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Abstract

Motivation: Contact-map of a protein sequence dictates the global topology of structural fold.

Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is

particularly useful for the protein sequences that do not have close homology templates in the

Protein Data Bank.

Results: We developed a new method, ResPRE, to predict residue-level protein contacts using in-

verse covariance matrix (or precision matrix) of multiple sequence alignments (MSAs) through

deep residual convolutional neural network training. The approach was tested on a set of 158 non-

homologous proteins collected from the CASP experiments and achieved an average accuracy of

50.6% in the top-L long-range contact prediction with L being the sequence length, which is 11.7%

higher than the best of other state-of-the-art approaches ranging from coevolution coupling ana-

lysis to deep neural network training. Detailed data analyses show that the major advantage of

ResPRE lies at the utilization of precision matrix that helps rule out transitional noises of contact-

maps compared with the previously used covariance matrix. Meanwhile, the residual network with

parallel shortcut layer connections increases the learning ability of deep neural network training. It

was also found that appropriate collection of MSAs can further improve the accuracy of final

contact-map predictions. The standalone package and online server of ResPRE are made freely

available, which should bring important impact on protein structure and function modeling studies

in particular for the distant- and non-homology protein targets.

Availability and implementation: https://zhanglab.ccmb.med.umich.edu/ResPRE and https://

github.com/leeyang/ResPRE.

Contact: njyudj@njust.edu.cn or zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are the focus of many areas of life science studies as they

are responsible for most of the biological functions in living organ-

isms. The functions of proteins are essentially determined by the

unique 3D structures, which are, from the view point of physics,

formed and stabilized by direct interactions of atoms, termed

‘contacts’. For a protein sequence with L residues, the physical con-

tacts of all its residues pairs can be represented as a sparse L�L
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symmetric matrix called ‘contact-map’; the entry of the contact-map

equals to 1 if the corresponding residues pair is in contact or 0

otherwise.

Since the contact-map can dictate the global topology of protein

structure, accurate prediction of contact-maps from the primary se-

quence can have important impact on the computational folding of

protein structures, in particular to the proteins that lack homologous

templates in the Protein Data Bank (PDB) (Zhang, 2008). Early

attempts for contact-map prediction often assume that mutations of

contact residue pairs occur in a joint pattern in the course of evolu-

tion, which can be manifested in an observed multiple sequence

alignment (MSA). Based on this assumption, several methods have

been proposed to use correlated mutations or co-evolutions to de-

duce the contact residues (Göbel et al., 1994; Martin et al., 2005).

The accuracy of these methods is however quite low, partly because

of the existence of translational noises, i.e. if Residues A and B are

both in contact with Residue C, A and B often appear as if they co-

evolve even when there is no physical contact between them. There

is evidence showing that such co-evolutions may have functional

cause (Kass and Horovitz, 2002) rather than structural ones, which

can have resulted in the failure of structure-based contact deriva-

tions. To address this issue, several approaches have been proposed

to eliminate the indirect coupling noises using the technique of direct

coupling analysis (DCA). For example, Burger and Van Nimwegen

(2010) proposed a Bayesian network to distinguish direct from in-

direct co-evolution, while mpDCA (Weigt et al., 2009), mfDCA

(Morcos et al., 2011), plmDCA (Ekeberg et al., 2013; Ekeberg et al.,

2014) and GREMLIN (Kamisetty et al., 2013) fit MSAs with a

Markov random field model to create conditional coupling poten-

tials. In addition, sparse and group sparse inverse covariance meth-

ods have been used by PSICOV (Jones et al., 2012) and CoinDCA

(Ma et al., 2015), respectively. Recently, network decomposition

has also found its usefulness in distinguishing direct dependencies in

protein contact prediction (Feizi et al., 2013; Sun et al., 2015).

From the point view of machine learning, the evolutionary cou-

pling analyses can be regarded as an unsupervised approach, since

they don’t explicitly utilize any contact-map information except for

the aligned sequences of the query protein. Recent studies have

shown that the accuracy of contact-map prediction can be further

improved by integrating features of DCA methods with supervised

machine learning algorithms. In particular, deep neural network

models, including the convolutional neural networks (CNNs)

(Krizhevsky et al., 2017), have shown promising performances in

contact-map prediction in the recent studies (Adhikari et al., 2018;

Buchan and Jones, 2017; Golkov et al., 2016; Jones and Kandathil,

2018; Liu et al., 2018; Wang et al., 2017).

Despite the success of deep CNN in contact-map prediction, it

remains controversial as to what features are needed to achieve the best

prediction efficiency. Several studies (Adhikari et al., 2018; Liu et al.,

2018; Wang et al., 2017) suggested that both sequence derived one-

dimensional features (including secondary structure, solvent

accessibility and position specific scoring matrix etc.) and direct cou-

pling features from co-evolution are important for contact prediction by

CNN. Conversely, recent work by Jones and Kandathil (2018) claimed

that comparable contact prediction performance can be achieved using

the sequence covariance as the only feature input. As shown in the ab-

stract (http://predictioncenter.org/casp13/doc/CASP13_Abstracts.pdf),

the covariance matrix has been widely used in the top-ranking methods

in CASP13, e.g. DMP, Shen-Cdeep, Yang-Server and RRMD.

To have a close examination of the essential features and in par-

ticular to optimally couple the feature selection with deep neural

network models, we proposed a new pipeline, ResPRE, for residue-

level contact-map predictions. First, a precision matrix estimator is

proposed to assess conditional relationships among different residue

types at different positions derived from the MSA. Potentials at each

position pair were then utilized as training features, which are

coupled with the deep fully residual neural networks (He et al.,

2016) for final contact-map modeling. The pipeline will be tested in

multiple large-scale databases to carefully examine the strength and

weakness, in control with the state-of-the-art contact-map predic-

tors based on coevolution coupling analysis and deep neural net-

work training. The standalone package of ResPRE will be made

freely available at https://zhanglab.ccmb.med.umich.edu/ResPRE

and https://github.com/leeyang/ResPRE.

2 Materials and methods

ResPRE consists of three steps of MSA generation, precision-matrix

based feature collection and deep residual neural network training,

where the flowchart is depicted in Figure 1.

2.1 MSA generation
An informative MSA is critical for evolutionary coupling analyses

and subsequent contact-map prediction. In ResPRE, the MSA is gen-

erated by HHblits (Remmert et al., 2012) with a coverage threshold

for query sequence of 40% and a pairwise sequence identity cutoff

of 0.99 against Uniprot_2016_04 by three iterations. E-value thresh-

old is configured to 1 to obtain more diversity alignments.

2.2 Precision-matrix based feature collection
2.2.1 Covariance correlation matrix

Given an MSA with N sequences of aligned length L, the frequencies

of the occurrence of a residue type a at the position i, denoted as

fi að Þ, and the co-occurrence of two residue types a and b at the posi-

tions i and j, fi;j a; bð Þ, can be estimated by

fi að Þ ¼ 1

Neff þ k

XN
n¼1

1

mn
da;an

i
þ k

q

" #

fi;j a;bð Þ ¼ 1

Neff þ k

XN
n¼1

1

mn
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i
; db;an

j
þ k

q2

" #

8>>>>>><
>>>>>>:

(1)

where da;b ¼ 1 if a and b are identical, or ¼0 otherwise; k ¼ 1 is the

pseudocount to approximate the background observation; 1=mn is

used to reweight the nth sequence with mn being the number of

sequences in the MSA that have a sequence identity >80% to the

nth sequence; Neff ¼
PN

n¼1 1=mn is the sum of weights of all N

sequences; and q is the number of possible residue types at one pos-

ition and set to 21 (i.e. 20 naturally-occurring residue types plus

gap).

By extending each position at the MSA into a 21-dimensional vec-

tor using the one-hot encoding technique (Knapp, 1990), we can com-

pute a 21*L by 21*L sample covariance matrix S for the MSA by

Sa;b
i;j ¼ E xa

i xb
j

� �
� E xa

i

� �
E xb

j

� �
¼ fi;j a; bð Þ � fi að Þfj bð Þ (2)

where xa
i is the variable representing residue type a at position i.

2.2.2 Precision matrix

The covariance matrix in Eq. (2) can only capture marginal correla-

tions among variables, which can result in indirect transitional cor-

relations. On the contrary, the inverse covariance matrix (or

precision matrix) is shown able to describe the conditional inde-

pendent relationships among all variables (Fan et al., 2016). Here,
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we estimate the precision matrix through the maximum likelihood

approach (Friedman et al., 2008; Kuismin et al., 2017; van

Wieringen and Peeters, 2016).

Assuming that all variables are independently and identically dis-

tributed, we can estimate the precision matrix H by minimizing the

regularized negative log-likelihood function of

G ¼ tr SHð Þ � log Hj j þ R Hð Þ (3)

where the first two terms can be considered as the negative log-

likelihood of H under the assumption that the data follow multivariate

Gaussian distribution. tr SHð Þ is the trace of matrix SH where S is com-

puted by Eq. (2); log Hj j is the log determinant of H; and R Hð Þ is the

regularization function over H to avoid over-fitting. Jones et al. (2012)

proposed the use of l1 regularization for protein contact-map predic-

tion, which can effectively reduce the number of parameters. However,

this method may not be appropriate in this case since only the strongest

relationships are considered. It makes no substantial difference whether

weak relationships are small or set precisely to 0 (Ekeberg et al., 2013).

In this work, we use the l2 regularization by setting

R Hð Þ ¼ q
X
kHi;jk2

2 (4)

where q is a positive regularization parameter and set to e�6.

Here, H minimizes the convex function G if the derivate of G is

a zero matrix, i.e.

S�H�1 þ 2qH ¼ O (5)

which is equivalent to

�2qHþH�1 ¼ S (6)

where O is zero matrix with equal size to H and S. Thus, the covariance

matrix S has the same eigenvalues and eigenvectors as 2qH�H�1. After

performing the eigen decomposition on both sides of Eq. (6), we have

S ¼ QKQT

�2qKi;i þK�1
i;i ¼ Ki;i

(
(7)

where Q is the eigenvectors of S and K is the diagonal matrix whose

diagonal elements are eigenvalues. Ki;i is ith eigenvalue of H. Thus,

we can obtain Ki;i by

Ki;i ¼
�Ki;i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ki;i

2 þ 8q
q
4q

: (8)

Based on K, we can derive the minimization solution of G in

Eq. (3) by

Ĥ ¼ QKQT : (9)

It is noted that the solution of Eq. (3) is equivalent to the solution

in Kuismin et al. (2017) and van Wieringen and Peeters (2016), but

here we gave a new derivation along Eqs. (5–9).

The estimated precision matrix Ĥ can be further split into L� L

blocks, with each block representing a 21�21 matrix that indicates

the direct coupling correlations for 21�21 residue type pairs at the

corresponding position pair. For each residue pair, the 441-dimen-

sional descriptors from the corresponding block will be utilized as

the training features for the next step of contact-map prediction.

To preserve all the co-evolutionary information, ResPRE directly

uses the precision matrix as input feature (Fig. 1).

2.3 Deep residual neural network architecture
If we treat a protein contact-map as a 2D signal, the contact predic-

tion can be interpreted as a pixel-wise prediction problem in com-

puter vision, where each pixel represents one residue pair. Fully

convolutional networks architecture (Long et al., 2015) has been

shown to be an effective solution for training end-to-end, pixel-to-

pixel models on semantic segmentation, i.e. pixel-wise labeling.

The increasing of the depth of traditional feedforward networks

may result in an increment of training loss and testing error.

However, the training loss should drop by deepening a correspond-

ing neural network since adding layers increases the expressive

power to the model. Recently, He et al. (2016) proposed residual

networks (ResNets) by adding feedforward neural networks with an

identity map of input. As depicted in Figure 1b, the output of t-th re-

sidual basic block admits a representation of the form

xt ¼ f ðxt�1 þF xt�1;wtð ÞÞ (10)

where xt is the output of the t-th residual basic block; wt is a set of

weights in the t-th residual basic block, which contain the weights of

two convolutional layers and the parameters of two instance nor-

malization layers; xt�1 is the output of previous residual block which

is also the input of t-th residual block. The function f is the activa-

tion function after the elementary addition, and in this article, f is

ReLU, while F refers to the operation in residual block. Gradients

can flow smoothly from deeper to shallower layers by adding an

Fig. 1. Flowchart of ResPRE. (a) Process of precision-matrix based feature collection. (b) Block diagram of deep residual neural network architecture
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identity shortcut, which makes the training of extremely deep neural

networks possible.

Taking advantage of both design principles above, we propose

fully residual networks (FRNs) for contact-map prediction as dem-

onstrated in Figure 1b. This ResNet architecture can enable the

training of very deep neural networks, which has demonstrated suc-

cess in many of computational vision experiments. Here, since the

channel size (or feature size) of the input is big (441), it will take up

much of limited GPU memories if directly going through the neural

networks. Hence, we first used a single 1�1 convolutional layer to

transform the original input to a signal with a smaller channel size,

i.e. 64, which is an empirical parameter as a trade-off between the

width and the depth of the neural networks; the 1�1 convolutional

layer is a convolutional layer with 1�1 convolutional kernel that

leads to dimension reduction. The parameters in the 1�1 convolu-

tional kernel is a matrix with the size of feature dimension of input

signal by feature dimension of its output.

In ResPRE, feature dimension of input signal is 441 and the

feature dimension of output signal is set to 64. In other words, the

441-dimension feature vector of each position pairs in raw precision

matrix feature is multiplied by the parameter matrix of the 1�1

convolutional kernel and transformed to the 64-dimension feature

vector. The parameter matrix in the convolutional kernel is learn-

able during the neural network training. The learned features were

then fed into 22 sequential residual basic blocks according to the

limitation of the memory size of a single GPU. We will set deeper

neural networks when more GPU memories are available, to exam-

ine whether deeper neural networks can further improve the accur-

acy of contact-map prediction.

To keep the size of contact-map fixed, pooling layers are not

considered and the kernel size for all convolutional layers is set to

3�3 with padding size equivalent to 1 in residual basic blocks.

We also modify the basic ResNet structure by replacing batch nor-

malization with instance normalization and observe slightly better

performance. Finally, convolutional layer with 3�3 kernel size is

used to get final contact-map prediction with sigmoid activation

function. All the training parameters in the proposed FRNs are inde-

pendent to the size of input. Hence, our deep neural network can

handle the sequences with arbitrary size during both training and

predicting.

2.4 Implementation of the ResPRE pipeline
The prediction model of ResPRE is trained using Adam method

(Kingma and Ba, 2014) together with binary cross entropy loss. We

use pytorch (Paszke et al., 2017) to implement the FRNs. Here, al-

though the training set is unbalanced with the number of non-contact

residue pairs being much higher than that of the contact ones, adding

larger weights to the positive contact pairs does not actually improve

the contact-map precision. We thus keep the original distribution and

set the weights for all residue pairs equally. Due to the limitation of

GPU memory, we use a batch size of 1 for the sequences with length

L>300, 2 for L in 200–300 and 4 for L<200.

2.5 Datasets collection and model training
The test protein set was constructed by combining the CASP11 and

CASP12 targets from http://predictioncenter.org/download_area/,

with official domain definitions used. A filter is then used to remove

all redundant domains with a pair-wise sequence identity >30%,

which results in 158 protein domains in the test dataset.

The training protein set was constructed from the SCOPe 2.06

(Fox et al., 2014) with multiple filters, where a target is discarded if

its length is outside the range of 30–400 residues, or if its resolution

of the corresponding PDB structure is >2.0 Å, or if it has a sequence

identity >30% to any sequence in the test set. Meanwhile, redun-

dant protein pairs with a sequence identity >30% to each other are

removed, which result in a training set consisting of 5525 domains.

These protein domains were randomly split into 10 subsets, on

which 10 contact prediction models were trained; each model was

trained by taking the combination of nine subsets, selected in turn,

as the training subset and the remaining subset as validation to fine-

tune the hyper-parameters of the trained model. The final score of

being contact for each residue pair in ResPRE is an average of the

scores from all 10 trained models. A full list of the training and test-

ing proteins are downloadable at https://zhanglab.ccmb.med.umich.

edu/ResPRE/.

2.6 Evaluation indexes
The definition and categorization of contact predictions follow the

conventional criterions in CASP (Schaarschmidt et al., 2018), i.e. a

residue pair, among which the Euclidean distance between two Cb
(Ca for Glycine) atoms is smaller than 8 Å, is considered as in con-

tact. Residue pairs in contact and separated by at least 24 residues in

the sequence are considered as long-range contacts, where those

with a sequence separation between 12 and 23 or 6 and 11 are con-

sidered as medium- or short-range contacts, respectively.

In this study, we take the precisions of top L/10, L/5, L/2 and L

for three different types of contacts (short-, medium- and long-

range) as the major evaluation indexes. In addition, we considered

the diversity of the predicted contact-map distribution by using

Shannon entropy of top-L contacts (He et al., 2017):

H ¼ �
X100

e¼1

pelog peð Þ: (11)

Here, the predicted contact-map is divided into 10�10 (¼100)

cells and pe is the fraction of the top L contacts in the e-th cell. In the

original definition by He et al. (2017), the incorrectly predicted con-

tacts, which have negative effects for protein structure prediction, are

also taken into consideration for the diversity measurement. As a cor-

rection, we change the definition of pe by adding the accuracy infor-

mation, i.e. pe ¼ Te=L, where Te is the number of the correctly

predicted contacts among the top L predictions in the e-th cell.

3 Results

3.1 Precision-matrix based features help to improve

prediction accuracy and diversity
In order to examine to what extent the precision-matrix based fea-

tures can help improve the prediction accuracy, in Table 1 we com-

pared the prediction performance by the algorithms using precision-

matrix based feature (Pre) and raw covariance-matrix based feature

(Cov) computed by Eq. (2), respectively. Both models use an identi-

cal number of 21 � 21 input features per residue pair. Here, we ran-

domly selected 9/10 sequences from the 5525 SCOPe domains to

train the algorithms, where the remaining 1/10 sequences were used

as the validation set with the results reported in the Table 1. Both

algorithms are trained with the same FRN structure as illustrated in

Figure 1b. For each predictor, a deep residual neural network model

was trained with 100 epochs. The optimal epoch was then selected

according to the best accuracy of the top L/5 long-range predictions

across all epochs.

It can be observed in Table 1 that the prediction performance is

improved with the precision matrix features for all levels of contact
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accuracies. For example, the algorithm with the precision matrix

has an accuracy 0.611 for the top-L long-range contact-map predic-

tion, which is 10.5% higher than that with the covariance ma-

trix (0.553). This difference corresponds to a P-value ¼ 1.6E�55 in

the Student’s t-test, indicating the improvement is statistically

significant.

Interestingly, the effect of precision matrix feature becomes

more pronounced when the residue separation of contacts gets

larger. As shown in Table 1, on average, the accuracy of contact pre-

diction by precision matrix feature is 2.2% and 4.7% higher than

that by the covariance matrix feature for short- and medium-range

evaluation indexes over the four contact-number cutoffs. For long-

range contacts, however, precision matrix feature widens the

average gap to 7.2%. In Row 4, 7 and 10 of Table 1, we also list the

P-values in the Student’s t-test between the precision and covariance

matrix features for short, medium- and long-range contact, respect-

ively. While the P-value decreases when more contacts are evaluated

(i.e. P-values are lower in L and L/2 than that in L/5 and L/10 for

medium- and long-range contacts), the difference in long-range con-

tacts is generally more significant than that in medium- and short-

range contacts as indicated by the lower P-values in the former pre-

dictions. Such robustness in long-range contact prediction is of im-

portant benefit for 3D structure construction (Zhang et al., 2018).

In Figure 2, we present the comparison of covariance and preci-

sion matrices on contact-map predictions with different number of

epochs. It is shown in Figure 2a that the average accuracy of both

models based on precision and covariance matrix features grows

quickly for the first 30 epochs and then becomes steady after that.

Importantly, with the increase of epochs, the precision-matrix based

model consistently outperforms the covariance-matrix based model.

The data of the Shannon entropy index in Figure 2b shows that the

precision matrix model generates contact predictions of a higher diver-

sity than the covariance matrix model. Such diversity of contact-maps

is essential for modeling the 3D structure of non-homologous proteins

of complex topologies (Kinch et al., 2016). These data demonstrate

again the advantage of precision matrix, which can help decode direct

coupling of contacted residue pairs in MSAs, over the covariance ma-

trix that only captures marginal relationships, in modeling different

level of contact-maps, especially those with long-range separations.

3.2 Comparisons of ResPRE with existing predictors
3.2.1 Overall performance

In Table 2, we present the contact-map predictions results of

ResPRE on the 158 non-redundant test proteins collected from

CASP10 and CASP11, in control with four state-of-the-art neural

network methods from DeepContact (Liu et al., 2018),

MetaPSICOV2 (Jones et al., 2015), DNCON2 (Adhikari et al.,

2018) and DeepCov (Jones and Kandathil, 2018). The comparison

is also made with two well-known methods, CCMpred (Seemayer

et al., 2014) and PSICOV (Jones et al., 2012), which are based on

discrete Markov random fields and Gaussian Markov random fields,

respectively. In addition, we show the results of our precision-

matrix based predictor, Ricmap, with the post-process described in

Supplementary Text S1. MetaPSICOV2, DNCON2 and

DeepContact can also be considered as meta-predictors in the sense

that they are using predictions of third-party predictors from

CCMpred, PSICOV and FreeContact (Kajan et al., 2014) as input

features. All the third-party programs were downloaded and imple-

mented in our local computers with default parameters. Among

these predictors, DeepCov, CCMpred, Ricmap and PSICOV do not

have built-in MSA generation pipeline. Hence, we test them with the

same MSAs used in ResPRE, while other predictors are fed with

sequences directly.

The data show that ResPRE creates contacts with a higher accur-

acy than the control predictors. For top L/10, L/5, L/2 and L long-

range contact predictions, e.g. the precision of ResPRE is 8.3%,

8.5%, 10.0% and 11.7% higher than the second-best method of

DeepContact, respectively; these differences correspond to a

Student’s t-test P-value of 4.7E�4, 7.7E�5, 2.4E�6 and 1.4E�8, re-

spectively, indicating that the difference is statistically significant.

Here, DeepCov has also been trained with fully CNN but with the

Table 1. Performance comparisons between covariance (Cov) and

precision-matrix (Pre) based features on the validation dataset of

5525 proteins

L/10 L/5 L/2 L

Short Cov 0.829 0.707 0.460 0.275

Pre 0.847 0.728 0.471 0.278

P-value 1.3e�05 3.3e�09 1.2e�08 5.3e�06

Medium Cov 0.826 0.734 0.523 0.333

Pre 0.861 0.771 0.549 0.348

P-value 9.7e�10 2.6e�14 5.2e�21 1.1e�22

Long Cov 0.878 0.833 0.711 0.553

Pre 0.916 0.880 0.770 0.611

P-value 1.5e�09 2.5e�16 4.6e�38 1.6e�55

Note: Bold fonts highlight the better performed method in each category,

where P-value measures the significance between two features in Student’s t-test.

Fig. 2. Performance comparisons between covariance matrix and precision

matrix feature. (a) Mean precision comparison for long-range top-L/5 and top-

L contacts. (b) Shannon entropy comparison for long-range top L predicted

contacts
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covariance matrix as the training features; but the average accuracy

of ResPRE prediction is 8.9%, 12.1%, 21.0% and 30.7% higher for

top L/10, L/5, L/2 and L long-range contact predictions, respective-

ly, demonstrating again the advantage of the use of precision correl-

ation matrix.

Overall, the performances of all three DCA-based methods are

at the same scale. CCMpred achieves the highest accuracy for all

evaluation indexes, mainly benefitting from the pseudolikelihood

maximization (PLM) approximation of Potts model. Ricmap and

PSICOV are both based on Gaussian approximation but with differ-

ent regularization strategies, where Ricmap consistently outper-

forms PSICOV in all the contact ranges.

It is obvious from Table 2 that the machine learning-based meth-

ods, especially ResPRE, outperform the DCA-based methods by a

large margin. For example, the accuracy of ResPRE model is around

two times higher than that of CCMpred for the top-L long-range

contact prediction, while the gap of ResPRE with PSICOV becomes

even larger (�2.8 times). Compared with Ricmap, the long-range

top L accuracy of ResPRE is 127% higher, which is mainly attrib-

uted to the use of the proposed FRNs as the former uses the same

precision matrix. Here, the DCA-based models from Markov ran-

dom fields aim to find linear relationships between variables

(Friedman et al., 2008; Ravikumar et al., 2010). However, this as-

sumption of linear correlation can be weak, as the real biological

data, such as protein contact-map evolution, often involves various

non-linear and complex relationships, for which the deep neural net-

work learning could help to recognize.

In addition, the precision matrix feature and ResPRE also

worked as important components in TripletRes and ResTriplet in

CASP13. While TripletRes combines the precision matrix feature

with covariance (COV) and PLM matrices through end-to-end train-

ing, ResTriplet is a meta-server stacking ResPRE with two other pre-

dictors based on the COV and PLM matrices, respectively. Both

TripletRes and ResTriplet ranked as top methods in CASP13 RR

Section (Bell et al., 2018) (http://www.predictioncenter.org/casp13/

zscores_rrc.cgi). In Supplementary Table S1, we list the ResPRE

results of RR contact predictions on the 31 free-modeling (FM) tar-

gets in CASP13, which are directly taken from the component of

ResPRE in ResTriplet without reimplementation. The mean preci-

sion of long-range top L/5, L/2 and L predicted contacts by ResPRE

are 0.595, 0.497 and 0.373, respectively. Compared with the official

RR assessment results of FM targets in CASP13, for long-range top-

L contacts, the average accuracy of ResPRE (0.373) is lower than

TripletRes (0.423) and ResTriplet (0.415); but higher than

DeepContact (0.265), DNCON3 (0.249), with a P-value of 1.7E�3

and 2.2E�05 in the Student’s t-test, respectively, the result of which

is consistent with that in Table 2. The accuracy is also slightly higher

than DeepMetaPSICOV (DMP) (0.367), which is a meta-server pre-

dictor combining MetaPSICOV and DeepCov methods (Kandathil

et al., 2018). Given that ResPRE only utilizes a single feature, the

precision matrix, to predict the RR contacts, these results further

confirm the power of the proposed feature in the blind tests.

3.2.2 Impact of MSA generations on contact predictions

Among the six control methods from other labs, DeepContact,

MetaPSICOV2 and DNCON2 have their own strategies to generate

MSAs, which may result in impact to the final contact prediction ac-

curacy. To examine the generality of the approach, we present in

Table 3 the results of long-range contact predictions by ResPRE,

which has the MSA generated from these control programs separate-

ly. Although ResPRE was not re-trained using the new MSA genera-

tions, the results show that the contact prediction by ResPRE has

still a higher accuracy than the control methods. For example, based

on the same MSA from DNCON2, the accuracy of ResPRE is

10.0%, 11.2%, 13.2% and 14.2% higher than that by the latter for

the top L/10, L/5, L/2 and L long-range contacts, respectively.

Similarly, ResPRE has a higher accuracy than MetaPSICOV2 and

DeepContact when using the MSAs from the latter, which demon-

strates the robustness of the ResPRE program.

When comparing the prediction results of ResPRE on different

MSAs, the program achieves similar performance on the MSAs from

DNCON2 and DeepContact, probably due to the fact that these

two predictors have used the similar MSA generation strategies.

However, ResPRE obtains a significant increase in accuracy if start-

ing from the MSAs from MetaPSICOV2 which uses a hybrid ap-

proach combining HHblits and jackHMMer to search through

multiple sequence databases from Uniprot20 and Uniref100, i.e. the

contact accuracy using MetaPSICOV2 MSA is 7.8%, 7.2%, 8.4%

and 9.3% higher than that using the original ResPRE MSAs for the

Table 2. Summary of ResPRE contact-map prediction on 158 test protein in control with other state of the art predictors

Method Short range Medium range Long-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

PSICOV 0.310 0.241 0.161 0.118 0.367 0.289 0.188 0.132 0.406 0.346 0251 0.182

Ricmap 0.337 0.260 0.171 0.125 0.410 0.331 0.221 0.148 0.449 0.397 0.298 0.223

CCMpred 0.382 0.292 0.184 0.127 0.447 0.360 0.232 0.153 0.478 0.420 0.327 0.241

DeepCOV 0.701 0.587 0.392 0.247 0.691 0.598 0.425 0.283 0.698 0.647 0.520 0.387

DNCON2 0.728 0.625 0.417 0.261 0.728 0.641 0.461 0.303 0.669 0.635 0.551 0.444

MetaPSICOV2 0.710 0.604 0.405 0.253 0.700 0.626 0.447 0.296 0.695 0.647 0.549 0.432

DeepContact 0.672 0.571 0.381 0.241 0.730 0.638 0.468 0.306 0.702 0.668 0.572 0.453

ResPRE 0.799 0.690 0.455 0.276 0.788 0.713 0.520 0.333 0.760 0.725 0.629 0.506

Note: Bold fonts highlight the highest value in each category.

Table 3. Summary of long-range contact prediction on 158 test pro-

teins by ResPRE and the control methods on different MSAs

Methods L/10 L/5 L/2 L

DNCON2 0.669 0.635 0.551 0.444

MetaPSICOV2 0.695 0.647 0.549 0.432

DeepContact 0.702 0.668 0.572 0.453

ResPRE (A) 0.736 0.706 0.624 0.507

ResPRE (B) 0.819 0.777 0.682 0.553

ResPRE (C) 0.735 0.708 0.624 0.504

Note: (A) Results obtained with MSAs generated by DNCON2; (B) with

MSAs by MetaPSICOV2; (C) with MSAs by DeepContact. Bold fonts high-

light the highest value in each category.
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top L/10, L/5, L/2 and L long-range contacts, respectively. This ob-

servation indicates that the performance of contact prediction seems

not very sensitive to the MSAs that is used for training the predictor

as long as they are reasonably created; but the final prediction

results can be further improved by more informative MSAs.

To have a quantitative examination of the impact of MSAs on

ResPRE, we present in Figure 3 the accuracy of long-range top L/2

predicted contacts versus the normalized number of effective sequen-

ces in MSAs, i.e. Nnorm
eff ¼ Neff=

ffiffiffiffi
L
p

, where Neff is defined in Eq. (1).

There is a modest but clear correlation between the accuracy and the

logarithm of Nnorm
eff with the Pearson correlation coefficient ¼0.583.

In other words, the ResPRE prediction has generally a higher accuracy

with the MSAs of more homologous sequences. Nevertheless, there

are a total of 10 proteins that have a very low Nnorm
eff (<10) but with a

reasonable contact accuracy >0.5. This data show that while more

sequences have a positive impact to contact prediction in general, the

deep residual CNNs have the ability to learn the underlying contact

patterns from limited coevolutionary information; the latter is import-

ant for structurally modeling the hard protein targets lacking homolo-

gous sequences in the sequence databases.

In Supplementary Table S2, we present the results of the extreme

case by feeding ResPRE with only the query sequence. Under this cir-

cumstance, the precision matrix can only encode query sequence in-

formation and the coupling matrix would be nearly random.

Compared with the results in Table 2, there is a significant decrease in

the mean precisions for all evaluation indexes, e.g. the long-range top

L/5 accuracy drops from 0.725 to 0.162. The loss of the accuracy in

all evaluation indexes demonstrates the critical importance of MSAs

for contact-map prediction. Nevertheless, there are still 11 cases (high-

lighted in bold in Supplementary Table S2) which have the long-range

top L/5 accuracy above 0.5. This observation indicates that, although

not specifically trained for the single-sequence condition, ResPRE was

able to decode the inherent contact pattern among different residue

types and their positional neighbors by the convolutional kernels.

3.2.3 Diversity of the predicted contact-maps

In addition to the accuracy of contact-map prediction, the diversity

of contact distribution is another important evaluation index, which

is highly relevant to protein 3D structure prediction (He et al., 2017;

Kinch et al., 2016). For example, a contact-map that is correctly pre-

dicted but only focuses on a few sequence regions is much less useful

than a contact-map with similar overall accuracy but has the con-

tacts evenly distributed along the sequences, since the latter map can

provide constraints to a wider-range of residue pairs.

In Table 4, we list the diversity index of the contact-map predic-

tions by different programs, based on a modified Shannon entropy

H as defined by Eq. (11). The data show that the entropy value of

the contact-maps by ResPRE is the highest among all the methods

tested. In addition, the data also suggest that the contact predictions

by the machine-learning based predictors tend to have a higher

Shannon entropy than that by the pure coevolution coupling meth-

ods from PSICOV and CCMpred. This is probably because the

coevolution-based methods deduce the contact-maps only from the

sequence MSA evolution, which often limits the correct predictions

on the well-conserved regions; but the deep machine-learning based

approaches can go beyond the coevolution and capture the pattern

of contact-maps from other features, which therefore result in more

diverse distribution of the correct contact predictions.

3.3 Case studies
To further examine the contact predictions of different methods, we

present two representative examples in the test set, T0781-D1 and

T0870-D1, for case studies. Figure 4 shows the results of the top L/5

long-range contact predictions by ResPRE and six control methods,

where the query sequence is represented by a directed circle with

blue to red running from N- to C-terminals, and a correctly pre-

dicted contact is marked by a curve linking the two corresponding

positions along the query sequence.

T0781-D1 is a cystatin-like ab-protein with length L¼200 resi-

dues, categorized as a FM target in CASP as it has no homology

detected in the PDB (Fig. 4a). It is shown in Figure 4b that both

PSICOV and DNCON2 fail to correctly predict any contacts in the

top L/5 (¼40) long-range predictions. CCMpred and MetaPSICOV2

does slightly better but only generates 1 correct contact. DeepCov

and DeepContact outperform these four programs with 3 and 4 con-

tacts correctly predicted, respectively. Finally, ResPRE generates cor-

rectly 19 out of the 40 long-range corrects, which is significantly

higher than all the control programs. It is notable that very few hom-

ologous sequences were detected for this target (with NNorm
eff ¼ 0:35

in the MSA) when ResPRE did the prediction. In fact, even fed with

the query sequence only as done in Supplementary Table S2, PresPRE

can still correctly produce 13 out of 40 long-range contacts. The suc-

cess of this example highlights again the efficiency of the FRNs that

can help recognize the contact pattern from the extremely low num-

ber of homologous sequences.

The second example is a CdiA-CT a-protein with L¼123 resi-

dues (Fig. 4c), which was also categorized as a FM target (CASP ID:

T0870-D1). Among the top L/5 long-range predictions, ResPRE suc-

cessfully predicts 10 contacts, which is nearly two times higher than

Fig. 3. Accuracy of top L/2 long-range contact prediction by ResPRE versus

the normalized Neff in MSAs

Table 4. Shannon entropy of contact-maps by different methods on

the 158 test proteins

Methods All ranges Long-range

PSICOV 0.93 0.67

CCMpred 1.12 0.83

DeepCOV 1.56 1.06

DNCON2 1.68 1.24

MetaPSICOV2 1.71 1.24

DeepContact 1.71 1.28

ResPRE 1.91 1.41

Note: Bold fonts highlight the highest value in each category.
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that by all the control methods, which have 3, 5, 6, 5, 2 and 2 cor-

rect contacts, respectively, for DeepContact, MetaPSICOV2,

DNCON2, DeepCov, CCMpred and PSICOV programs (Fig. 4d). It

was also shown that the ResPRE contact-map covers more regions

of the query sequence, which results in a Shannon entropy (1.13),

which is higher than the control methods (0.40, 0.60, 0.68, 0.60,

0.26, 0.26 for DeepContact, MetaPSICOV2, DNCON2, DeepCov,

CCMpred and PSICOV, respectively). This diversity of contact-map

is important to constrain 3D structure folding for the FM targets

that lack homologous templates in the PDB.

4 Discussion and conclusion

We proposed a new method, ResPRE, for protein residue-residue

contact-map prediction. Starting from a query sequence, MSAs are

constructed from the homologous sequence search through the se-

quence databases. The precision matrix of the MSAs is then derived

by maximum likelihood and used as the only input feature for con-

tact model construction through deep residual CNN training.

Compared with other contact prediction methods in literature, the

major uniqueness of RespRE is in the derivation and utilization of

the precision matrix feature. In this regard, we proposed a new der-

ivation to estimate the ridge-regularized inverse covariance matrix,

where the estimated precision matrix is then introduced to DCA to

wipe out translational noise in the covariance matrix. Moreover, un-

like most other machine-learning based methods, ResPRE feeds the

raw precision matrix directly to the deep ResNet, to avoid possible

loss of the coevolutionary information.

ResPRE was tested on a large set of 158 non-homologous pro-

tein domains collected from the CASP experiments and achieved an

average accuracy significantly higher than the control methods that

are built on coevolution coupling analyses and/or meta-server based

neural network training. The detailed data analyses, on both the test

and validation results, showed that the major advantage of ResPRE

can be attributed to the use of the precision matrix features that can

efficiently rule out the translational noise in the covariance or mu-

tual information matrices of the MSAs. Moreover, the use of the

deep convolutional network based learning, in particular the cou-

pling of residual network architecture, helps improve the efficiency

of the contact model training.

It is noteworthy that the covariance and precision matrices

should contain the same amount of information when derived from

the same set of MSAs. Therefore, a perfect neural-network model

should in principle generate similar level of accurate contact predic-

tions when trained on the covariance and precision matrix features.

However, in practical, because of the limitation of available data

and the representation and generalization power of deep neural net-

works, precisely disentangling the correlation chains using deep

neural networks is still a challenging problem. We believe that the

inversion of the covariance matrix can help facilitate the neural net-

work to recognize contact patterns in an easier and more efficient

way. The significant improvements obtained by the precision matrix

feature, compared with those by the covariance matrix, confirmed

that the inversion of the covariance matrix is essential to achieve

high-accuracy contact prediction results.

Despite the success of the algorithm, worrisome may be raised

on the performance for the targets with a low number of homolo-

gous sequences, since only a single 2D coevolutionary feature, the

precision matrix feature, is used in ResPRE. In fact, it was observed

that ResPRE was able to create reasonable contact-map prediction

(with an accuracy >0.5 for top L/2 long-range contacts) for around

24% of the hard targets that have a NNorm
eff <10 (as exemplified in

Fig. 3). Even using a single query sequence, ResPRE was able to gen-

erate long-range top L/5 accuracy >0.5 for 11 out of 158 cases

(7%) without retraining (Supplementary Table S2). This is probably

due to the ability of the deep residual neural networks in recognizing

the inherent contact pattern among different amino acid types.

Nevertheless, the inclusion of effective one-dimensional features

(e.g. from secondary structure prediction and sequence profiles) may

be beneficial for the hard protein targets. It was also observed that

changes to other MSAs, such as the ones from MetaPSICOV2, can

substantially improve the performance of ResPRE without further

training or parameter optimization. Therefore, the reconstruction of

MSAs with sensitive homology detectors and more comprehensive

sequence datasets should help further improve the accuracy of the

contact-map models. The studies along these lines are under pro-

gress (Zhang and Zheng et al., in preparation).
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