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Abstract

Nearly one-third of non-synonymous single-nucleotide polymorphism (nsSNPs) are deleterious to human health,
but recognition of the disease-associated mutations remains a significant unsolved problem. We proposed a new
algorithm, DAMpred, to identify disease-causing nsSNPs through the coupling of evolutionary profiles with structure
predictions of proteins and protein—protein interactions. The pipeline was trained by a novel Bayes-guided artificial
neural network algorithm that incorporates posterior probabilities of distinct feature classifiers with the network
training process. DAMpred was tested on a large-scale data set involving 10,635 nsSNPs from 2154 ORFs in the
human genome and recognized disease-associated nsSNPs with an accuracy 0.80 and a Matthews correlation
coefficient of 0.601, which is 9.1% higher than the best of other state-of-the-art methods. In the blind test on the
TP53 gene, DAMpred correctly recognized the mutations causative of Li-Fraumeni-like syndrome with a Matthews
correlation coefficient that is 27% higher than the control methods. The study demonstrates an efficient avenue to
quantitatively model the association of nsSNPs with human diseases from low-resolution protein structure
prediction, which should find important usefulness in diagnosis and treatment of genetic diseases.

© 2019 Elsevier Ltd. All rights reserved.

Introduction

Recent advances in the next generation of sequenc-
ing technologies have created high-volume mutation
data for comparative genome analyses. By now, more
than 6000 human diseases have been identified to be
associated with non-synonymous single-nucleotide
polymorphisms (nsSNPs). Recognition of the
disease-associated genome mutations may help
understand the mechanisms of the genetic disorders
and improve the chance for early diagnosis and
treatment of such diseases [1]. While considerable
effort has been made along this line, it remains a
significant unsolved problem to precisely recognize the

0022-2836/© 2019 Elsevier Ltd. All rights reserved.

disease-causing nsSNPs from dominant neutral mu-
tations (NMs) [2].

Several methods have been developed for compu-
tational recognition of the disease-associated muta-
tions (DMs), which can be generally categorized into
two groups: statistical and machine-learning methods.
The statistical methods aim to distinguish the delete-
rious from NMs by taking the advantage of the wealth of
existing disease and mutation data sets. For example,
MuSiC identifies the genes that have a significantly
higher mutation rate than the background mutations,
using a multidimensional statistical evaluation of the
next-generation-derived cancer data sets [3]. However,
estimate of the background mutation rate is often
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challenging and the approach has difficulty for the
identification of driver genes with low-frequency of
recurrence. To address the issue, Oncodrive-fm [4]
proposed to detect candidate cancer drivers that do
not rely on the recurrence of mutations. It identifies
genes under positive selection in tumor development
by assessing their bias toward the accumulation of
mutations with high functional impact across a cohort
of tumor samples, so that many low-recurrent
candidate cancer drivers can be successfully identi-
fied. E-Drive [5] is another statistical method that
exploits the internal distribution of somatic missense
mutations. Similarly, SIFT [6] examines the impact of
mutations on protein functions by the degree of
conservation of the amino acid residues in multiple
sequence alignments, built on the assumption that
mutations of highly conserved protein positions tend
to be more deleterious. However, the relation between
protein functions and disease association is compli-
cated, in particular when the intricate interactions of
the target protein with the environment molecules are
involved, so the accuracy of mutation classifications
that rely only on traditional statistics and evolutionary
analyses are often limited [7-9].

The machine-learning methods [10-12] are de-
signed to train predictive models on known positive
(e.g., functional mutation, deleterious mutation, and
DM) and negative (NMs) samples through the extrac-
tion of various physicochemical features. PolyPhen-2
[13]and SNAP2 [14] are two of such classical tools that
train, respectively, naive Bayes classifier and neural
network models on both sequence and structural
features. SNPMuSIC is one of most recently developed
approaches that classify deleterious mutation and NM
in terms of protein fold stabilities, with the latter trained
on various statistical potentials and structural features
by artificial neural network [15]. Despite the success,
many of the machine-learing methods are built on
experimental structures that are not available to most of
the disease-associated proteins. Meanwhile, the train-
ing and benchmark data sets are often derived from a
few common databases, such as UniProtKB/Swiss-
Prot [16], OMIM [17], and HumVar [18], which are
highly redundant and can result in illegitimately high-
performance estimates [12,19].

In this work, we explore the possibility to combine
sequence and physicochemical characteristics with
three-dimensional structure information generated
from the cutting-edge protein structure prediction
[20,21] to improve the accuracy of DM recognitions.
Meanwhile, the biological assembly structures are
modeled through the dimeric threading neural net
[22], which helps examine the impact of nsSNPs on the
interactions of the target protein with the environment
molecules. To overcome the sampling issues of
traditional machine learning approaches, a new hybrid
training method, Bayes-guided artificial neural network
(BANN), is developed to incorporate the posterior
probabilities of specific classifiers with the network

training process for improving the training efficiency.
The pipeline will be carefully benchmarked in multiple
data sets, including both cross-validations and blind
tests, compared to the current state-of-the-art ap-
proaches. The flowchart of the developed pipeline,
named Disease-Associated Mutant Predictor
(DAMpred), is depicted in Fig. 1, while the online server
and standalone package are made freely available at
http://zhanglab.ccmb.med.umich.edu/DAMpred/.

Results

Data set construction and method evaluation

Proteomic database mapping

DAMpred starts with the construction of a set of
derivative data sets (feature types, access ID, BioUnit,
and resMAP, etc.) from two primary sequence and
structure databases, UniProtKB [23] and PDB [24], with
the mapping pipeline described in Text S1 and Fig. S1
in Supporting Information, SI. The mapping architecture
of the derivative data sets is constructed using SQLite,
which can be downloaded at http:/zhanglab.ccmb.
med.umich.edu/DAMpred/download/human.sqlite.

Construction of non-redundant data sets

A set of experimentally validated missense muta-
tions are collected from the UniProt [19], HumDiv [13],
and a data set derived from previous study [25]. These
mutant variants are from the human genome. In case
that >60 mutations occur on one gene, up to 60
variants were randomly selected in the gene, with one
variant picked up at each residue position, to reduce
redundancy and bias in training. This filtering process
results in 10,634 mutations involved in 2154 proteins,
containing 5355 DMs in 617 proteins and 5279 NMs in
1836 proteins (see Table S1); the neural mutations in
the latter protein set do not change physicochemical
property of the proteins. This data set named D10634
can be downloaded at hitp:/zhanglab.ccmb.med.
umich.edu/DAMpred/download/D10634.xIsx.

Here, we have limited the maximum number of
mutations per gene for two considerations. First, as it
was pointed out previously [12], conventional data sets
are highly biased in that many proteins with disease-
associated variations have no or very little neutral
variation data. Likewise, most proteins containing
neutral variations do not have disease-associated
variations. Thus, limiting the number of mutant samples
from a specific gene can help retain the balance of
disease and neutral samples in the final data set.
Second, one assumption of DAMpred is that the
physicochemical features associated with neutral and
deleterious mutations are conserved in protein evolu-
tion; this assumption has been used in the structure-
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Fig. 1. Flowchart of DAMpred for DM prediction. The pipelines for (a) feature extraction and (b) BANN training.

based feature design and selection. Without appropri-
ate filter to remove plenty of similar physicochemical
and structural environment samples from the same
proteins, it can result in biased model training and/or
overestimated performance in DAMpred. When filtering
the samples, we tried to select mutation samples from
different positions along the sequence to reduce the
potential loss of mutants involved in the important
residues.

In addition to the D10634, three other data sets are
constructed for independent testing and validation of
the methods. First, the D2186 contains 2186 mutations
from 233 proteins collected from the ENTPRISET-
balance set [12], which have not been included in the
D10634. Second, a small data set of D146 contains
146 mutations involved in 90 proteins, which is a
subset of the D10634 but consists of mutations from
proteins with a sequence identity <30% to the training
sets of the control methods of this study; thisis to give a

voting
Disease associated

fair comparison of DAMpred with other control
methods when DAMpred is trained on a protein set
non-homologous to D146. The third data set is
collected from mutations on the p53 protein, a
predominant tumor suppressor in human genome.
As shown in Fig. S2A, the mutations on p53 have been
classified as “non-neutral,” “neutral,” or “uncertain.”
The non-neutral consists of 618 SNP mutations with
experimentally validated effects on the protein func-
tion, in which 67 are causative of Li—Fraumeni
syndrome or Li—Fraumeni-like syndrome and there-
fore grouped in DMs. The 22 mutations have been
experimentally validated as neutral. The rest are 870
mutations without definitive experimental validation
and therefore categorized as “uncertain.” Since p53 is
a highly enriched with deleterious mutations, it
represents a particularly difficult data set for recogniz-
ing the neutral mutants to generate balance perfor-
mance. These three data sets are downloadable at
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http://zhanglab.ccmb.med.umich.edu/DAMpred/
download/benchmark.tar.bz2.

Modeling of monomer and complex protein structures

The accuracy of protein structure models is critical to
structure-based modeling of DMs. Fig. S3A shows a
histogram distribution of the TM score of the first
models generated by I-TASSER [20,26] for the 2154
target proteins, where all homologous templates with a
sequence identity >30% to the query or detectable by
PSI-BLAST with E-value <0.05 have been excluded. It
is shown that the majority of the proteins (86%) can be
modeled with a correct fold (TM score > 0.5) [27],
although no close homology template is used. Fig. S3B
also lists the RMSD of the models to the native, where
94% of them have an RMSD of <5 A. The average TM
score and RMSD for the 2154 testing proteins are 0.74
and 2.9 A, respectively.

Protein—protein complex structure are modeled by
matching the query sequences through a non-
redundant library of known BioUnit structures collected
from the PDB, using the multimeric threading SPRING
algorithm [22]. Among the 2154 test proteins, SPRING
successfully constructed complex models for 2116
proteins, after excluding templates having a sequence
identity >80% to the query proteins (with an average
sequence identity 31%). Figs. S3C and S3D show that
the majority of the complex models (80%/92%) have a
correct fold and orientation (with TM score > 0.5 and
RMSD <5 A) compared to the experimental struc-
tures. Here, since there are much less multimeric
templates than monomer ones in the PDB library,
SPRING has taken a looser homologous cutoff (80%)
than I-TASSER does (30% plus PSI-BLAST E-value),
so that there are sufficient number of testing targets
with complex BioUnit structures.

Protein-level cross-validation

The accuracy of machine-learning based methods
can often be over-optimistically assessed due to the
overlaps between training and test data sets; these
include the case of mixing the training and testing
mutants from the same protein, which has been shown
to result in artificial correlation of test and training
samples in cross-validation studies [28,29]. Here we
used a rigorous “protein-level” cross-validation in our
experiment, in which the training and testing samples
are collected from different non-homologous proteins.
To do this, we first cluster the 2154 proteins in D10634
by BLASTclust [30] using a sequence identity cutoff of
30%, which results in 1644 clusters, each with 1 to 43
members. Next, we construct ten mutation subsets,
each with roughly similar size, by randomly taking
mutations from different proteins but with a constraint
that mutations from the same protein cluster mustbe in
the same subset and mutations in different subsets are

from different protein clusters. In the 10-fold cross-
validation, nine subsets are chosen as training data set
and the remaining one is used as test, where all
subsets are rotated as a test only once. Table S1 lists
the distribution of the mutations in the 10 subsets,
where a detailed list of the 10 subsets can be
downloaded at http://zhanglab.ccmb.med.umich.edu/
DAMpred/download/tenFold.xIsx.

Assessment of different feature groups on
deleterious mutant recognition

DAMpred collects multiple features to train the
models. In Table S2, we list all the 70 individual
features, together with their mean scores for the DM
and NM (columns 4-5). In columns 6-7, we also list the
Matthews correlation coefficient (MCC) between the
score and the experimental data (disease or neutral),
where a score cutoff is specified for each feature to
define the positive or negative predictions. To quan-
titatively examine the difference, column 8 lists the p
value of two-side Mann-Whitney test between DM and
NM data sets, where the histogram distributions of the
features between DM and NM are described in Figs.
S4-510 in SI. Next, we examine and highlight several
important feature groups in more detail.

Evolutionary features

The evolution-based features show the highest
correlation with the experimental data with an average
MCC = 0.29 (Fig. S4). Accordingly, this group of
features has the lowest p value between DM and NM,
where all but one (JSD score for wild-type residue,
JSD,,) have a p value below 1072, Among them, the
position-specific independent count (PSIC) scores
based on MSA from Uniref90 have the highest
distin%uishing power and their p values are all below
1072% (or 0). Most of the wild-type amino acids in the
DM data set have a higher PSIC,, score ( PSIC,, =
1.57) than that in NM data set ( PSIC,, = 0.91). Onthe
contrary, the mutant amino acids in the DM have a
lower score (PSICm = -0.42) than that in the NM
(PSIC,, = 0.24). Accordingly, the dPSIC score is the
most closely correlated to the experimental data among
all individual features, which has an MCC = 0.54 when
a cutoff of —1.1 is used. The same trend holds true for
the tPSIC scores based on multiple threading align-
ments constructed by the monomeric threading
LOMETS program [31]. Apparently, both PSIC and
tPSIC features have shown that the mutations from a
desirable amino acid (with a higher positive PSIC
score) to an undesirable amino acid (with a lower
negative PSIC score) tend to cause a disease.

The Pfam database is a large collection of protein
domain families represented by profile-HMMs. Here,
the Pfam score reports a posterior probability for each
residue that aligns with a “match” or “insert” state in a
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profile-HMM. We can find that the DMs are more likely
to be found in the Pfam families than the neutral ones.
For those mutations occurred at Pfam families, for
example, the wild-type amino acids tend to have a
lower profile score (Pfam,,) in the DM data set than
those in the NM data set, while the mutant amino acids
have a higher profile score (Pfam,,) in the DM data set
than in the NM data set.

Contact features

DAMpred considers both intra- and inter-chain
contact features derived from SPRING protein—protein
interaction models. Fig. S5 shows the histogram
distribution of various contact scores between DM
and NM. From the intra-chain contact score (Intra), the
DMs tend to appear in more crowded environment, as
Intra scores have a higher value in the DM than in the
NM data set. The differences between the two data
sets are statistically highly significant, with a p value
being 5.80E-245. In addition, the inter-chain contact
score (Inter) also shows that the mutations adjacent to
or in the proteins-proteins interface are more likely
associated with disease than NMs.

TASSER model-based features

Fig. S6 presents the histogram distribution of the
features derived from the I-TASSER-predicted struc-
ture models. The DMs have a higher probability in the
surface concave regions than the NMs, as reflected
by the cavity score calculated by ConCavity [32]. The
average depths of DM and NM are 6.72 and 5.50 A,
respectively, which suggests that the DMs tend to
occur at a deeper region of the protein structure. This
is partially because the core regions are usually more
tightly packed than the surface areas and mutations in
the deep core regions have a higher chance to affect
the function and stability of the protein and thus cause
diseases. Consistent with the previous observation
that most of the mutations decrease the folding
stability of proteins [28], the DMs have a larger free-
energy reduction (average AAG = 1.62 kcal/mol) than
the neutral ones (average AA G = 0.52 kcal/mol). The
difference is statistically significant with a p value
8.97E-91 in the Mann—Whitney test, where 2033 out
of 4277 mutations with AAG > 1.62 kcal/mol are
associated with disease and 3021 out of 4029
mutations with AAG < 0.52 kcal/mol are neutral.
Simply using the energy cutoff with <0.52 kcal/mol
for NMs and >1.62 kcal/mol for mutations associated
with diseases, we can obtain recognitions with an
appreciable MCC = 0.24 between AA G score and the
experimental data (disease or neutral).

Fig. S6 also shows correlation data for several other
structure derivative terms, including structural profile
score from EvoDesign [33], van der Waals, and side-
chain packing from CIS-RR [34], which demonstrate
again the tendency that the mutations associated with

more drastic changes on protein structures are more
likely to be disease-associated than neutral ones.

Overview of other individual features

The histogram distributions for all other features used
in DAMpred are listed in Figs. S7-S10 in Sl. Overall,
the features derived from mutant amino acid are more
sensitive than the wild-type amino acid, and the feature
differences between wild-type and mutations is gener-
ally more sensitive than the individual wild-type or
mutant features in distinguishing the DMs and the
neutral ones. However, the p value is lower than 0.05
for almost all the feature types as shown in Table S2,
suggesting that the designed feature functions have
the potential to recognize the DM and NM.

Prediction of DMs on the D10634 data set

Comparison of BANN with other machine-learning
methods

One of the important innovations of DAMpred is the
employment of the BANN, in which the posterior
probabilities of the features for classification are
integrated into the neural network model. To examine
the efficiency of BANN, we present its performance in
Table S3 by comparing with other four models trained
by the gradient boosting classifier [35], K-nearest
neighbor classifier [36], support vector classifier [37],
and artificial neural network. Here, all the trainings are
implemented by the Scikit-learn toolkit [38], where the
tests are performed in protein-level 10-fold cross-
validation.

The data show that although there are some
variations among the results by different methods,
the BANN model consistently outperforms the models
trained by other machine-learning methods. In partic-
ular, based on the MCC, which is the most important
assessment parameter to balance precision and recall,
the BANN model with 70 features is 15.7% higher than
the second-best model by ANN (0.601 versus 0.580).
The pvalue of the difference in the Mann—-Whitney test
is 3.99E - 3, indicating that the difference is statistically
significant; when trained on the top 20 features (see
below), the difference between BANN and other
methods becomes much more significant with p
value <2.25E-10. Here, the only difference between
BANN and ANN is that the former incorporates the
posterior probabilities of the features into the network
training, where the improvement of BANN over ANN
suggests the efficiency of the inclusion of the Bayes
classifier into the network training.

We also test the data using different feature sets.
In the first set, we examine the power of individual
features by calculating the p value of Mann—-Whitney
of their distributions in the disease-associated and
neutral data sets, and then select the top 20 features
that have the lowest p values. The second set
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includes all 70 features. The results show that BANN
outperforms the control training methods in both
feature sets, demonstrating the robustness of the
BANN training. Interestingly, the MCC of the models
trained by top 20 features is only slightly worse than
that the full-set models, indicating that the perfor-
mance of the DAMpred mainly relies on the efficient
features that have the significant distinguishing
power. We also test the model trained on the worst
20 features with the highest p value, where the
performance is much worse with a significantly lower
MCC (0.317). Nevertheless, the higher MCC value
achieved by the full-set feature model shows that the
use of more features is still needed to achieve the
best distinguishing power for the DAMpred model. In
the following, we will report the results trained by the
full-set of features unless specifically clarified.

Impact of protein stability and PPl features on DAMpred
performances

Two core feature groups introduced in DAMpred is
the protein-structure stability from I-TASSER models
and the contact environments from SPRING PPI
prediction. To get a quantitative assessment of the
impact of these feature groups on mutation classifica-
tions, we re-trained two DAMpred models by dropping
off the stability and PPl-associated features separately.
The cross-validation tests show that dropping off each
of the feature groups can significantly impact the
performance of DAMpred with the MCC reduced from
0.601 to 0.593 (by dropping off stability) and 0.588 (by
dropping off PPI), which correspond to a p value of
7.07E-08 and 9.77E - 20, respectively. Ninety-five (or
1994) DMs, which were successfully identified by
DAMpred with 70 features, are incorrectly classified
into neutral group by the model without AAG (or PPI)
feature. These data suggest that while both features
are needed to achieve the optimal classification
performance, DAMpred seems more sensitive to the
PPI than the stability features as the reduction of
performance by the former is more significant.

Comparison of DAMpred with other mutation pre-
diction methods

In Table 1 (top panel), we conduct a protein-level 10-
fold cross-validation test of the DAMpred on the
D10634 data set, in control with three state-of-the art
mutation prediction methods, SIFT [6], SNAP2 [6,14],
and PolyPhen2 [13], which are all installed in our local
computer and run with the default setting. It is observed
that DAMpred has an average MCC of 0.601, which is
9.1% higher than the second-best method from
PolyPhen2 (0.551). The sensitivities of SIFT, SNAP2,
and PolyPhen2 in positive and negative cases are
severely unbalanced (0.873 for the positive and 0.561

for the negative on average), which indicates that these
methods have incorrectly categorized too many NMs as
DMs. In contrast, the DAMpred prediction has a more
balanced prediction on the positive and negative
samples with a sensitivity of 0.812 and 0.788,
respectively. Accordingly, the relative sensitivity and
specificity in the positive samples are also more
balanced in DAMpred, which is one of the main reasons
that DAMpred can have a higher global performance as
judged by MCC than the control methods.

Impact of BANN on control methods

Both SNAP2 [14] and PolyPhen2 [13] models
recognize the mutations based on traditional
machine-learning methods, where SNAP2 uses the
artificial neural network and PolyPhen2 uses the naive
Bayes classifier. To further examine the impact of the
BANN training to the performance of the mutation
recognition, we extracted 20 features of the SNAP2
and PolyPhen2 programs with the lowest p value, and
then retrain the models separately by BANN. The
cross-validation results are summarized in Table 1,
labeled as “SNAP2 + BANN” and “PolyPhen2 +
BANN,” respectively.

It is shown that the MCC of SNAP2 was improved by
0.134 using BANN (from 0.451 to 0.585), and the MCC
of PolyPhen2 is improved by 0.029 using BANN (from
0.551 to 0.580). The p value of the changes in the
Mann-Whitney test is 1.42E-84 and 3.32E-24,
respectively, indicating that the improvement is statis-
tically significant. The data suggest again that BANN is
more efficient than the traditional artificial neural
network and the naive Bayes classifier methods used
by the original programs of SNAP2 and PolyPhen2.
Although the DAMpred is only slightly (but statistically
significantly) better than SNAP2 + BANN and Poly-
Phen2 + BANN, the difference of sensitivity of the
DAMpred predictions (0.024) between positive and
negative cases is less than that of SNAP2 + BANN
(0.07) and PolyPhen2 + BANN (0.125), which sug-
gests that the features exploited in DAMpred have
probably a more balanced recognition ability for
discriminating the DM and NM data sets.

Test of DAMpred on three independent data sets
from D2186, D146, and p53 protein

In addition to the D10634, DAMpred was tested on
three other independent data sets (Table 1). First, on
the D2186, DAMpred generates prediction results with
MCC/ACC (=0.503/0.752) lower than that in the cross-
validation on the D10634 (0.601/0.800). However, the
values are still significantly higher than the three control
methods with a p value below 2.45E — 45 in McNemer's
test for all the comparisons.

Since both D10634 and D2186 may contain samples
from the training data sets used by the control methods,
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Table 1. Comparison of different methods for recognizing disease-causing mutation: DM and NM.

Methods MCC ACC Positive P
SEN SPE SEN SPE
D10634 data set in 10-fold cross-validation
DAMpred 0.601 0.800 0.812 0.796 0.788 0.805
SIFT 0.536 0.763 0.861 0.721 0.664 0.826 2.17E-54
SNAP2 0.451 0.732 0.871 0.715 0.551 0.767 1.50E-120
PolyPhen2 0.551 0.768 0.887 0.718 0.648 0.850 6.62E-80
SNAP2 + BANNP 0.585 0.792 0.827 0.776 0.757 0.811 4.41E-5
PolyPhen2 + BANN® 0.580 0.788 0.850 0.757 0.725 0.828 1.95E-19
D2186 data set
DAMpred 0.502 0.753 0.742 0.725 0.762 0.777
SIFT 0.442 0.706 0.843 0.635 0.589 0.816 2.45E-45
SNAP2 0.485 0.713 0.917 0.628 0.541 0.885 3.11E-86
PolyPhen2 0.406 0.683 0.856 0.613 0.534 0.810 2.912E-51
D146 data set
DAMpred 0.521 0.781 0.767 0.600 0.786 0.890
SIFT 0.394 0.674 0.814 0.493 0.609 0.875 2.10E-3
SNAP2 0.397 0.667 0.837 0.500 0.581 0.877 1.88E-3
PolyPhen2 0.461 0.699 0.884 0.494 0.621 0.928 3.126E-4
SNPMusSiC* 0.177 0.644 0.465 0.408 0.718 0.763 461E-3
TP53 data set
DAMpred 0.401 0.787 0.881 0.843 0.500 0.579
SIFT 0.279 0.719 0.791 0.828 0.500 0.440 8.32E-2
SNAP2 0.316 0.787 0.970 0.793 0.227 0.714 3.71E-4
PolyPhen2 0.295 0.742 0.836 0.824 0.455 0.476 5.67E-1
SNPMuSiCc? 0.295 0.750 0.830 0.845 0.471 0.444 3.39E-2

The results on D10634 data set are by the protein-level 10-fold cross-validation, and those on D2186, D146, and TP53 data sets are from

the models trained on non-homologous samples. Bold fonts highlight the best predictor in each category.

2 p Value of MCC comparison in McNemar's test (for D10634) or Student's t test (for TP53) is calculated between DAMpred other

predictors.

b SNAP2 + BANN: model re-trained by BANN using the top 20 features from SNAP2 selected with the lowest p value.
¢ PolyPhen2 + BANN: model trained by BANN using the top 20 features from PolyPhen2 selected with the lowest p value.
4 SNPMUSIC result from the online server for the data sets with known experimental structures.

we tested the methods on a second set of D146, which
contains 146 mutation samples from the D10634 but
from the proteins that are non-homologous to the
training sets of the control methods. Here, SNPMuSiC
[15] was included in the test with data taken from the
online server, where the experimental structures from
the PDB were specified when submitting the on-line
jobs. Because D146 is a subset of D10634 and the
DAMpred model trained on the entire D10634 data set
might be an over-fit for the test on the D146, we re-
trained DAMpred specifically on a subset of samples
from D10634, which are non-homologous to D146 with
a sequence identity <30%. Rows 15-19 of Table 1
show the comparison of the retrained DAMpred with
other control methods on the D146 data set. The result
shows again that DAMpred outperforms the control
methods in both MCC and ACC. The p values between
DAMpred and other methods are higher in D146 than
other data sets due to the relatively smaller size of the
D146, but they are still statistically significant with all
being lower than 4.6E - 3. These data suggest that the
superiority of DAMpred is quite robust and not
dependent on the data sets tested.

The third independent test is on the mutations from
the p53 protein, one of the most important tumor

suppressors that regulates cell growth pathways
through DNA binding. Table 1 (bottom panel) shows
a summary of the predictions, where only deleterious
and neutral mutant samples were considered.
DAMpred achieves an MCC of 0.401, compared to
0.279, 0.316, 0.295, and 0.295 by SIFT, SNAP2,
PolyPHen2, and SNPMuSIC, respectively. Since P53
protein is highly enriched in with DMs, it is very difficult
to correctly recognize the neutral variants, which is part
of the reason that the overall performance on p53 was
considerably worse than that on other data sets.
Nevertheless, the obvious higher MCC value
achieved by DAMpred suggests that the pipeline
generated a relatively more balanced classification
than the control methods. In Fig. S2B, we present the
structure model by I-TASSER for the isoform P04637-
1 of p53 protein, where the majority of the DMs are
located in the core domain, which accommodates the
sequence-specific DNA binding activities. These data
help further explain the functional annotation by
DAMpred. For example, mutations of N235S and
R290L in the disease-associated group are correctly
identified only by DAMpred and SIFT. The feature table
in the derivative DAMpred databases marks N235 and
R290 as BINDING and SIGNAL, where their directly
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intra contacts (15 and 10, respectively) are all
functional. Furthermore, V97! in the neutral group is
correctly recognized only by DAMpred, where V97 is
labeled as nonfunctional site. On further view of all 70
features of the deleterious (R290L) and neutral V97I)
mutations, the numbers of features with a higher
probability in the deleterious data set (compared with
that in neutral data set) are 35 and 18, respectively;
these data also highlight the importance of the
integration of the inherent probability of the different
features.

Unfortunately, no method has correctly recognized
P309S as disease-associated. As shown in Fig. S2B,
P309 is located at the loop region and there are no
directly intra or inter contacts. The number of features
with a higher probability in disease-associated data
set is only 15, where dominant higher scores in the
neutral data set have led DAMpred to incorrectly
assign the mutation as neutral. Thus, there is still
considerable room for further improvement. The
overall prediction results by the four predictors can
be downloaded at https://zhanglab.ccmb.med.umich.
edu/DAMpred/download/TP53.xlIsx.

Conclusion

We have developed a new pipeline, DAMpred, for
recognizing the DMs in the human genome. A major
uniqueness of the pipeline is the employment of the
features extracted from low-resolution structure pre-
diction of both monomer and BioUnit structure of the
target protein, in addition to other resources of
pharmacophore and evolutionary profiles. Second, a
novel machine-learning method (BANN) is introduced
to integrate the posterior probabilities of Bayesian
classifiers with the neural network training to improve
the efficiency of neural network training.

The pipeline was tested on four benchmarking data
sets, D10634, D2186, D146, and the p53 protein,
which demonstrated advantage in sensitive disease
mutation recognition compared to four state-of-the-art
methods built on evolution and machine learning,
respectively. Detailed analysis shows that the per-
formance gap between DAMpred and the control
methods can be partly reduced by applying the
BANN training algorithm to the control programs,
further demonstrating the advantage of the BANN
that mainly stems from the non-linear combination of
the classifier instead of the linear combination as
taken by the traditional artificial network training.
Even with the same training algorithm, DAMpred still
shows a better performance than the control
methods, suggesting the advantage of feature
selections of DAMpred by combining multiple
sources of features, especially those from structure
prediction and BioUnit structures.

While the results of DAMpred are promising, several
of its limitations should be acknowledged. First, there is

a modest correlation observed between structural
modeling accuracy and DAMpred performance. Al-
though the majority of the structure models (86%) by
the cutting-edge tools such as I-TASSER could have a
correct fold with a TM score of >0.5, the local structure
error, especially those involved in the functional
regions, could compromise the accuracy of DAMpred.
Second, only part of targets (20% in our data set) could
not have BioUnit structure reliably constructed by
multimeric threading SPRING due to the lack of
homologous templates of complex structures even
with a relatively loose homology filter. Therefore, the
BioUnit contact information cannot be fully implement-
ed in a considerable portion of sequences. Apparently,
with the continuous progress of on the computational
structure modeling, as witnessed by both CASP and
CAPRI examples [39—-41], the DAMpred pipeline
should benefit from the improvement of the modeling
accuracy from both monomer and complex structure
predictions in the future.

Methods

DAMpred consists of two general steps of feature
collection and Bayes-guided artificial neural network
training, where a flowchart is depicted in Fig. 1.

Multi-source feature collections

As a machine-learning based approach, the design
and selection of the training features play a key role in
the disease mutation prediction in DAMpred. Many
common feature properties of proteins, including
residue physicochemical properties and conservation
profile in evolution, have been shown to have strong
correlations with the mutation classification in previ-
ous studies [3,6,15,29]. One of the major motivations
in the DAMpred development is to examine the impact
of structural characteristics of proteins, in particular
those from low-resolution homologous structure
predictions, on the functional and deleterious classi-
fication of SNP mutations. In this regard, we designed
multiple levels of residue contact and van der Waals
interaction features, built on the tertiary and quater-
nary complex structure prediction by I-TASSER
[20,26] and SPRING [22], which are combined with
a set of classical features on pharmacophore and
evolutional profiles that are extended from the
previous studies. Overall, DAMpred collects 70
individual features, the details of which are listed in
Table S2 with the feature extraction process depicted
in Fig. 1aand Text S2. These features are categorized
into four groups based on their properties.

Physicochemical properties

The physicochemical property features in DAMpred
include pharmcophore of the target residues [29] and
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the mutation-induced environmental pharmacophore
changes, which are described in Fig. S11. In addition,
we consider the common physicochemical properties,
including the volume and weight from the wild-type
and mutant residues (see Text S2).

Evolutionary profiles

Evolution is a major driven force for protein structure
and function determination, where sequence profiles
from multiple sequence alignments contain informa-
tion on how the protein families evolve. To identify
evolution relations between sequences, which are
often distantly homologous, three sequence profiles
are collected in DAMpred by PSI-BLAST [42],
LOMETS [31], and Pfam [43], separately (see Egs.
S2-S3in SI).

The contact environments in SPRING biological
assembly

DAMpred considers four types of contact-
environment features deduced from the complex
structural models built by SPRING [22]; these
include the number of intramolecular contacts
(Intra), the number of intramolecular contacts involv-
ing functional residues (Funintra), the number of
intermolecular contacts (Inter), and the number of
intermolecular contacts involving functional residues
(Funinter). In addition, DAMpred considers an
enlarged contact environment by counting the
residues that are in contact with the contacting
partners of the mutant residues, called indirect
contacts (see Fig. S12).

I-TASSER modeling and structure-based feature
extraction

I-TASSER [20,26] was used to construct three-
dimensional models for both wild-type and mutant
sequences, where two groups of structure-based
features, on protein surface and physics-based
energy terms, are extracted from the I-TASSER
models (Text S2).

Bayes-guided artificial neural network (BANN)

DAMpred models are trained by hybrid learning
approach combing the artificial neural network with
an extended form of naive Bayesian classifier. Here,
we consider two classes of mutations, i.e. Cp for the
DM and Cy for the NM, respectively. Given a class
variable Cyx (k = D or N) and n specific features F =
(fy, o, ==+, 1)), the posterior probability P(Ckl F) of the
feature Fassociated with the class Cy can be written,
by the naive Bayes classifier model, as:

P(Ck|F)=P(Cx) HP filC) (1)

or

logP(Ck| F)= log <

NIGUEY @

n
= logP(f||Cx) + logP(Ck)
i=1

However, since the naive assumption that the
naive Bayes classifier model is based on, that is, the
considered features are independent from each
other, is not always true, Eq. (2) can be written in a
more general form for specific mutation classes (D
and N):

Sp = logP(Cp|F) =

>alF
>alF

) logP(fi|Cp) + an1(F) logP(Cp)

Sn = logP(Cn|F) = ) logP(fi|Cn) + ani1(F) logP(Cn)

3)

and

Sa = Sp- stza, )[ logP(fi|Cp)-
i=1

+ dny1(F)[logP(Cp)-

logP(fi|Cn)]

logP(Cn)]
(4)

This form of linear combination of the logarithm of
prior and likelihood probabilities makes it possible to
integrate the determination of the n+ 1 weight
parameters, a{F), with neural network (see Text S3).
Here, we use the artificial neural network (ANN) for
training the three sets of weights for Sp, Sy, and Sy,
separately. The structure of network is depicted in Fig.
S13. Once the a{F) values are determined from the
network training, the probability of the mutation states
and the difference can be estimated by Sp, Sy, and S,
in Egs. (3) and (4), where a higher value of S, indicates
the higher possibility of the mutatlon to be disease-
assomated Generally, if Sp > SS, Sy < SorS,> &

the mutatlon will be classified as a DM. Here, we set
SD, S92, and S3 all equal to 0.5, where the final decision
is made by voting from the three scores. The entire
process of learning can be viewed in Fig. 1b, with
detailed derivation of the BANN described in Text S3.
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