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ABSTRACT The binding interactions of small nuclear RNAs (snRNA) and the associated protein factors are critical to the func-
tion of spliceosomes in alternatively splicing primary RNA transcripts. Although molecular dynamics simulations are a powerful
tool to interpret the mechanism of biological processes, the atomic-level simulations are, however, too expensive and with
limited accuracy for the large-size systems, such as snRNA-protein complexes. We extend the coarse-grained Gaussian
network model, which models the RNA-protein complexes as a harmonic chain of Ca, P, and O40 atoms, to investigating the
impact of the snRNA-binding interaction on the dynamic stability of the human U1A protein, which is a major component of
the spliceosomal U1 small nuclear ribonucleoprotein particle. The results reveal that the first and third loops and the C-terminal
helix regions of the U1A domain undergo a significant loss of flexibility upon the RNA binding due to the forming of mostly elec-
trostatic and hydrogen bond interactions with RNA 50 stem and loop. By examining the residues whose mutations significantly
change the binding free energy between U1A and snRNA, the Gaussian network model-based calculations show that not only
the residues at the binding sites that are traditionally considered to play a major role in U1A-RNA association but also those
residues that are far away from the RNA-binding interface can participate in the long-range allosteric signal transmission;
these calculations are quantitatively consistent with the data observed in the recent snRNA binding experiments. The study
demonstrates a useful avenue to utilize the simplified elastic network model to investigate the dynamics characteristics of the
biologically important macromolecular interactions.
INTRODUCTION
Protein-RNA interactions are critical to many important
cellular processes, such as the regulation of gene expres-
sion, protein synthesis, and ribosome assembly and virus
replication (1–3). The human U1A protein is one of the
major protein components of the spliceosomal U1 small
nuclear ribonucleoprotein particle (4,5). Its N-terminal
RNA-binding domain (RBD1) binds to stem/loop II
(SL2) of U1 small nuclear RNA (snRNA), participating
in pre-messenger RNA splicing (6). It has been found
that RBD1 of U1A protein can undergo a large conforma-
tional change upon binding to its target RNA, and any
perturbation to the structure or dynamics of RBD1 would
be propagated through the entire binding surface, leading
to significant changes in RNA-binding affinity and speci-
ficity (7). Hence, the identification of the key residues of
U1A RBD1 associated with SL2 RNA-binding and confor-
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mational transitions can be of important help for our
understanding of the recognition mechanism between
U1A RBD1 and SL2 RNA (hereinafter referred to as
U1A and RNA) and the underlying alternative splicing pro-
cess (8–10).

The high resolution crystal structure of U1A bound to
RNA has been determined at 1.92 Å resolution (Fig. 1)
(11). Here, the U1A domain involves a single polypeptide
chain of 97 residues, characterized by a b1-aA-b2-b3-aB-
b4 secondary structure that adopts a four-stranded antipar-
allel b-sheet as the primary RNA-binding surface supported
by two a-helices (12,13). Before binding, U1A folds into the
closed form in which the C-terminal helix (Helix-C, consist-
ing of residues 90–97) covers part of the RNA-binding sur-
face. Upon binding to RNA, U1A folds into the open form,
Helix-C moves away uncovering the buried area to permit
RNA access, and loop3 protrudes through the RNA loop
(4,14). These changes strengthen the binding affinity by
generating a series of hydrogen-bonding and stacking
interactions.

Many experimental and theoretical researches focus
on the binding dynamics and key residues involved in
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FIGURE 1 Complex structure of U1A with SL2

RNA (PDB: 1URN) (a) and the secondary structure

of RNA (b). U1A forms a b1-aA-b2-b3-aB-b4

secondary structure with b1 (Thr11-Asn15), b2

(Ile40-Val45), b3 (Ala55-Phe59), b4 (Arg83-

Tyr86), aA (Lys23-Phe37), and aB (Val62-Met72).
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U1A-RNA complex formation. For instance, using ener-
getic pairwise coupling and residue mutation experiments,
Kranz et al. found that RNA binding can mediate the local
thermodynamic coupling between U1A interface b-sheets
and the Helix-C (15) and across the RNA-binding surface
of U1A (9). Law et al. later used a surface plasmon reso-
nance-based biosensor to gain mechanistic insight into
the role of Helix-C in mediating the interaction with
RNA (16). On the theoretical side, all-atomic molecular
dynamics (MD) simulation has been a widely used compu-
tational tool to explore protein structure dynamic features
in atomic details and functionally key sites (17,18). For
example, Reyes and Kollman carried out MD simulations
and computational mutagenesis on protein and RNA resi-
dues in the U1A-RNA-binding surface to examine the
origin of the binding specificity (19). Pitici et al. utilized
MD simulations to obtain predictions of the structures for
the unbound forms of U1A in solution and to elucidate
the dynamical aspects of the induced fit upon RNA binding
(20). Law et al. performed MD simulations of the wild-type
and mutant U1A proteins in the absence of RNA to
examine whether structural rearrangements could explain
differences in their association rates with RNA and identi-
fied several key residues in complex formation and stability
(21). Most recently, Guzman et al. adopted a series of MD
simulations to delve into whether U1A protein alone is
capable of undergoing the conformational dynamics
similar to structural rearrangements upon RNA binding
(13). Despite the success, the atomic-level simulation is
often found too expensive and time consuming to study
the large-scale conformational motion, especially when
the size of the molecular system increases (in which a
snRNA-protein complex typically consists of thousands
of atoms). Meanwhile, the limited accuracy of the phys-
ics-based force field in the MD simulation has been a
bottleneck for describing the subtle atomic interactions be-
tween RNA and protein because any atomic interaction
1626 Biophysical Journal 116, 1625–1636, May 7, 2019
errors can dramatically impact the distribution of the MD
trajectories (17,22).

To address these issues, several coarse-grained models
have been recently proposed to study the question of
large-scale allosteric transitions. Among them, the elastic
network model (ENM) has been shown to be a particularly
effective computational technique for investigating the
function-relevant motions of proteins and even RNAs at
a coarse-grained level (23–27). In the conventional
ENM, a protein structure is modeled as an elastic network
of Ca atoms, in which the residue pairs within a given
cutoff distance are considered to have interactions and
are connected by a set of Hookean springs with a uniform
force constant (28). Generally, the low-frequency motion
modes obtained by ENM represent the large-scale collec-
tive motions relevant to the functions of the protein,
whereas the high-frequency motion modes reflect the geo-
metric irregularity in the protein structure (29–31). The
ENM model has been successfully used to investigate
the large-scale functional motions of several protein sys-
tems, including GroEL, GroEL-GroES complex, and cal-
cium ATPase (32,33).

In this work, we examine the feasibility to extend the
ENM model to interpret the dynamics of the binding inter-
actions between snRNA and the human spliceosomal U1A
domain. For this purpose, we make the use of a specific
case of the ENM method, the Gaussian network model
(GNM) in which residue nodes are assumed to undergo
Gaussian-distributed fluctuations about their mean posi-
tions, to analyze the effects of RNA binding on the dy-
namics of U1A protein based on the residue fluctuations
and movement coupling between them. To deduce the
detailed binding structure, we further extend the GNM-
based thermodynamic method to the identification of the
residue sites of the U1A domain, which are functionally
indispensable for the RNA-binding and conformational
changes.
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MATERIALS AND METHODS

GNM

GNM is a special case of ENM, in which a biomolecule structure is

modeled as a coarse-grained and elastic network by replacing one residue

with several nodes (here, Ca atom for protein residue (32) and P and O40

atoms for RNA nucleotide (34)) and imposing a harmonic potential with

a uniform spring force constant between the nodes that are sufficiently close

to lie within a given cutoff distance (35). By this simplification, the total in-

ternal potential energy of the network of N nodes can be written as

H ¼ 1

2
g
�
DRTðG5EÞDR�; (1)

where g is the harmonic force constant of the springs, the column vector DR

represents the fluctuation of the N nodes, the superscript T denotes the trans-

pose, E is the 3 � 3 identity matrix, 5 is the matrix direct product, and G

is the N � N symmetric Kirchhoff matrix, the elements of which are

described as

Gij ¼

8><
>:

�1 if isj and Rij%rc
0 if isj and Rij > rc
�
X
i;jsi

Gij if i ¼ j
; (2)

where rc is the cutoff distance, and Rij is the distance between the ith and jth

nodes. It should be noted that the cutoff distances for nodes in a protein and

an RNA are set to 8.0 and 9.0 Å respectively, and 9.0 Å for the protein-RNA

complex interface node pairs (30).

The mean-square fluctuation of each node and the cross correlation fluc-

tuations between different nodes are in proportion to the diagonal and off-

diagonal elements of the pseudoinverse of the Kirchhoff matrix. The inverse

of the Kirchhoff matrix can be decomposed as

G�1 ¼ U L�1UT; (3)

where U is an orthogonal matrix whose columns ui (1 % i % N) are the

eigenvectors of G, and L is the diagonal matrix of the eigenvalues li
of G. The fluctuation cross correlation between the ith and jth nodes and

the mean-square fluctuation of the ith node can be written as

<DRi ,DRj > ¼ 3kBT

g

XN
k¼ 2

l�1
k ½uk�i½uk�j; (4)

XN

<DRi ,DRi > ¼ 3kBT

g
k¼ 2

l�1
k ½uk�2i ; (5)

where kB is the Boltzmann constant, T is the absolute temperature, and the

meaning of g is the same as in Eq. 1. According to the Debye-Waller theory,

the B-factor of the ith node can be calculated with the expression

Bi ¼ 8p2<DRi ,DRi > =3: (6)

The cross correlation is normalized as

Cij ¼
�
DRi ,DRj

�
h�
DR2

i

� �
D
DR2

j

Ei1
2

: (7)
Generally, in the calculation of the normalized cross correlation, the con-

tributions of the first few lowest-frequency normal modes (with the largest

contributions to the residual displacements) are considered in Eq. 7 where

the cross correlation between two nodes and their mean-square fluctuations

are summed up, respectively, for the chosen normal modes as shown in

Eqs. 4 and 5.

Additionally, based on the theory of statistical physics, the vibrational en-

tropy of the system can be defined as (29)

S ¼ hHi � F

T
¼ 3

2
ðN � 1ÞkB þ kB ln Z; (8)

where hHi is the average vibrational Hamiltonian, F ¼ -kBTlnZ is the

vibrational Helmholtz free energy, Z is the configurational integral

part of the vibrational partition function given by Z ¼ R
expð� H=

kBTÞdfDRg, N is the number of nodes, and the meaning of T, and kB is

the same as Eq. 4. When a perturbation is introduced to the force constant

of the spring connecting the ith and jth nodes, the change of entropy can

be written as

DS ¼ � vS

vgij

Dgij; (9)

where the negative sign represents the decrease of the force constant, and

Dgij is the change of the force constant when a perturbation is intro-

duced. Experimentally, when a residue is mutated to Ala, the interactions

of the residue with other ones, and therefore the overall fold stability of

the proteins, are reduced in most cases (36). Thus, to appropriately model

such characteristics of mutations, the force constants of the springs con-

necting to the mutated residue are reduced in our method. According to

Eq. 8, the derivation of the entropy S with respect to gij is written by

(25,37)

vS

vrij
¼ � 1

2T

��ðDRiÞ2
�þ

D�
DRj

�2E� 2
�
DRi ,DRj

�	
:

(10)

Thermodynamics cycle method for the
identification of functional residues

The GNM-based thermodynamic method was previously proposed for iden-

tifying the functionally key residues in protein-small ligand interactions

(37). Here, we extended it to protein-RNA interactions, in which the func-

tional residues are identified as those whose mutations cause a significantly

large change in the binding free energy between U1A and RNA.

As illustrated in Fig. 2, DG1 denotes the binding free energy between the

wild-type U1A and RNA, and DG2 represents the binding free energy after

a residue mutation is introduced to the receptor. We want to calculate the

change of the binding free energy after residue mutation, i.e.,

ΔΔG ¼ ΔG2 � ΔG1: (11)

Calculating the binding free energy DG1 and DG2 directly is hard

because of the intricacy of the interactions between the protein and RNA.

Therefore, we constructed a thermodynamic cycle to calculate the change

of the binding free energy. We supposed two unphysical processes, pro-

tein / protein0 and complex / complex0, and the corresponding free en-

ergy changes were depicted as DG3 and DG4. Considering the free energy

of the system is a state function, we can calculate its change between its

initial and final states regardless of the path between them. Thus, Eq. 11

can be expressed as

DDG ¼ DG2-DG1 ¼ DG4-DG3: (12)
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FIGURE 2 Diagram of thermodynamic cycle. DG1 denotes the binding

free energy between the wild-type U1A and RNA, and DG2 represents

the binding free energy after a residue mutation is introduced to the recep-

tor, in which the mutation is marked by the apostrophe. protein/ protein’

and complex / complex’ are the two nonphysical processes, and the cor-

responding free energy changes are depicted as DG3 and DG4.
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In this method, the residue mutations are introduced through reducing the

force constant of all the springs connecting to the mutated residues. For a

certain pair of nodes i and j, which form a contact both in the receptor

and complex structures, the perturbation of the force constant gij will

lead to the same change of the potential energy (i.e., DU3 ¼ DU4). Thus,

DDG ¼ -TðDS4-DS3Þ: (13)

The entropy change caused by the spring perturbation can be calculated

via Eqs. 9 and 10, and then the value of DDG can be obtained by Eq. 13.

When a mutation is introduced to a residue, all the springs connecting to

this residue should be perturbed simultaneously. In this way, the DDG value

caused by a residue mutation is the sum of the binding free energy changes

for the perturbations of all the springs involved in this residue. In the pro-

cess of identifying the key residues, every amino acid residue is mutated in

the same way described above, and no special treatment is made to any

amino acid residue. Additionally, the residue mutation may result in an in-

crease or a decrease in binding free energy. The absolute value of DDG is

adopted here. The functionally key residues are those whose mutations

cause a significantly large change in the binding free energy. It should be

pointed out that the first 30 slowest normal modes were taken into account

for the protein, and for the complex, the motion modes were projected onto

these 30 slowest modes.
Receptor and complex systems

The crystal structure of U1A-RNA with Protein Data Bank (PDB): 1URN

(Fig. 1) (11) was used to construct the GNM of the complex structure,

and the GNM of the receptor was built based on the structure with RNA

eliminated from the complex.
FIGURE 3 Comparison between the experimental (solid line) and

computed (dashed line) B-factors of P, O40, and Ca atoms of U1A-RNA

complex.
RESULTS

Theoretical B-factors of residue nodes in the GNM
of complex structure

The complex structure was modeled as the GNM system
with each amino acid residue in the protein simplified as a
node (i.e., its Ca atom), each nucleotide residue two nodes
(i.e., P and O40 atoms), and the interaction network formed
by the adjoining node contacts. B-factors of the complex
residues can be acquired theoretically (see Materials and
Methods). As the absolute value of the spring constant g
does not affect the relative size of residue fluctuations, it
1628 Biophysical Journal 116, 1625–1636, May 7, 2019
has no influence on the correlation between the calculated
and experimental B-factors, cross correlations between res-
idue fluctuations, and the key residue identification (38).
Therefore, g ¼ 1 was adopted here (30,39). The correlation
coefficient between the calculated and experimental B-fac-
tors is 0.857, as shown in Fig. 3, the good agreement indi-
cating that this simplified model is constructed reasonably
and can be applied to the following analyses about cross cor-
relations of residue fluctuations.
Role of RNA binding on the dynamics of U1A
protein

The RNA binding can lead to a large conformational change
of U1A, which is important for the specific protein-RNA
recognition (15). To examine the specific role of RNA bind-
ing on the dynamics of the system, we computed the mean-
squared fluctuation (MSF) of each residue of U1A in the
GNM with and without RNA based on Eq. 5 (see Fig. 4).

It can be seen from Fig. 4 that the residues in U1A loop1
(residues 16–22) and loop3 (residues 46–54), both located at
the RNA-binding surface, have a strikingly higher MSF in
the RNA-free state than in the RNA-binding state. Addition-
ally, loop3 undergoes a more flexible loss as it forms more
interactions with RNA nucleotides (11). This agrees with
the complex crystal structure where U1A loop3 protrudes
into the RNA loop with the formation of many hydrogen-
bonding and hydrophobic interactions, such as Ser48-C15,
Leu49-A6, Gln54-G9, and Phe56-A11, whereas loop1
only contacts with nucleotides A2, U3, and C4 from 50

stem through mostly side chain interactions, leaving the
backbone of loop3 less conformationally constrained (40).
Similar MSF changes have also been observed in previous



FIGURE 5 Fluctuation cross correlation calculated using the dominant

15 low motional modes contributing 56% and 52% to residue fluctuations

for U1A-RNA complex (a) and protein U1A (b), respectively. As shown

in the color bar, the blue regions in the figure indicate negative correlation

and the green-yellow-red regions represent positive correlation. To see this

figure in color, go online.

FIGURE 4 Fluctuations of residues of U1A in the RNA-bound state

(solid line) and the RNA-free one (dashed line), respectively.
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MD simulations and experimental studies (20), suggesting
that the RNA binding indeed plays an important role in sta-
bilizing the binding surface of U1A, especially for the loop1
and loop3 regions (41). This is consistent with the classic
induced fit model that loop1 and loop3 play vital roles as
U1A anchors to RNA bases (42).

Fig. 4 also shows that the N-terminal helix (Helix-N) and
Helix-C residues have a relatively high flexibility in both
RNA-binding and RNA-free states; this is consistent with
the observation in structural and NMR dynamics studies
(43,44). Interestingly, the residues in Helix-C have a small
flexibility loss after RNA binding. This is understandable
because in the absence of RNA, Helix-C is often partially
or fully unfolded. With the recognition of RNA by the
U1A protein, however, Helix-C reorients to permit RNA ac-
cess. This accommodation can result in the formation of
specific hydrogen-bonding interactions between U1A and
RNA, such as Asp90-C12, Ser91-A11, and Asp92-C12, sta-
bilizing the U1A-RNA complex (16,42,45).

In summary, the RNA binding leads to the large flexibility
changes in U1A loop1 and loop3 as well as Helix-C regions
because of the formation of a series of specific interactions
with RNA target, which is important for the induced fit in
U1A-RNA recognition and the high stability of the complex
structure.
Movement coupling between residues in complex
and in the U1A protein

To detect the movement coupling between residues in U1A-
RNA complex, we calculated the cross correlations between
residue fluctuations in complex based on Eq. 7. Fig. 5 a gives
the results obtained based on the first 15 slowest motional
modes. The cross correlation between fluctuations can reveal
the information related to the spatial motion and interactions,
with the values ranging from �1 to 1. The positive values
indicate that the residues move in the same direction, and
the negative ones indicate that they move in the opposite di-
rection. The higher the absolute value is, the more the two
residues are correlated. The value Cij¼ 0 means that the mo-
tions of residues are completely uncorrelated.

For RNA in complex, the fluctuation of the single-
stranded loop region is found to be anticorrelated with the
stem region, yet the 50 and 30 stem nucleotides are medium
positive correlated, which is consistent with the results of
MD simulations (42,46,47).
Biophysical Journal 116, 1625–1636, May 7, 2019 1629
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For the two partners in complex, a strongly positive cor-
relation is found between the RNA loop (nucleotides 6–15)
and the U1A loop3 (residues 46–54) regions. The 50 and 30

stem parts near the loop have weak positive correlations
with U1A loop3. These results can be attributed to the
formed interactions between these regions in the x-ray crys-
tal structure (11,46). For example, U1A Arg52 forms
hydrogen bonds with RNA A6 and G16, U1A Ser46 and
Leu49 form water-mediated interactions with G16, and
U1A Ser48 forms hydrophobic interactions with C15 (42).
Additionally, U1A loop1 (residues 16–22) shows a modest
positive correlation with the RNA loop region (nucleotides
6–15) and 50 stem (nucleotides 1–5). From the crystal struc-
ture, the interactions between them include the following:
U1A Glu19 forms hydrogen bonds with RNA U7, and
U1A Lys20 and Lys22 interact with the sugar-phosphate
backbone of 50 stem (46,47). The above analyses on the
movement coupling between U1A loop1 and loop3 and
the RNA loop region are consistent with the result that
U1A loop1 and loop3 have a remarkable decrease in residue
fluctuations when RNA binding occurs (see the Role of
RNA binding on the dynamics of U1A protein), which is
the reflection of some nonbonded interactions formed be-
tween them. Besides with U1A loop1 and loop3, the RNA
loop (nucleotides 6–15) also forms more or less positive cor-
relations with the complex interface part constructed by
U1A b-sheets and their nearby regions, including loop5
(residues 73–82), loop6 (residues 87–89), and Helix-C (res-
idues 90–97). From the complex crystal structure, the four
b-sheets are in an antiparallel arrangement on the interface
with hydrophobic residues in them packed on each other and
forming a hydrophobic core that links the four b-sheets and
is involved in extensive contacts with the RNA (42).
For their nearby regions, U1A Ser91 and Asp92 (both in
Helix-C) hydrogen bonds with C12, and Thr89 (in loop6)
and Ser90 (in Helix-C) hydrogen bonds with A11 (46).
These can explain the positive correlations between the
RNA loop and U1A b-sheets and the nearby regions.

For U1A protein, to reveal the effect of RNA binding on
movement coupling between U1A residues, the cross corre-
1630 Biophysical Journal 116, 1625–1636, May 7, 2019
lations between residue fluctuations in RNA-free U1Awere
also calculated (see Fig. 5 b) for comparison. From Fig. 5, a
and b, for RNA-free U1A, b1 is partially positively corre-
lated with b2 and positively correlated with b3, and b4 is
anticorrelated with b2 and weakly positively correlated
with b3, whereas the four b-sheets turn into positive corre-
lations with each other upon RNA binding, indicating that
RNA binding strengthens the interactions among b-sheets,
which has been verified by Nagai et al (12). Additionally,
Helix-C is anticorrelated with b1 and b2 and has weakly
positive correlations with b4 and b3 when RNA is absent.
However, upon binding with RNA, Helix-C forms more or
less positive correlations with b-sheets, meaning that RNA
binding mediates local motional cooperativity between
Helix-C and the main binding surface b-sheets.

As a whole, RNA binding strengthens the interactions
among b-sheets of U1A with positive correlations formed
among U1A b-sheets and between them and RNA loop
and mediates local motional cooperativity between Helix-C
and the main binding surface b-sheets. Additionally, in the
complex structure, U1A loop3 and loop1 are strongly and
modestly positively correlated with the RNA loop, respec-
tively, indicating their contribution to the induced fit in
U1A-RNA recognition.
Identification of functionally key residues in U1A
protein

To identify the U1A key residues associated with RNA bind-
ing and conformational transition, each residue of the pro-
tein and complex systems was mutated, and the change of
the RNA-binding free energy value DDG in response was
calculated utilizing the method described in the Materials
and Methods. The residues with relatively high DDG values
were taken as key residues. The calculation results are
shown in Fig. 6 a. From this figure, there are 14 clusters
of residues (marked in Fig. 6 a) with high DDG values,
and the residue with the maximal DDG value in each cluster
is defined as the central residue of the corresponding cluster.
These 14 residual clusters are, respectively, centered at
FIGURE 6 Identified functionally key residue

clusters. (a) Binding free energy changes DDG in

response to residue mutations are shown. The clus-

ter of key residues with relatively high DDG values

are marked by the numbers 1–14. (b) Locations of

the central residues for the 14 clusters of key resi-

dues are shown.
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Glu5, Tyr13, Asn18, Lys20, Lys22, Arg47, Lys50, Arg52,
Ala55, Ile58, Tyr86, Asp90, Asp92, and Ile94. For clarity,
the central residues are mapped on the tertiary structure of
the complex system, as shown in Fig. 6 b. According to their
positions, these 14 residue clusters are classified into three
groups. The predicted key residues are compared with the
available experimental and theoretical data, and the func-
tional information of them will be discussed in detail below.
Residues at b-sheets

As shown in Fig. 6 b, there are four residual clusters 2, 9, 10,
and 11 at the b-sheets (constructing the main interface), in
which the former is located in b1, the middle two in b3,
and the last one at the end of b4. Using the electrophoretic
mobility shift method, Lutz-Freyermuth et al. have
confirmed Phe59 in cluster 10 is essential for RNA binding
and U1A-RNA interaction (48). Substitution of Tyr86 in
cluster 11 with either Phe or Thr can result in a measurable
reduction of complex stability (49). The x-ray crystallo-
graphic and NMR studies have identified Tyr13 in cluster
2 and Phe56 in cluster 9 as the two key aromatic residues
that interact directly with RNA by forming aromatic stack-
ing with the bases of C10 and A11, respectively (21). The
site-directed mutagenesis study has shown that removal of
the aromatic side chain of Tyr13 is very disruptive, leading
to a dramatic decrease in its RNA-binding affinity (21).
Additionally, the position of Tyr13 is stabilized by a strong
hydrogen bond to Gln54 (stacks on RNA G9 (11,50,51)) in
cluster 9, and these two residues have a strong cooperative
role for the complex stability (21), normally helping posi-
tion the b2-b3 loop in the RNA loop (52). Because of the
loss of the hydrogen bond to Gln54, the mutation of Tyr13
to Phe causes a 40-fold reduction in RNA-binding affinity
(21), supporting that Tyr13 and Gln54 play an important
cooperative role for the complex stability (21,40,49). The
mutation of Gln54 to Ala or Glu disrupts its stacking inter-
action with G9, resulting in a severe inhibition of RNA bind-
ing with the affinity weakened by three to five orders of
magnitude, which indicates Gln54 plays a key role in com-
plex association and stability (21). Mutation of Phe56 to Ala
can lead to a large loss in binding affinity (25,000-fold), sup-
porting that this is a critical role for this aromatic residue in
the stabilization of the complex conformation (21,53,54).

In short, these results suggest that the identified key resi-
dues in these clusters can stabilize the structure of U1A-
RNA complex and regulate the binding affinity and
specificity by hydrogen bonding and stacking interactions
with RNA.
Residues at loop regions

As shown in Fig. 6 b, the residues in clusters 3, 4, and 5 are
located at U1A loop1, and those in clusters 6, 7, and 8 are
situated at loop3. As for the key residue clusters at U1A
loop1, residue Glu19 in cluster 3 forms specific side
chain-base hydrogen bonds with nucleotides A6, U7, and
G9 (42,46). Using MD simulations, Tang and Nilsson
suggested that these hydrogen-bonding interactions are
important for the specific U1A-RNA recognition (42). Addi-
tionally, the mutations of Lys20Gln in cluster 4 and
Lys22Gln in cluster 5, both near the RNA-binding pocket,
result in a significant reduction of the electrostatic interac-
tions with RNA, indicating that the positive charge in this
region is important for the attraction of RNA to the binding
pocket (55). As for U1A loop3, connecting strands b2 and
b3 and protruding through RNA loop, it has been demon-
strated to be the primary source of binding specificity
(55,56). In the identified key residue clusters, Arg47 in
cluster 6 forms electrostatic interactions with C4, thus stabi-
lizing the double-helix stems (42). By site-directed muta-
genesis, Katsamba et al. demonstrated that Lys50 in
cluster 7 plays a role in the electrostatically mediated asso-
ciation between U1A and RNA (52). Arg52 in cluster 8
makes hydrogen bonds with the conserved CG basepair at
the end of the RNA loop, and an MD study revealed that
the hydrogen bonds are critical for U1A-RNA-specific
binding (19,42). Also, the experimental study found that
the specific U1A-RNA binding is abolished in Arg52Gln
mutant (12).

Because U1A loop1 and loop3 regions undergo remark-
able conformational changes in response to the binding of
RNA, these identified key residue clusters in the flexible
loop regions might contribute largely to the induced fit
and further to the high binding affinity between U1A and
RNA through forming specific electrostatic and hydrogen-
bonding interactions.
Residues at Helix-C and Helix-N regions

Although Helix-C and Helix-N, both considerably flexible,
are far away from the RNA-binding interface (43), some res-
idue clusters located in them are still identified as important
for RNA binding. As shown in Fig. 6 b, the predicted key
residue clusters are 1 in Helix-N and 12, 13, and 14 in He-
lix-C. The mutation of Arg7Gln in cluster 1 can affect bind-
ing kinetics slightly and yet is deleterious to the stability of
structure (55). As for Helix-C, the experimental and theoret-
ical studies have demonstrated that it makes a significant
contribution to RNA-binding affinity (16,45,57). The site-
directed mutagenesis has proved that Ser91 in cluster 12
contributes a lot to RNA-binding specificity (57). Ile94 in
cluster 14 makes a backbone hydrogen bond with Ser91,
forming the first turn of the helix, and Ile94Pro mutant re-
sults in a 100-fold loss in complex stability, indicating its
major role in stabilizing U1A-RNA complex structure
(16). Asp92 in cluster 13 makes a hydrogen bond with
C12, and the experiments on the mutations of Asp92Glu,
Asp92Ala, and Asp92Phe showed that Asp92 plays a crit-
ical role in locking the U1A onto the RNA (16). Also, a
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truncation, removal, or disruption of the Helix-C will result
in a considerable loss of complex stability (16). The reason
may be that although Helix-C residues do not make direct
contacts with RNA, RNA binding can mediate local
motional cooperativity between Helix-C and the main bind-
ing interface b-sheets, which has been found by the pairwise
coupling free energy analysis (15) and our results about the
effect of RNA binding on movement coupling between U1A
residues (see the Movement coupling between residues in
complex and in the U1A protein).

Together, these results hint that these key residues of clus-
ters, thermodynamically coupled with the binding of RNA,
participate in the long-range allosteric signal transmission.
DISCUSSION

Comparison with the parameter-free GNM model

In our approach, the GNM includes two parameters: a dis-
tance cutoff used to define the connections and placement
of springs between residues, and a spring constant to repre-
sent the interaction strengths between residues. Recently, a
parameter-free GNM (pfGNM) model (58,59) with dis-
tance-dependent springs has been proposed and showed a
better B-factor prediction. Here, to examine the impact of
the specific spring models on the results, we applied this
model to the identification of U1A key residues associated
with RNA-binding and conformational transition.

In the pfGNM model, the nodes representing amino acid
and nucleotide residues are the same with those in the con-
ventional GNM, and all pairs of residues are considered to
interact with each other (no distance cutoff used) with inter-
action strengths weighted by the inverses of their square dis-
tances. Thus, residue pairs that are far apart have weaker
interactions than those that are close in the pfGNM. As
shown in Fig. S1, the correlation coefficient between theo-
retical and experimental B-factors of the residues is 0.902
for the pfGNM, slightly higher than that (0.857) when using
the conventional GNM model, which is consistent with the
former pfGNM results (58).

In Fig. S2, a and b, we present the binding free energy
changesDDG in response to residue mutations and the iden-
tified key residue clusters, respectively. Compared with
Fig. 6, Fig. S2 shows similar regions of critical residues,
although the differences in DDG values among neighboring
residues become smaller when using the pfGNM, which
makes the discrimination of key residue clusters less
explicit. This is understandable because the neighboring res-
idues in the pfGNM are connected with all the other residues
through long-range interacting springs. Thus, the network
and free energy changes are less sensitive to the mutations
than that in the conventional GNM, which defines the
network connections through short-range springs in which
a small mutation is more likely to trigger a network change.
As shown in Fig. S2, five residual clusters can be identified
1632 Biophysical Journal 116, 1625–1636, May 7, 2019
with relatively sharp peeks, which are, respectively,
centered at Glu5, Glu19, Ser48, Met51, and Ser91. The
number of key residues is lower than that (14) identified
by the conventional GNM, probably because of the less
sensitivity of the pfGNMmodel on the mutations. Neverthe-
less, the shape of the DDG distribution is largely the same
between the two models, and the five key residue clusters
by the pfGNM are identical to a subset of the clusters of
1, 3, 6, 7, and 12 (Fig. 6 a) obtained from the conventional
GNM-based thermodynamic method.
Comparison with the atomic-level GNM model

To examine the impact of the level of coarse graining on the
results, we applied the atomic-level GNM model on the
complex and protein U1A. Here, each heavy atom in protein
and RNA is assigned a node, and the cutoff distance is
shorter (than that in the conventional residue-level GNM)
with the optimum value 4.0 Å for our system adopted,
consistent with the set in a previous work (60). As shown
in Fig. S3, the correlation coefficient between theoretical
and experimental B-factors of the residues (Ca, P, and O40

atoms considered for comparison) is 0.796, a little lower
than that (0.857) obtained by the residue-level GNM. A pre-
vious study shows that the atomic-level ENMs can provide
an improved representation for the collective motions of
proteins compared with the coarse-grained models (60).
Here, the reason for no improvement is probably because
of the RNA molecule as when only the protein U1A consid-
ered an improvement from 0.674 to 0.677 can be observed.
We also calculated the cross correlations between atomic
fluctuations in complex and protein U1A using the first 93
modes, as shown in Fig. S4. There is a similar tendency
with that (Fig. 5) obtained by the residue-level GNM,
whereas the effect of the RNA binding on motional correla-
tions between protein residues in the former is not as
obvious as that in the latter.

Additionally, we present the binding free energy changes
DDG in response to residue mutations and the identified key
residue clusters in Fig. S5. Compared with Fig. 6 a obtained
by residue-level GNM, Fig. S5 also shows the similar re-
gions of critical residues, and these regions are more
remarkable, whereas the curve of DDG is more rugged,
which is probably caused by the atomic-level perturbation.
There are 13 residual clusters that are identified with rela-
tively sharp peaks, and they are, respectively, centered at
Glu5, Thr11, Tyr13, Asn15, Glu19, Lys22, Leu44, Arg52,
Gln54, Phe56, Gln85, Lys88, and Ser91. Among them, the
nine key residue clusters (centered at Glu5, Tyr13, Glu19,
Lys22, Arg52, Gln54, Phe56, Gln85, and Ser91) are iden-
tical to a subset of the clusters of 1, 2, 3, 5, 8, 9, 9, 11,
and 12 (Fig. 6 a) obtained by the conventional residue-level
GNM-based thermodynamic method. Although some clus-
ters are not identified, the shape of the DDG distribution
is largely the same between the two GNM models.
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Considering the remarkability of the identified critical
residue regions, we think the atomic-level GNM-based
method can be helpful for the residue-level GNM to identify
the critical residues involved in RNA-binding and confor-
mational transitions.
Comparison with the all-atom normal mode
analysis

The conventional GNM is a coarse-grained model with the
uniform force constant set, and we want to know the effects
of using the all-atom normal mode analysis (NMA) with
classical force field on the results. To detect the issue, the
NMA method (61,62) was performed using all-atom models
in Amber03 force field (63), which requires a very thorough
energy minimization and the calculation of a Hessian matrix
(See Supporting Methods for the detailed process). The
result shows that the correlation coefficient between theoret-
ical and experimental B-factors of the residues is 0.757, as
shown in Fig. S6, lower than 0.796 and 0.857 obtained,
respectively, by the atomic-level and conventional residue-
level GNM models, which is consistent with the previous
NMA result that the structural fluctuations predicted by
NMA are often worse than those by GNM (64–66).

We calculated the cross correlations between atomic fluc-
tuations in complex and protein U1A using the first 15
modes, as shown in Fig. S7. It is shown that the overall re-
sults are similar to those obtained from the GNM, but the
former shows a not very distinct distribution, with some re-
gions having correlations contrary to the corresponding ones
in the GNM. From Fig. S7 a, for RNA in complex, the 50 and
30 stem nucleotides are anticorrelated, which is contrary to
the results obtained by GNM. From the crystal structure,
the 30 and 50 stems of RNA do form a series of basepairing
interactions and should be of a positive motion correlation.
For the two partners in complex, the 50 and 30 stem parts
both have weak positive correlations with U1A loop3 in
GNM, whereas the correlations are positive and negative,
respectively, in NMA. Additionally, the four b-sheets turn
into positive correlations with each other upon RNA binding
in GNM, whereas there are still more or less anticorrelations
between them in NMA.

In Fig. S8, we present the binding free energy changes
DDG in response to residue mutations and the identified
key residue clusters. Compared with Fig. 6 a obtained by
residue-level GNM-based methods, Fig. S8 also shows
similar regions of functionally critical residues, although
their extent of similarity is less than that between the results
obtained by the two atomic- and residue-level GNM-based
models, which is probably due to the common uniform force
constant set in the latter two methods. A more rugged curve
of DDG is displayed in Fig. S8, like that in Fig. S5 obtained
by the atomic-level GNM-based method, which may be
caused by their atomic-level perturbation. As shown in
Fig. S8, eight residual clusters can be identified with rela-
tively sharp peaks, which are respectively centered at
Glu19, Lys23, Lys28, Lys50, Arg70, Phe77, Arg83, and
Thr89. Among them, there are five key residue clusters
(centered at Glu19, Lys23, Lys50, Arg83, and Thr89) which
are identical to a subset of the clusters of 3, 5, 7, 11, and 12
(Fig. 6 a) obtained from the residue-level GNM-based
method.

As we know, in NMA, the system of motion equations is
solved with a quadratic approximation to the potential en-
ergy function. This approximation is accurate enough only
in a small neighborhood of the energy minimal state. In
addition, NMA is conducted at the atomic level, which is
subject to all the atomic-level errors induced in energy cal-
culations because we currently do not have an efficient force
field that can precisely describe the atomic interactions. As a
result, the structural fluctuations predicted by NMA are
often worse than those by coarse-grained GNM, which is
built on a higher level of knowledge-based approximation
(64,65); this has been confirmed again by Park et al. on
the test of 104 proteins (66). Naturally, the fluctuation cross
correlations predicted by NMA are often not as good as
those by GNM. These are the case in our work. Here, the
calculation of DDG according to Eqs. 9 and 10 depends
on the different values of the mean-square fluctuations of
nodes and fluctuation cross correlations between nodes at
the two states of protein U1A with and without RNA bind-
ing. Maybe, this can partially explain the reason why the
predictive power of key residues by NMA is not as good
as that by GNM on protein U1A.

With regard to computation cost, it will take a few mi-
nutes to identify key residues with a GNM-based method,
whereas the time is about several hours when an NMA-
based one is used on a four-core CPU. GNM is a simple
model and easy to construct, and the dimension of the model
is much smaller (proportional to the number of residues or
atoms) than that of the all-atom NMA (three dimensions).
In addition, GNM does not require the exact potential
energy, Hessian matrix, and very thorough energy minimi-
zation even to the maximal force on atoms less
than �10�9 kJ/(mol$nm), which can reduce not only
computational cost but also possible errors in atomic energy
calculations. Therefore, considering the efficiency and
accuracy, our GNM-based thermodynamic method is better
than the NMA-based one in identifying protein U1A key
residues associated with RNA-binding and conformational
transition.
Limitations of the method

In our GNM-based thermodynamic method, a protein
(RNA) structure has been modeled as a homogeneous elastic
network, which neglects the differences between 20 (4)
kinds of amino acids (nucleotides) and the conformational
changes induced by the removing of the RNA. This method
aims to identify the topologically key residues important for
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U1A’s functionally conformational changes associated with
RNA binding. As we know that the functional information
of protein motions is largely encoded in the structural topol-
ogy (29), we think that although this method has the above
coarse-grained approximations, the topology-based model
can help identify the key residues of U1A that are important
for its functional motions involved in the process of RNA
binding.
CONCLUSIONS

We have extended the GNM to examine the effects of RNA
binding on the dynamics of the U1A domain, which is one
of the major components of the spliceosomal U1 small nu-
clear ribonucleoprotein particle that is critical to the process
of RNA alternative splicing. The analytical results of the
GNM calculations show that the snRNA binding can lead
to a large loss in the flexibility of U1A loop1, loop3, and
Helix-C regions because of the formation of specific interac-
tions with the RNA target, suggesting their importance for
the induced fit in U1A-RNA recognition. The enhanced
cross correlations between the conformational fluctuations
reveal that RNA binding strengthens the interactions among
the b-sheets of the U1A domain and between the main bind-
ing surface b-sheets and Helix-C. In the complex structure,
the U1A loop3 and loop1 are found to be strongly and
modestly positively correlated with the target RNA loop,
respectively, consistent with the relative extent of the flexi-
bility loss in U1A loop1 and loop3.

Further, we extended the GNM-based thermodynamic cy-
cle method to the identification of the key residues of U1A
whose mutations significantly change the binding free en-
ergy between U1A and snRNA. These identified key resi-
dues are found in three groups according to their locations
in the protein structure: 1) residues at b-sheets, which pro-
vide a perfect binding surface for RNA and are directly
involved in the binding of RNA with its receptor U1A; 2)
residues at loop regions, which are positively charged and
highly flexible and largely contribute to the induced fit
and the high binding affinity between U1A and RNA
through forming long-range electrostatic and specific
hydrogen-bonding interactions; and 3) residues at Helix-N
and Helix-C, which are highly mobile, thermodynamically
coupled with the binding of RNA, and important for the
long-range allosteric signal transmission. Because all the
residues have been treated equally in the perturbation/muta-
tion simulations, the results of identified critical residues
should be of general implications. As a comparison, we
also examined the pfGNM, atomic-level GNM, and clas-
sical all-atom NMA models, in which a similar shape of
DDG distribution was obtained despite less real key residues
identified partially because the relatively lower sensitivity of
the pfGNM networks on the mutation perturbations, the er-
rors caused by the atomic-level perturbation, and the
atomic-level errors induced in energy calculations and mu-
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tation perturbations, respectively; however, the atomic-level
GNM, with the ability to identify remarkably the critical
residue regions, can be helpful for the residue-level GNM
to identify the critical residues. These data with model-
independent results help demonstrate the robustness of
the approach and the generality of the key residue
identifications.

Although based on an overly simplified ENM, the
approach is featured with the analytical solution and time-
saving virtues compared with atomic MD simulations, and
its single parameter harmonic potential can reproduce in
good detail the low-frequency, large-amplitude motions of
proteins in their native states. Considering its simplicity
and the consistence of the analytical results with experi-
mental data, we believe that the Gaussian network modeling
represents a promising approach, complementary to the
atomic-level simulations, to investigating the binding and
allosteric dynamics of the protein and RNA interactions,
which can be readily extended for other macromolecular
interaction systems.
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