.1 82.5 0.595 0.870
SVM 68.1 86.1 80.0 0.548 0.857
RF 73.0 80.8 78.2 0.526 0.848
CRTF 67.4 84.5 78.7 0.521 0.847

TEST500 DCF 89.8 80.5 85.0 0.704 0.923
SVM 89.8 78.5 84.0 0.686 0.919
RF 88.1 77.3 82.6 0.657 0.910
CRTF 84.4 83.2 83.8 0.676 0.915

Table 4 illustrates a performance comparison between six
existing predictors and DCFCrystal on CRYS_TER1000, which
consisted of proteins of length less than 1000. From Table 4,
it is clear that the performance of DCFCrystal is superior to
that of the other predictors in terms of Spe, ACC and MCC.
For example, compared with fDETECT, the second-best predictor
from the viewpoint of MCC, DCFCrystal achieved 19.9% (= (0.880–
0.734) / 0.734), 18.6% and 69.0% improvements in Spe, Acc and
MCC, respectively. In addition, DCFCrystal achieved a greater
than 100% increase in MCC compared with ParCrys, OB-score,
CRYSTALP2 and SVMCRYS. These four existing predictors had
higher Sen values but very low Spe values, less than 50%. The
reason for this was that they predicted too many false positives.
With the scenario that the number of negatives was far larger
than that of positives, the MCC values of these predictors were
quite low.

Table 5 shows a performance comparison between DCFCrys-
tal and DeepCrystal on CRYS_TER800, which consisted of pro-
teins with length less than 800. It is apparent that DCFCrystal
achieved better performance than DeepCrystal. Specifically, the
Spe, Acc and MCC of DCFCrystal were 23.8%, 20.1% and 25.2%
higher, respectively, than the corresponding values yielded by
DeepCrystal.

In addition, MDCFCrystal was further compared with the
existing single-stage predictors on MC_TER1000 and MC_TER800,
as described in Text S10 in the Supplementary Information
available online at https://academic.oup.com/bib.

Performance comparison with the existing multistage predictors

DCFCrystal was further compared with Crysalis [13], which is
the most recently released multistage predictor and includes

two versions, CrysalisI and CrysalisII. Specifically, the four sub-
predictors of DCFCrystal (MFCrystal, PFCrystal, CFCrystal and
CRYSCrystal) were separately compared with the corresponding
sub-predictors of CrysalisI and CrysalisII on four test subsets
(MF_TE, PF_TE, CF_TE and CRYS_TE), containing 12 289 proteins
in total (see details in Section ‘Benchmark datasets’). Figure 5
shows a performance comparison among CrysalisI, CrysalisII
and DCFCrystal on the four test datasets.

Figure 5 shows that the performance of DCFCrystal is supe-
rior to that of CrysalisI and CrysalisII. Specifically, DCFCrystal
achieved 32.4% and 199.7% average improvement in Acc and
MCC on the four test datasets, compared with the better per-
former of CrysalisI and CrysalisII. Taking CRYS_TE as an exam-
ple, the values of Acc and MCC for DCFCrystal were 19.8% (=
(0.866–0.723)/0.723) and 61.9% higher, respectively, than the cor-
responding values measured for CrysalisII. Moreover, on three
of the four datasets (PF_TE, CF_TE and CRYS_TE), DCFCrystal
had the highest values of Spe, reaching 89.3%, 62.2% and 88.4%,
respectively. In addition, although CrysalisI and CrysalisII had
slightly higher Spe values than DCFCrystal on MF_TE, the cor-
responding Sen values were significantly lower. The underly-
ing reason for this was that too many positive samples were
predicted as negatives by these two predictors.

Performance comparison with the existing membrane protein
predictors

MDCFCrystal was also compared with TMCrys [15], which
is a recently developed membrane protein crystallization
propensity predictor. Note that TMCrys does not output the
predicted crystallization propensity if it identifies a protein as
a non-membrane protein. Hence, it is impossible to evaluate
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Table 4. Performance comparison between DCFCrystal and six single-stage predictors on CRYS_TER1000

Predictor Sen (%) Spe (%) Acc (%) MCC P-value b

ParCrys a 75.0 44.5 46.5 0.098 5.3 × 10-9

OB-score a 84.7 46.2 48.8 0.155 1.5 × 10-8

CRYSTALP2 a 75.0 49.4 51.1 0.122 8.0 × 10-9

SVMCRYS a 76.6 45.4 47.5 0.111 6.6 × 10-9

TargetCrys a 40.6 86.9 83.8 0.192 3.8 × 10-8

fDETECT a 63.1 73.4 72.7 0.200 4.7 × 10-8

DCFCrystal 60.6 88.0 86.2 0.338 –

aResults computed using the corresponding web servers, which are listed in Text S9 in Supplementary Information available online at https://academic.oup.com/bib.
bThe P-values of student’s t-test for the difference in MCC values between DCFCrystal and the existing predictors. For example, the P-value for the difference in MCC
values between DCFCrystal and ParCrys is 5.3 × 10-9.

Table 5. Performance comparisons between DCFCrystal and DeepCrystal on CRYS_TER800

Predictor Sen (%) Spe (%) Acc (%) MCC P-value b

DeepCrystal a 79.3 70.9 71.5 0.270 8.1 × 10-7

DCFCrystal 60.8 87.8 85.9 0.338 –

aResults computed using the DeepCrystal server at https://deeplearning-protein.qcri.org.
bThe P-value for the difference in MCC values between DCFCrystal and DeepCrystal.

Figure 5. Performance comparison among CrysalisI, CrysalisII and DCFCrystal on four test datasets. The results for CrysalisI and CrysalisII were computed using the

Crysalis server at http://biotool.xmu.edu.cn/crysalis/.

directly the performance of the proposed predictor versus
TMCrys on MC_TE. In view of this, all the proteins that were
identified as non-membrane by TMCrys were removed from
MC_TE, and the remaining 950 proteins (93 crystallizable and
857 non-crystallizable) formed a new dataset, denoted as
MC_TE_RNM. Table 6 presents the performance comparison
between MDCFCrystal and TMCrys on MC_TE_RNM.

Table 6 reveals that the performance of the proposed pre-
dictor was significantly better than that of TMCrys. Concretely,
the Sen, Spe, Acc and MCC of MDCFCrystal were 8.2% (= (0.710–
0.656)/0.656), 13.8%, 13.4% and 77.8% higher, respectively, than
those of TMCrys, with P-value < 0.05.

In addition, the proposed predictors were further compared
with the predicted structure-based crystallization predictors, as
shown in Text S11 in the Supplementary Information available
online at https://academic.oup.com/bib.

Performance comparison with the existing predictors on the
proteins recently released in the PDB database

The proposed predictors were compared with the existing pre-
dictors using the proteins that have been recently deposited in
the PDB database. Specifically, we compared DCFCrystal with
ParCrys [9], OB-score [42], CRYSTALP2 [10], SVMCRYS [8], Tar-
getCrys [7], fDETECT [43], DeepCrystal [44] and Crysalis [13] on
a newly constructed test dataset, called CRYS387, which con-
tained 387 crystallizable proteins deposited in the PDB database
between 1 October 2019 and 31 December 2019 by X-ray crys-
tallography experiments. In CRYS387, each protein has less than
40% sequence identity with the proteins in the training dataset
for DCFCrystal (i.e. CRYS_TR). More details for CRYS387 can
be found in Text S12 in the Supplementary Information avail-
able online at https://academic.oup.com/bib. Table 7 provides
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Table 6. Performance comparison between MDCFCrystal and TMCrys on MC_TE_RNM

Predictor Sen (%) Spe (%) Acc (%) MCC P-value b

TMCrys a 65.6 84.8 82.9 0.374 2.4 × 10-7

MDCFCrystal 71.0 96.5 94.0 0.665 –

aResults computed using the TMCrys server at http://tmcrys.enzim.ttk.mta.hu.
bThe P-value for the difference in MCC values between MDCFCrystal and TMCrys.

Table 7. Performance comparison among DCFCrystal and eight exist-
ing predictors on CRYS387

Predictor TP FN Sen (%)

ParCrys a 205 182 53.0
OB-score a 201 186 51.9
CRYSTALP2 a 187 200 48.3
SVMCRYS a 138 249 35.7
TargetCrys a 97 290 25.1
fDETECT a 132 255 34.1
DeepCrystal a 165 222 42.6
Crysalis a, b 175 212 45.2
DCFCrystal c 241 146 62.3

aResults computed using the corresponding web servers, which are listed in Text
S9 in Supplementary Information available online at https://academic.oup.com/
bib.
bResults computed using CrysalisII, which is the sub-predictor of Crysalis.
cResults computed using CRYSCrystal, which is the sub-predictor of DCFCrystal.

the performance comparison results between DCFCrystal and
the existing predictors on CRYS387.

As described in Table 7, DCFCrystal correctly predicted the
most (241) crystallizable proteins among all the 9 compared
predictors. Compared with the second-best performer, namely,
ParCrys, the value of sensitivity of DCFCrystal was increased by
17.5%. However, we also noticed that DCFCrystal predicted many
(146) false negatives. Importantly, most of the existing predictors
predicted too many false negatives, accounting for more than
50% of the all of test samples. The underlying reason for this phe-
nomenon can be explained as follows. First, most of the existing
predictors, such as ParCrys and CRYSTALP2, were trained using
the out-of-date proteins, deposited in the database before 10
years. As a result, these predictors learnt the out-of-date knowl-
edge of crystallization and showed the poor performance when
being tested on the new proteins. Second, most of the crystal-
lization predictors aimed at correctly predicting the samples,
including crystallizable and non-crystallizable proteins, as much
as possible. Therefore, at the training stage, these predictors
were optimized based on the overall prediction performance,
such as MCC, rather than sensitivity, on the training dataset,
and accordingly these predictors cannot achieve the high value
of sensitivity on the test dataset. Third, there are some special
proteins in the test dataset, such as membrane proteins [45],
multidomain proteins [46] and metal-binding proteins [47], the
numbers of which are limited in public databases. As a result,
the existing machine-learning-based predictors could only learn
very limited crystallization knowledge and show the inferior
performance for these special proteins. To further illustrate this
point, we tested the performance of the above nine predictors for
predicting the crystallization propensity of membrane proteins,
multidomain proteins and metal-binding proteins, respectively,
in CRYS387, as shown in Text S13 in the Supplementary Infor-
mation available online at https://academic.oup.com/bib.

In addition, we have also compared the proposed MDCFCrys-
tal with the above existing predictors on another newly

constructed membrane dataset, called CRYS47, as shown in
Text S14 in the Supplementary Information available online
at https://academic.oup.com/bib. The performance comparison
clearly demonstrates that MDCFCrystal outperforms the existing
predictors.

Does the proposed pipeline actually work?

The previous sections have revealed that the predictors pro-
posed in this study outperformed existing predictors. The good
performance of the proposed predictors was mainly due to two
reasons: first, the proposed predictors were implemented on
new, high-quality datasets that contained a large proportion of
correct crystallization knowledge. Moreover, the proposed pre-
dictors were trained by the proposed machine-learning-based
pipeline, which can effectively learn the knowledge buried in
the datasets. To further demonstrate the efficacy of the pro-
posed pipeline, a new single-stage predictor, CDCFCrystal, was
successfully used on the existing CRYS7172 dataset with the
pipeline; then CDCFCrystal was compared with existing pre-
dictors such as TargetCrys [7] and SVMCRYS [8], which were
also implemented on CRYS7172, as described in Text S15 in
the Supplementary Information available online at https://aca
demic.oup.com/bib. The superior performance of CDCFCrystal
has demonstrated that the proposed pipeline actually works to
predict crystallization propensity.

Case studies

Case studies at the protein family level

Four protein families with IDs of PF13419, PF00583, PF13649 and
PF03061 were selected from the Pfam database [48]. Specifically,
for each family, three predictors (DCFCrystal, DeepCrystal
and fDETECT) that showed the best MCC performance in the
Section ‘Performance comparison with the existing single-stage
predictors’ were used to predict the crystallization propensities
of the corresponding proteins. However, for these families,
many proteins did not have the annotations of crystallization
propensity, which means that their prediction results could
not be directly verified. In light of this, for each family, only
those proteins that were also included in the CRYS_TER800 test
dataset were selected for crystallization propensity prediction.
Accordingly, 18, 12, 38 and 32 proteins were selected from
PF13419, PF00583, PF13649 and PF03061, respectively. Details
of these proteins are given in Text S16 in the Supplementary
Information available online at https://academic.oup.com/bib.
Table 8 provides the performance comparison of DCFCrystal,
DeepCrystal and fDETECT on the selected proteins from the four
families.

Table 8 shows that DCFCrystal outperformed DeepCrystal
and fDETECT. Specifically, DCFCrystal correctly predicted only 1
positive sample (i.e. crystallizable protein) with one false positive
from all 18 proteins on PF13419. In contrast, both DeepCrystal
and fDETECT predicted a large number of (14) false positives.
On PF00583, DCFCrystal correctly predicted 7 out of 12 proteins,
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Table 8. Performance comparison among DCFCrystal, DeepCrystal and fDETECT on four protein families

Family Predictor TP FP TN FN

PF13419 DCFCrystal 1 1 16 0
DeepCrystal 1 14 3 0
fDETECT 1 14 3 0

PF00583 DCFCrystal 2 5 5 0
DeepCrystal 2 6 4 0
fDETECT 1 6 4 1

PF13649 DCFCrystal 0 0 38 0
DeepCrystal 0 18 20 0
fDETECT 0 23 15 0

PF03061 DCFCrystal 1 12 19 0
DeepCrystal 1 24 7 0
fDETECT 1 18 13 0

Figure 6. Visualization of predicted and native structures for the four selected crystallizable proteins. The pictures were made with PyMOL.

whereas DeepCrystal and fDETECT correctly predicted 6 and 5
proteins, respectively. In the case of PF13649, DCFCrystal cor-
rectly predicted all the 38 negatives with no false positives. As a
comparison, DeepCrystal and fDETECT predicted 18 and 23 false
positives, respectively. In the case of PF03061, the number of false
positives predicted by DCFCrystal was reduced by 12 and 6 when
compared with DeepCrystal and fDETECT, respectively. These
prediction results demonstrate that DCFCrystal could correctly
predict crystallizable proteins of a protein family with fewer
false positives, thereby saving time and resources in protein
crystallization efforts.

In addition, it is noteworthy that DCFCrystal predicted more
false positives of the PF03061 family than other families. To
further investigate this phenomenon, we reviewed the details
of the PF03061 family in the Pfam database and found that
this family comprises of a wide variety of enzymes, particularly
thioesterases [49]. Moreover, for all of 12 false positive proteins
of PF03061, we searched their details from the UniProt database
[50] based on the corresponding IDs and found that 6 proteins
(UniProt IDs: Q120C0, A1WNZ2, A4X9A9, A9WKX8, Q6N145 and
Q6N330) were annotated as the thioesterase superfamily. In light
of this, we conclude that DCFCrystal is not suitable for predicting
the crystallization propensity of the proteins belonging to the
thioesterase family.

Case studies on the individual protein level

Four crystallizable proteins were selected from the CRYS_TE test
dataset for case studies. These proteins originated from the Tar-
getTrack database, and their IDs were JCSG_371319, JCSG_367116,
JCSG_359159 and JCSG_370329. These proteins are also deposited
in the PDB database, where the corresponding IDs are 2pke, 2ig6,
2fqp and 2ou6.

For each selected protein, DCFCrystal can correctly predict
whether it is a crystallizable protein. More specifically, the
predicted crystallization propensities were 0.830, 0.732, 0.651
and 0.525 for JCSG_371319, JCSG_367116, JCSG_359159 and
JCSG_370329, respectively. Therefore, it can be further speculated
that JCSG_371319 is the most easily crystallized among the four
proteins; on the other hand, JCSG_370329 may be the most
difficult to crystallize. In other words, the protein with higher
crystallization propensity as identified by the proposed predictor
may be more easily crystallized. To further demonstrate this
point, the following computational experiment was carried out.
First, I-TASSER [51–53] was used to predict the 3D structures
of the four proteins; then the native 3D structures of these
proteins were downloaded from the PDB database; finally, for
each protein, the structural similarity, measured by the TM-
score [54], between the predicted and native structures was
calculated. In this experiment, a protein with a higher TM-score
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was considered to be more easily crystallized. The underlying
reasoning is explained below.

For a query protein, a high TM-score means a high similarity
between its predicted and native structures. This high simi-
larity can be mainly attributed to I-TASSER being able to find
many appropriate structural segments with high similarity to
the native structure of this query protein from the PDB database
to model the predicted structure. In other words, numerous crys-
tallizable proteins having similar structures to this query protein
have been deposited in the PDB database from X-ray crystal-
lography experiments. Because proteins with similar structures
have similar functions and attributes, the query protein can be
easily crystallized.

Figure 6 illustrates the predicted and native structures, as
well as the corresponding TM-score values for the four proteins
(the pictures in Figure 6 were made with PyMOL [55]). Note that
JCSG_371319 and JCSG_370329, respectively, had the highest and
lowest TM-scores (0.971 and 0.616), which may demonstrate that
JCSG_371319 is the most easily crystallized and that JCSG_370329
is the most difficult to crystallize among the four proteins. By
combining these TM-scores with the crystallization propensi-
ties predicted earlier, it can be further observed that proteins
with higher predicted propensity have higher TM-scores. This
phenomenon may demonstrate that DCFCrystal can correctly
predict the level of difficulty of protein crystallization. There-
fore, the proposed predictor may accurately select the most
easily crystallized targets for X-ray crystallography experiments
from candidate proteins, which helps accelerate deposition of
structures into the PDB database.

Conclusions
In this study, two protein crystallization propensity predictors,
DCFCrystal and MDCFCrystal, were implemented. DCFCrystal is
a multistage predictor for general proteins, and MDCFCrystal is
a single-stage predictor for membrane proteins. By comparison
with existing crystallization propensity predictors, the efficacy
of DCFCrystal and MDCFCrystal has been demonstrated. The
superior performance of the proposed predictors is mainly due
to the following two aspects. First, the proposed predictors were
implemented on two newly constructed benchmark datasets,
BD_CRYS and BD_MCRYS, which were composed of recently
annotated proteins and contained a great deal of correct crys-
tallization knowledge. Moreover, the proposed predictors were
trained by the designed machine-learning-based pipeline, which
can effectively learn the crystallization knowledge buried in the
datasets. Specifically, this pipeline used the DCF deep learn-
ing model with multiple sequence-based features to predict
protein crystallization propensity. In particular, PsePHSA was a
newly developed feature that significantly improved crystalliza-
tion propensity prediction accuracy.

Despite their good performance, the proposed predictors still
have potential disadvantages. First, the input of DCF is generated
by serially fusing five types of features, which may result in infor-
mation redundancy. In future work, the authors will investigate
other strategies to effectively fuse multiple features. Second,
MDCFCrystal cannot be implemented as a multistage predictor
because there are very few membrane proteins belonging to the
CF class in the benchmark dataset. In the future, MDCFCrystal
will be improved as a multistage predictor by including more CF
membrane proteins in the TargetTrack database.

Note that the proposed pipeline is specifically designed to
predict protein crystallization propensity. In view of the diversity
of protein attributes, the applicability of the proposed pipeline to

other protein attribute prediction problems, such as antifreeze
protein prediction [56] and DNA-binding protein prediction [57,
58], will be investigated.

Key Points
• Accurate prediction of protein crystallization propen-

sity provides critical help in improving the success
rate of X-ray crystallography experiments. This study
has designed a new machine-learning-based pipeline,
which uses a newly developed deep-cascade forest
(DCF) model with multiple types of sequence-based
features to predict protein crystallization propensity.

• Based on the proposed pipeline, two new protein crys-
tallization propensity predictors, denoted as DCFCrys-
tal and MDCFCrystal, were implemented. Experimen-
tal results demonstrated the superior performance of
the proposed predictors compared to existing crystal-
lization propensity predictors.

• The major advantages of the proposed predictors lie
in the efficiency of the DCF model and the sensitiv-
ity of the sequence-based features used, especially
the newly designed pseudo-predicted hybrid solvent
accessibility feature, which can significantly improve
crystallization recognition.

• A web server (http://csbio.njust.edu.cn/bioinf/
dcfcrystal/) has been made available to predict
protein crystallization propensity.

Supplementary data
Supplementary data are available online at https://academic.ou
p.com/bib.
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