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Abstract

Accurate prediction of atomic-level protein structure is important for annotating the biological

functions of protein molecules and for designing new compounds to regulate the functions.

Template-based modeling (TBM), which aims to construct structural models by copying and

refining the structural frameworks of other known proteins, remains the most accurate method

for protein structure prediction. Due to the difficulty in recognizing distant-homology tem-

plates, however, the accuracy of TBM decreases rapidly when the evolutionary relationship

between the query and template vanishes. In this study, we propose a new method, CEthrea-

der, which first predicts residue-residue contacts by coupling evolutionary precision matrices

with deep residual convolutional neural-networks. The predicted contact maps are then inte-

grated with sequence profile alignments to recognize structural templates from the PDB. The

method was tested on two independent benchmark sets consisting collectively of 1,153 non-

homologous protein targets, where CEthreader detected 176% or 36% more correct tem-

plates with a TM-score >0.5 than the best state-of-the-art profile- or contact-based threading

methods, respectively, for the Hard targets that lacked homologous templates. Moreover,

CEthreader was able to identify 114% or 20% more correct templates with the same Fold as

the query, after excluding structures from the same SCOPe Superfamily, than the best profile-

or contact-based threading methods. Detailed analyses show that the major advantage of

CEthreader lies in the efficient coupling of contact maps with profile alignments, which helps

recognize global fold of protein structures when the homologous relationship between the

query and template is weak. These results demonstrate an efficient new strategy to combine

ab initio contact map prediction with profile alignments to significantly improve the accuracy of

template-based structure prediction, especially for distant-homology proteins.
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Author summary

Despite decades of effort in computational method development, template-based model-

ing (TBM) still remains the most reliable approach to high-resolution protein structure

prediction. Previous studies have shown that the PDB library is complete for single-

domain proteins and TBM is in principle sufficient to solve the structure prediction prob-

lem if the most similar structure in the PDB could be reliably identified and used as tem-

plate for model reconstruction. But in reality, the success of TBM depends on the

availability of closely-homologous templates, where its accuracy and reliability decrease

sharply when the evolutionary relationship between query and template becomes more

distant. We developed a new threading approach, CEthreader, which allows for dynamic

programing alignments of predicted contact-maps through eigen-decomposition. The

large-scale benchmark tests show that the coupling of contact map with profile and sec-

ondary structure alignments through the proposed protocol can significantly improve the

accuracy of template recognition for distantly-homologous protein targets.

This is a PLoS Computational Biology Methods paper.

Introduction

Given the rapidly increasing gap between the number of known protein sequences and the

number of known structures, the demand for high-resolution, computer-based protein struc-

ture prediction has risen dramatically [1,2]. While various advanced approaches have been

proposed over the last few decades [3–8], template-based modeling (TBM), which is designed

to construct structural models using templates of similar folds collected from the Protein Data

Bank (PDB), remains still the most accurate and reliable protein structure prediction method

[9,10]. The core procedure in TBM is the identification of correct templates, where the accu-

racy of template recognition and alignment essentially determines the accuracy of the final

TBM models. In an effort to recognize structure templates that have similar folds to the query,

a variety of threading methods with different alignment scores and searching schemes have

been developed in order to match the query sequence and template structures [8,11–14]. The

success of these methods is, however, often limited to the targets that have closely-homologous

templates in the PDB. When the evolutionary relationship between the query and template is

more distant, typically when the sequence identity is below 30% [15], the query-template align-

ment accuracy sharply declines. Thus, although there is evidence that the PDB library is com-

plete and sufficient to solve the protein structure prediction problem [16], modeling of

distantly-homologous proteins using TBM remains a major challenge in the field.

Recently, sequence-based contact prediction between residue pairs using co-evolution [17–

20] and machine learning [21–25] has shown considerable promise for improving the model-

ing accuracy of distantly- and non-homologous proteins. The major advantage associated with

contact-based modeling of protein structures is that correct contact maps, even those with a

small fraction of coverage, can significantly reduce the conformational space needed to be

searched during the folding simulations, while helping identify the global folds of proteins

with complicated topologies. However, the contact map information cannot be directly used

in threading, since the query-template alignments in most threading methods are built on
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dynamic programming or hidden Markov models that require single-body potentials, while

contact map information is inherently two-body.

Several efforts have been previously made to incorporate pair-wise contacts into dynamic

programming and subsequent threading alignments [12,13,26,27]. For instance, PROSPECT

introduced a contact term, associated with a uniform background probability, into its scoring

function. Due to the lack of specificity, however, the contact potential utilized in this method

is fairly noisy and the improvement from contacts is limited. Additionally, the method uses a

Divide-and-Conquer algorithm for the alignment searching procedure that is computationally

expensive. Another early attempt is PROSPECTOR [12,26], which uses a “partly-thawed”

approach that evaluates the contact potential based on the previous rounds of alignment itera-

tions; the solutions obtained by this method are, however, not exact. In a recent effort, map_a-

lign [27] proposed an iterative double dynamic programming algorithm that aligns contact

maps. Nevertheless, this program cannot provide exact solutions as the results rely on the ini-

tial estimation of the similarity matrix, which is not always optimal.

Since direct alignment of contact maps is challenging, several other attempts [28–33] have

been made to solve the contact map alignment problem using the eigen-decomposition strategy.

For example, inspired by a previous study by Galaktionov and Marshalland [34], EIGAs [28]

performs eigen-decomposition of a protein’s contact map, with each residue of the protein

assigned one of the eigenvalues which has the closest angle between the corresponding eigen-

vector and that residue. Here, the angle is related to the coordinates of the eigenvector. The con-

tact map of two structures can then be aligned by dynamic programming, where the alignment

score for aligning a pair of residues is the absolute difference between the two eigenvalues asso-

ciated with the two residues. While the neglect of the eigenvectors by this method allows for fast

structure alignment, it can lead to suboptimal alignment accuracy. Therefore, an extended ver-

sion, EIGA [29], was proposed based on the spectral methodology that starts from the initial

alignment output by EIGAs. The alignment is then iteratively refined by multiple rounds of

dynamic programming. In each iteration, the protein pair is aligned based on the eigenvalue-

weighted eigenvector elements assigned to the residues, and the alignment is then used to

update the assignment of the residue’s eigenvalue-weighted eigenvector element. Although

EIGA utilizes more information than EIGAs in order to obtain more accurate alignments, it

heavily relies on the quality of the initial alignments generated by EIGAs. SABERTOOTH [30]

is another protein structural alignment method based on the first principal eigenvector of the

contact matrix. Since this method only uses one-dimension of the contact eigenvector, which

may result in much of the information encoded in a contact map being lost, the alignment accu-

racy can be poor. Similarly, Al-Eigen [31] approximates contact maps by using the top eigenvec-

tors generated by eigen-decomposition, and determines the similarity between two contact

maps by global alignment of the principal eigenvectors. While all of these methods show prom-

ise for structure alignment guided by eigen-decomposed contact maps, they cannot be directly

used for threading, where the native contact map of the query protein is unknown.

Recently, some methodologies have been extended specifically for threading. For instance,

SABERTOOTH [32] was extended for sequence alignment, where the principal eigenvector of

a protein is predicted by a neural-network whose input feature is the Position-Specific Scoring

Matrix (PSSM) generated by PSI-BLAST [35], with the alignment approach identical to the

former version of SABERTOOTH. More recently, EigenTHREADER [33] was developed to

extend Al-Eigen to enable threading by predicting a protein’s contact map starting from its

sequence, and then searching a library composed of contact maps for known structures. While

these methods can perform threading based on predicted contact maps, they do not consider

other linear features such as sequence profiles and secondary structure information, which can

be used to further improve the alignment accuracy.

Fold-recognition through contact map alignments
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In this study, we propose a new contact-based threading method, called CEthreader (Contact

Eigenvector-based threader), which first creates contact map predictions using deep residual neu-

ral-network training. The contact map matrix is then represented by the cross product of single-

body eigenvectors through the eigen-decomposition technique, following the idea of Al-Eigen

[31]. Finally, extensive contact-based alignment searching, built on a newly developed dot-prod-

uct scoring function used to align contact eigenvectors, is performed through dynamic program-

ming. In addition to the contact maps, multiple inherent features, including secondary structure

prediction and sequence profiles, are incorporated to further enhance the alignment accuracy

(see the flowchart in Fig 1). Multiple large-scale benchmark tests were conducted to carefully

examine the strengths, weaknesses and potential of the new contact-based threading approach.

Comparison of CEthreader to start-of-the-art contact- and profile-based threading algorithms

and pure contact- or template-guided folding approaches demonstrated the significant advan-

tages associated with using our composite contact and profile-guided threading approach for dis-

tant-homology fold-recognition and modeling. The CEthreader online server and standalone

package are freely available at https://zhanglab.ccmb.med.umich.edu/CEthreader.

Fig 1. CEthreader flowchart. The pipeline consists of four major steps: contact map prediction, contact matrix eigen-decomposition, database searching

and contact score-guided template selection.

https://doi.org/10.1371/journal.pcbi.1007411.g001
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Results

Construction of the template library and benchmark datasets

Two libraries of non-redundant protein structure templates were collected to test CEthreader.

The first was taken from the I-TASSER threading template library [5], which consists of 51,376

single-domain structures with a sequence identity cutoff of 70% (see https://zhanglab.ccmb.

med.umich.edu/library/). The second library was collected from SCOPe [36], which consists

of 23,000 single-domain structures after filtering the redundant entries at the 95% sequence

identity cutoff.

The threading methods were examined using two benchmark protein sets. The first (Set-I)

consisted of 614 non-redundant protein domains taken from the PDB that satisfied the follow-

ing criteria: (i) pair-wise sequence identity is<30% to any other selected protein in Set-I; (ii)
each protein had at least one template with a TM-score >0.5 as identified by TM-align [37]

structural alignment search through the I-TASSER template library [5]. Based on LOMETS

[38], which categorizes proteins as Easy or Hard threading targets depending on the signifi-

cance scores of multiple threading programs, this dataset contained 403 Easy targets (for

which at least one program in LOMETS had a significant template hit) and 211 Hard targets

(for which no program in LOMETS had a significant hit).

The second benchmark set (Set-II) was taken from the SCOPe database and constructed in

two steps. First, we retrieved 5,497 structures from the SCOPe that satisfied the following

requirements: (i) pair-wise sequence identity is<95% to any other selected protein in Set-II;

(ii) structure came from a Fold group that contained at least two Superfamilies. Next, we ran-

domly selected one representative target from each Superfamily, which resulted in 539 targets

from 116 Fold groups. Based on LOMETS, this set contained 379 Easy and 160 Hard targets.

In both datasets, any protein that shared the same Superfamily with or had a sequence iden-

tity>30% to the CEthreader training proteins was excluded. In addition, proteins that had a

sequence identity >40% to any protein in the ResPRE training set were excluded from both

datasets. This slightly relaxed sequence identity cutoff to the ResPRE training set is mainly due

to the fact that the ResPRE training set is large, including about 5,600 high-resolution protein

structures in order to facilitate effective deep learning training, and the use of the same cutoff

of 30% could result in an insufficient number of threadable structures in both benchmark

datasets. For example, there were 614 protein targets in Benchmark Set-I when using a 40%

sequence identity cutoff; however, using a 30% sequence identity cutoff would have reduced

the number of targets in Benchmark Set-I to 239.

Benchmark test on CEthreader

CEthreader was first tested on the 614 proteins in Benchmark Set-I, each of which was

threaded through the I-TASSER template library, where any homologous templates with a

sequence identity >30% to the query were excluded.

Effect of component scores on CEthreader alignment. While sequence profile informa-

tion derived from multiple sequence alignments (MSAs) for query and template proteins has

been effectively used to detect homologous templates in many threading methods [8,14], it is

often less effective for proteins that lack templates with closely-homologous sequences. Here,

we explore the possibility of using contact map information (Scm in Eq 5 in METHODS) to

enhance the ability to recognize distant-homology templates. To examine the impact of the dif-

ferent components of the CEthreader scoring function on the accuracy of template identifica-

tion, we list in Fig 2A the average TM-scores of the first templates identified by using Scm
(contact map information only), Sss+prof (profile and secondary structure information), or Scm+ss

Fold-recognition through contact map alignments
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Fig 2. Performance of CEtheader on Benchmark Set-I, which was collected from the I-TASSER database. TM-score and Nst (number of targets with first

template TM-scores>0.5) histograms for CEthreader using three different scoring functions on the 211 Hard targets (A) and 403 Easy targets (B). (C) The

TM-score of the first template identified by CEthreader as a function of the logarithm of the MSA Neff value, where three scoring functions- Sss+prof (green

points), Scm (blue points) and Scm+ss+prof (red points)- were used by CEthreader. Linear regression was used to fit the correlation relationship between TM-

score and MSA Neff value for the three scoring functions, where the fitted relationships for Sss+prof (green line), Scm (blue line) and Scm+ss+prof (red line) are

y = 0.242+0.042x, y = 0.317+0.039x, and y = 0.361+0.036x, respectively.

https://doi.org/10.1371/journal.pcbi.1007411.g002
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+prof as the scoring function. First, the data show that contact-based threading using Scm alone

can identify better quality templates for Hard targets than traditional profile and secondary

structure-based alignments, where the average first template TM-score for Scm was 0.439 and 71

out of the 211 Hard targets had templates with TM-scores>0.5, as compared to an average first

template TM-score of 0.284 and 19 targets with correctly identified templates for Sss+prof (see

more TM-score and RMSD comparisons in S1 Table). The poor performance by the latter

method can be attributed to the fact that profile-profile alignments rely on the evolutionary rela-

tionship between the query and templates, which is much less accurate here as homologous

templates have been excluded; meanwhile, the number of homologous sequences is low for the

Hard targets (~227, on average) which further reduces the reliability of the profile-based align-

ments. On the other hand, ResPRE [39], a deep-learning-based contact map predictor (see

METHODS), can generate contact predictions with reasonable accuracy even for targets with

few homologous sequences, thus helping capture the global structural similarity between the

query and templates in the absence of a reliable profile match.

When the Scm+ss+prof score was used, the average TM-score of the first identified templates

increased to 0.453, which was 3.2% (or 59.5%) higher than that obtained by contact-based

threading using Scm (or profile and secondary structure-based threading using Sss+prof), with a

p-value of 2.3E-03 (or 7.8E-30) calculated using the Wilcoxon signed-rank test. Accordingly,

the number of targets whose templates were correctly identified (TM-score >0.5) using Scm+ss

+prof was 80, which was higher than the number identified by either individual scoring function

Scm (71) or Sss+prof (19). The data suggest that the combined scoring function helps to accu-

rately align the query proteins to their templates and to identify correct templates more effec-

tively than the scoring functions that were solely based on contact or profile and secondary

structure information alone.

In Fig 2B, we also list the threading results for the 403 Easy targets that had homologous

templates in the PDB. Although profile alignments have been proven to be highly efficient at

detecting closely-homologous templates, the results show that contact map information can

still help enhance the alignment accuracy for the selected Easy targets. This is demonstrated by

the fact that the average TM-score of the first templates identified by CEthreader using Scm+ss

+prof (0.687) was about 4.7% higher than the corresponding templates detected using Sss+prof
(0.656) with a p-value of 1.1E-15, where the number of targets whose templates were correctly

identified by the former (365) was also higher than the latter (347). When considering each of

the 614 test targets together, the average TM-score of the first templates detected by Scm+ss+prof

(0.607) was 15% higher than the average TM-score of the first templates identified by Sss+prof
(0.528), which corresponds to a p-value of 2.1E-45; these data suggest that CEthreader can sig-

nificantly improve the alignment accuracy and the number of correctly identified templates

for both Hard and Easy targets.

Here, it is worthy of noting that the performance of our Sss+prof score was slightly worse

than that of the state-of-the-art secondary structure and profile-based method, HHsearch [8],

for both Hard (TM-score = 0.284 vs TM-score = 0.314) and Easy targets (TM-score = 0.656 vs

TM-score = 0.682, see more comparisons with other programs in S2 Table, which will be dis-

cussed later, where our Sss+prof score is called PPA). Even though the non-contact-based com-

ponents (secondary structure and profile matching) do not produce as accurate results as

HHsearch, the performance of the full CEthreader algorithm, which couples the non-contact-

based components (secondary structure and profile matching) with the contact-based compo-

nent (contact eigenvector matching), is significantly better than all other methods, underscor-

ing the importance of contact information to the CEthreader method (S2 Table).

In Fig 2C, we further examined the effective number of homologous sequences, Neff
(defined in Eq. S1 in S1 Text), which is required for each scoring function to identify good

Fold-recognition through contact map alignments
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templates with TM-scores >0.5. The figure lists the TM-scores of the first templates identified

by CEthreader using different scoring functions (Sss+prof, Scm and Scm+ss+prof) versus the loga-

rithm of the MSA Neff values. Despite the large variations, we use linear regression to fit the

correlation relationship between the template TM-score and the logarithm of the Neff value

for the three scoring functions. The intersection points between the fitted lines and the TM-

score = 0.5 horizontal line can be considered as an approximate cutoff to determine what Neff
values are required for each scoring function to identify good templates. It was found that

threading with the Sss+prof scoring function has the highest dependency on the MSA Neff value

with a cutoff of 26.14 (�64), which means that on average the Sss+prof scoring function may

detect good templates only when the Neff is >64. On the other hand, the Scm scoring function,

which only uses contact information to guide the threading alignments, has a relaxed Neff cut-

off of 24.69. The combination of both scores, Scm+ss+prof, has the widest applicability since it can

identify good templates for targets with the lowest Neff values (only>23.86). These data suggest

that CEthreader has the ability to identify good templates for targets whose MSAs have

Fig 3. Performance of CEtheader on the 211 Hard targets in Benchmark Set-I from the I-TASSER database. (A) Venn diagram for the number of targets

with first template TM-scores>0.5 using different scoring functions. (B) Overlay of the CEthreader template (left panel) and MODELLER models (right panel)

on the native structure from the RuvB Holliday junction branch migration motor (PDB ID: 1in4A1), where two scoring functions- Sss+prof and Scm+ss+prof - were

used by CEthreader. (C) Query-template alignments using different scoring functions for 1in4A1, where H1-4 and E1-2 are secondary structure segments

assigned from the native PDB structure. (D) Overlay of the query (open circles) and template (closed circles) contact maps obtained using Sss+prof (left panel) or

Scm+ss+prof (right panel), where helix, strand and loop regions are marked with purple, green and grey characters along the sequences. (E) Contribution of profile-

(yellow) and contact-based (black) scores to the CEthreader alignments when using Sss+prof (left) or Scm+ss+prof (right).

https://doi.org/10.1371/journal.pcbi.1007411.g003
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relatively few effective sequences, thereby extending the applicability and usefulness of

CEthreader, especially for Hard targets.

Why does the combination of contacts with profile and secondary structure work?. To

examine the effectiveness and rational of the combined scoring function for fold-recognition,

we present in Fig 3A a Venn diagram of fold-recognition results using the three scoring func-

tions, Scm, Sss+prof and Scm+ss+prof, on the selected Hard targets. We found that the 80 targets

whose templates were correctly detected by Scm+ss+prof with a TM-score >0.5 were not a simple

overlap of the 71 targets found using Scm and the 19 targets found using Sss+prof. Instead, the

composite scoring function helped detect correct templates for 21 new targets that were not

identified using either contact or profile and secondary structure-based threading search

alone.

In Fig 3B (Left panel), we present a representative example from the RuvB Holliday junc-

tion branch migration motor (PDB ID: 1in4A1), for which the templates identified using Sss
+prof and Scm+ss+prof are superimposed onto the native structure separately. The match based on

profile and secondary structure resulted in an incorrect alignment shift starting from the third

helix region (H3), where the resulting alignment gap is shown in Fig 3C and highlighted with

a circle in Fig 3B. Under the pressure of enforcing contact map matching between the query

and template, however, the correct alignment was restored when using Scm+ss+prof, where each

of the four helix regions of the template was correctly aligned to the query. This improvement

can be clearly seen in Fig 3D, where the gap region corresponds to the mis-match between the

query and template contact maps (Left panel), which is removed after considering the contact

match score (Scm) (Right panel). As a result, the TM-score of the template identified using Sss
+prof was 0.46, which was considerably lower than that by Scm+ss+prof (0.61). This example high-

lights the usefulness of coupling contact maps with profile and secondary structure informa-

tion to improve the alignment accuracy even when the same template is identified. The Right

panel of Fig 3B displays the superposition of the native structure with the full-length models

constructed by MODELLER [4] based on the template alignments, where the model built from

the Sss+prof template alignment (with a model TM-score = 0.53) contains a long loop between

two strands (E1 and E2) due to the alignment shift at H3. On the other hand, the use of Scm+ss

+prof leads to a better full-length model along each of the secondary structure regions with an

improved TM-score (= 0.68).

In Fig 3E, we quantitatively analyze the contribution of profile and contact information to

the query-template alignment for 1in4A1. We observed that the profile score was positive in

the H1 and H2 regions for both the query and template due to the conservation of amino-acid

composition, as evident from their profiles (see the top left panel of Fig 3E). As a result, the

profile match is dominant when aligning the H1 and H2 regions of the query and template,

and hence contact information does not have a significant effect on the alignment of these

regions. However, the profile score is highly negative when the H3 region of the query is

aligned to that of the template due to their different amino acid compositions in this region

(see top-right panel of Fig 3E). Hence, the dynamic programming algorithm tends to add gaps

in this region to maximize the final score of the profile-guided alignment. On the other hand,

the contact information is highly conserved in the H3 region (positive score in the aligned H3

region), and thus the net score in this region has a positive contribution to the final score. Nev-

ertheless, it is noteworthy that the overall profile information is reliable for this example, since

approximately 1,000 homologous sequences were obtained for both the query and template

sequences using PSI-BLAST [35] with an E-value cutoff of 0.01. This particular example high-

lights the importance of profile information when aligning regions where the amino acid com-

position is conserved, while also showing how contact map prediction can help fix the

Fold-recognition through contact map alignments
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alignment errors along the regions where the profiles for the query and template do not

match.

Furthermore, we conducted an analysis to examine whether and how the performance of

CEthreader varies based on the relative difficulty of identifying templates for the Hard targets,

where the latter is quantitatively assessed by the structural similarity between the target and

the best possible template identified by TM-align [37] from the PDB. As shown in S1 Fig, we

found that as the TM-score between the target and the best template increased, the perfor-

mance of CEthreader-detected templates (with both the best structural alignment and the

CEthreader alignments) generally increases, meaning that the performance of CEthreader

does have a weak but positive correlation with the similarity between the target and templates.

Nevertheless, the TM-scores of CEthreader-identified templates were uniformly around 0.14

units lower than those of the best possible templates for the 211 Hard targets. When comparing

the alignment results on the same template, the alignment quality of CEthreader, in terms of

TM-score, was around 0.06 units lower than that produced by the structure alignment pro-

gram, TM-align. These data show that there are considerable room for CEthreader improve-

ment in both template detection and alignment construction.

Reduction of time complexity using a hybrid threading approach. We use eigen-

decomposition to convert the two-body contact map potential into a single-body potential,

where the accuracy of the contact matrix representation increases with an increased number

of eigenvectors (see METHODS). However, the time cost also increases rapidly when more

eigenvectors are taken into account when aligning the query-template contacts, because a total

of 2K possible alignments must be enumerated when considering K eigenvectors so that the

sign of every involved eigenvector can be decided. This is particularly an issue when threading

through a large size database. For example, when we set K = 7, the average time required to

thread a query sequence of 200 residues through our database of 51,376 templates is ~130

hours. In order to reduce the time cost while maintaining the alignment accuracy, we imple-

ment a hybrid threading approach that combines both greedy and enumerative searching

strategies.

First, we use a greedy searching strategy to scan the whole database with a small K (= 2) and

rank all the templates based on CMOq = O(CMQ, CMT)/N(CMQ), where N(CMQ) is the num-

ber of contacts used by CEthreader and O(CMQ,CMT) is the number of overlapped contacts

between the aligned regions of the query and template proteins. For each query-template pair,

this greedy strategy attempts to invert the signs of each eigenvector in turn, starting with the

eigenvector associated with the largest eigenvalue. Once a sign inversion is set, this process is

performed for the rest of the eigenvectors until all K signs are set. This greedy algorithm per-

forms only 2K alignments, which significantly reduces the time complexity when compared to

the enumerative searching strategy where all 2K alignments must be performed. Next, based

on the ranking results in the first step, we select the top 1,000 templates for the query sequence

and re-rank these templates using an enumerative searching strategy with a cumulative total of

7 eigenvectors. Although 254 (21+22+23+24+25+26+27 = 254) alignments are performed for

each template, the number of templates is significantly reduced, which means all of the query-

template alignments can be conducted with a reasonable cost and an average CPU time of ~2

hours.

S2 Fig in the SI shows the performance of CEthreader on the 211 Hard targets using differ-

ent searching strategies and different numbers of eigenvectors. When only one eigenvector

was used in the first step, the greedy searching strategy could detect correct templates for 57

targets, and the average time cost was ~1.4 hours. After further optimization based on the enu-

merative searching of the top 1,000 templates, the number of correct templates increased to 77.

When two eigenvectors were used in the first step, correct templates for 68 targets could be
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identified by the greedy searching algorithm with an average time cost of ~2.4 hours, and cor-

rect templates were recognized for 79 targets in the second step of searching. Although the per-

formance based on greedy searching increased with an increase in the number of eigenvectors,

the final performance based on the hybrid searching strategy did not change much. In fact, the

number of correct templates identified after implementing our greedy heuristic was very close

to the number found after ~130 hours of enumerative searching through the whole template

library of 51,376 proteins based on a cumulative total of 7 eigenvectors. Therefore, the hybrid

searching strategy with only 2 eigenvectors used during the greedy searching step achieves reli-

able performance but with significantly reduced time complexity.

Comparison of CEthreader to other state-of-the-art threading approaches

To further examine the impact of contact map information on threading, we compare the per-

formance of CEthreader to other state-of-the-art profile- and contact-based threading pro-

grams. The comparisons were made on our two benchmark sets (Set-I and Set-II), where each

target from Set-I and Set-II were searched through either the I-TASSER template database or

the SCOPe database, respectively.

Test on Benchmark Set-I: Ability to recognize the most accurate templates. Table 1

shows the CEthreader threading results in comparison to eight state-of-the-art threading pro-

grams. The results were obtained by threading the 211 Hard targets in Set-I through the

I-TASSER template library, where all templates that had a sequence identity >30% to the

query sequence were excluded. The data show that the average TM-score of the identified tem-

plates by CEthreader was 0.453, which was at least 9% or 45% higher than the average TM-

scores by other contact-based methods or profile-based methods, respectively. The contact-

based methods included: map_align (0.414) and EigenThreader (0.413), while the profile-

based methods included: HHsearch (0.313) and MUSTER (0.304) [14]. The TM-score com-

parisons between CEthreader and the other methods were also statistically significant as per

the Wilcoxon signed-rank tests which had p-values <4.4E-06 for all of the comparisons. The

table also shows that CEthreader could identify correct templates for 80 out of the 211 Hard

targets, which was 1.35 times higher than the next best contact-based methods and 2.76 times

higher than the next best profile-based method. The average RMSD by CEthreader was also

lower than that of other programs, including the ones (HHsearch, SAM-T99 [40] and FFAS

[41]) with significantly lower alignment coverage, which resulted in the higher TM-score.

The elevated performance of CEthreader compared to other state-of-the-art methods can

again be attributed to the combination of the complementary structure (contact maps) and

Table 1. Performance of different threading methods on the 211 Hard targets from Benchmark Set-I. P-values were calculated between the CEthreader alignment

TM-scores and other methods’ TM-scores using one-sided Wilcoxon signed-rank tests. Coverage is equal to the number of aligned residues divided by the length of the

query sequence. Nst represents the number of targets with an identified template whose TM-score was>0.5.

Methods TM-score p-value RMSD (Å) Coverage Nst

CEthreader 0.453 - 9.53 0.875 80

map_align 0.414 4.39E-06 11.48 0.896 59

EigenThreader 0.413 1.31E-09 10.15 0.850 49

HHsearch 0.313 2.13E-24 10.92 0.654 29

MUSTER 0.304 5.02E-28 13.94 0.869 23

PPA 0.284 7.75E-30 14.78 0.832 19

PROSPECT2 0.261 2.52E-35 16.63 0.915 10

SAM-T99 0.208 1.04E-34 11.17 0.528 10

FFAS 0.189 1.25E-35 14.39 0.674 7

https://doi.org/10.1371/journal.pcbi.1007411.t001
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profile information, while other excellent profile-based programs, such as HHsearch and

MUSTER, use profile and single-body local structural information (such as secondary struc-

ture), which are not sufficient to detect correct templates for many Hard targets. More impor-

tantly, by carefully coupling the profile information, CEthreader performs significantly better

than other contact-based methods, such as map_align and EigenThreader, which rely solely on

contact information to guide threading.

Furthermore, although CEthreader was primarily developed for threading Hard targets, the

alignments compare favorably with other profile-based threading programs for the 403 Easy

targets, with a p-value<2.2E-03 relative to the best of the profile-based programs and<3.2E-

23 to the best of the contact-based programs (see S2 Table). Note that without the use of pro-

file information, other contact-based methods, such as map_align and EigenThreader, per-

form worse than profile-based methods (HHsearch, MUSTER, and PPA) on the Easy targets.

The head-to-head comparisons between CEthreader and EigenThreader or map_align can be

found in S3 Fig.

As discussed above, we have used a sequence identity cutoff 40% (instead of the <30% cut-

off enforced between Set-I and the CEthreader training set) to filter proteins in Benchmark

Set-I homologous to the ResPRE training dataset. In order to justify the reasonability of select-

ing the 40% sequence identity cutoff, we divided Benchmark Set-I with its 614 targets into two

subsets: the first subset includes 239 targets with sequence identities <30% to the ResPRE

training set, and the second contains 375 targets with sequence identities between 30% and

40% to the ResPRE training set. S3 Table shows that CEthreader is still the best performing

threading method compared to other profile- and contact-based methods for both of the sub-

sets, which is consistent with the results for the entire Benchmark Set-I as shown in Tables 1

and S2, even though the results for the subset with sequence identities�30% are slightly better

than those for the subset with sequence identities <30%.

Test on Benchmark Set-II: Ability to recognize folds in different Superfamilies.

Despite filtering out templates with high sequence identities to the target proteins (>30%),

templates identified in Benchmark Set-I may still have evolutionary relationships to the target

proteins. Meanwhile, the distribution of the evolutionary distances between the query

sequences and templates is highly uneven and varies from case-to-case. To conduct a more rig-

orous quantitative assessment of the ability of each threading program to recognize different

levels of distantly-homologous templates, we performed a second test using Benchmark Set-II,

which was collected from the SCOPe database. SCOPe is organized using a stringent hierarchy

of protein structures, ranging from Class, Fold, Superfamily to Family, with members in a

lower level of hierarchy having a closer evolutionary and structural similarity.

Table 2 summarizes the results for five state-of-the-art threading programs for which all

templates within the same Superfamily as the query were excluded. The average TM-score of

the first templates identified by CEthreader from the SCOPe database was 0.483, which was

significantly higher than that by the next best contact-based method, i.e., map_align (0.464), or

profile-based method, i.e., HHsearch (0.301), with Wilcoxon signed-rank p-values <5.0E-05.

Out of the 539 targets, CEthreader detected templates with the same Fold as the query in 323

cases, resulting in a SCOPe Fold-recognition success rate of 59.9%; this is much higher than

the success rate of EigenThreader (50.3%) or HHsearch (28%). These data show that CEthrea-

der has a stronger ability to detect templates with similar Folds even in the absence of a Super-

family-level homologous relationship to the query. In the lower panel of Table 2, the query

proteins are categorized as Easy (379 targets) or Hard (160 targets) based on their LOMETS

classification, where similar trends in TM-score and success rate are observed for both Easy

and Hard targets.
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Fig 4 shows a more detailed illustration of the ability of CEthreader and HHsearch to detect

non-homologous templates from Fold groups of different sizes. In the outer circle of Fig 4A,

there are 39 Fold groups with each containing at least 4 Superfamilies, where 29 groups were

threadable by both CEthreader and HHsearch, 8 other groups were threadable only by

CEthreader, and none of the groups were threadable by HHsearch but not by CEthreader.

Here, "threadable" refers to cases for which the identified template and query proteins share

the same Fold. For the 29 cases, both CEthreader and HHsearch demonstrated good perfor-

mance at recognizing Folds with a high number of Superfamilies. On the other hand, recogni-

tion of Folds became more challenging when the number of Superfamilies in a Fold group was

smaller, as statistically there was a lower chance of recognizing the correct template. In Fig 4B,

we list 77 Fold groups in the SCOPe set that had� 3 Superfamilies, where 39 of them could

not be detected by either CEthreader or HHsearch. There were, however, 26 Fold groups

where CEthreader identified a higher number of correct templates (with the same Fold) than

HHsearch, while HHsearch did so only in 5 Fold groups. Overall, as shown in S4 Table

CEthreader detected correct templates in the same Fold group as the query in 72 cases, while

HHsearch did so in 44 cases out of the 116 Fold groups, which were selected after excluding

the Superfamily-level homologs.

In the inner disc of Fig 4A, we further analyze the evolutionary connection between differ-

ent Folds in the SCOPe database in order to investigate what types of Folds are recognizable by

CEthreader. For this purpose, a dotted edge is drawn between two Folds if the average TM-

score between the Folds was>0.4, where Folds were clustered based on the edges using Walk-

trap [42] (S5 Table). Here, the TM-score cutoff of 0.4 was chosen as multiple Fold groups

could be formed with no singleton cluster at this cutoff. For the 39 Folds with�4 Superfami-

lies, the four clusters approximately corresponded to the four Classes of Folds, i.e., α-, β-, α+β,

and α/β proteins. The figure shows that CEthreader tends to have better performance for

Folds of smaller degree (less edges) and/or larger size (more Superfamilies), especially for

those in large clusters. For example, in the blue region of the inner disc that corresponds to the

α-protein Class, CEthreader failed to detect Folds a.2 and a.8 that had both large degree and

small size, while it showed excellent performance in identifying Folds a.24 and a.118, both of

Table 2. Threading results obtained by different methods for the 539 proteins from Benchmark Set-II. P-values were calculated between the CEthreader alignment

TM-scores and other methods’ TM-scores using one-sided Wilcoxon signed-rank tests; NST represents the number of targets with a first identified template whose TM-

score was>0.5; the success rate is equal to the fraction of targets whose Folds were correctly recognized, i.e., the first identified template had the same Fold as the query.

Methods TM-score p-value NST Success rate

All

(539)

CEthreader 0.483 - 323 59.9%

map_align 0.464 4.99E-05 261 48.4%

EigenThreader 0.450 1.31E-21 271 50.3%

HHsearch 0.301 2.84E-79 151 28.0%

MUSTER 0.285 6.57E-85 99 18.4%

Easy

(379)

CEthreader 0.493 - 228 60.2%

map_align 0.478 5.62E-03 195 51.5%

EigenThreader 0.462 6.43E-16 199 52.5%

HHsearch 0.326 1.18E-55 119 31.4%

MUSTER 0.304 2.68E-61 80 21.1%

Hard

(160)

CEthreader 0.459 - 95 59.4%

map_align 0.431 7.65E-04 66 41.3%

EigenThreader 0.422 2.26E-07 72 45.0%

HHsearch 0.242 1.65E-25 32 20.0%

MUSTER 0.241 8.37E-26 19 11.9%

https://doi.org/10.1371/journal.pcbi.1007411.t002
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which were of small degree and large size, and Fold a.102, which was of small degree. Since

Folds with larger sizes comprise more Superfamilies, it is easier for CEtheader to detect a cor-

rect Fold. Additionally, Folds with smaller degree have fewer neighbors that are structurally

similar to the Fold, thus there is a lower chance of mis-identifying the templates from other

Folds by CEthreader, which utilizes structural information to identify templates.

Fig 4. Performance of CEthreader and HHsearch on Benchmark Set-II, which was collected from the SCOPe database. (A) The ability of CEthreader and

HHsearch to recognize Folds from 39 large Fold groups with�4 Superfamilies. The size of a pie chart is proportional to the number of Superfamilies in the

Fold group. The area of the sectors of each pie chart in the Outer circle is proportional to the number of correct hits by each different method, while that in the

Inner circle represents the portion of Superfamilies hit (blue) or not hit (white) by CEtheader. A dotted line connects two Folds if the average TM-score

between them is>0.4. (B) Same as (A) but for 77 small Fold groups with 2 or 3 Superfamilies. The Inner disc shows a representative example from d2hq9b_ as

indicated by the red circle in the SCOPe tree, where the first templates by CEthreader (blue) and HHsearch (yellow) are superimposed on the native (red)

separately. (C) Venn diagram for the number of targets with the correct Fold detected by CEthreader, HHsearch, and MUSTER on all 539 Benchmark Set-II

proteins. (D) TM-score difference between CEthreader and HHsearch (ΔTM-score) versus ResPRE contact prediction accuracy (CMOacc) and the number of

effective sequences in the MSAs (Neff) for 116 Hard targets from (A) and (B). Stars indicate that the TM-score difference between CEthreader and HHsearch

is statistically significant as determined by Wilcoxon signed-rank tests. (E, F) Overlay of the predicted contact map and the contact map of the templates

identified by CEthreader or HHsearch for the example from d2db7b_. The lower right corner shows the structure superposition of the templates (blue) and

the native (red), while the upper left corner shows the query-template alignments with connected lines marking contacts between two residues.

https://doi.org/10.1371/journal.pcbi.1007411.g004
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In order to better illustrate the enhanced ability of CEthreader compared to HHsearch to

recognize correct Folds, we present in the inner disc of Fig 4B an example from a fad-binding

protein (SCOPe ID: d2hq9b_). When all templates with the same SCOPe Family to the query

were excluded, both CEthreader and HHsearch could detect templates from the correct Fold

group as highlighted by the yellow (for HHsearch) and green (for both CEthreader and

HHsearch) circles in Fig 4B. When the templates with the same Superfamily to the query were

excluded, however, CEthreader could still detect the top-ranked template (SCOPe ID:

d2rdea2) with the same Fold (b.45) and a TM-score of 0.57 to the query, but HHsearch’s top-

ranked template (SCOPe ID: d3d2la_) was from a different Fold (c.66) that had a TM-score of

0.14 to the query. This example illustrates the enhanced ability of CEthreader to detect dis-

tantly-homologous templates.

As a summary, we present in Fig 4C a Venn diagram for the number of cases for which the

correct Fold was detected by CEthreader, HHsearch and MUSTER for all 539 targets in Set-II.

It shows that the overlap between HHsearch and MUSTER was high, where 88% of targets

whose Fold were correctly identified by MUSTER were also detected by HHsearch, probably

due to the fact that both methods are built on the same principle of profile-profile alignment.

On the other hand, due to the utilization of contact maps, CEthreader had a relatively lower

overlap with HHsearch and MUSTER, where there were 185 cases (57%) whose Folds were

correctly identified by CEthreader but not by HHsearch or MUSTER. Since CEthreader also

adopts profile alignment information, most of the Folds successfully recognized by MUSTER

and HHsearch were also recognized by CEthreader, which again demonstrates the advantages

of using the composite profile- and contact map-based scoring function for threading

alignment.

Test on Benchmark Set-II: Impact of contact map accuracy on Fold-recognition. To

specifically examine the potential of contact-based threading, we collected a subset of 102

modelable proteins from the 160 Hard targets in Benchmark Set-II, each of which had at least

one template with TM-score >0.5 as identified by searching the SCOPe library using TM-

align. In total, TM-align identified 15,440 templates with TM-scores >0.5 for the 102 selected

proteins, with around 150 templates for each query protein. Fig 4D shows the difference in

average TM-scores between CEthreader and HHsearch query-template alignments (ΔTM-

score) for the 102 proteins, as a function of contact prediction accuracy, CMOacc = O(CMpred,

CMnative)/N(CMnative), where N(CMnative) is the number of contacts in the native structure and

O(CMpred,CMnative) is the number of overlapped contacts between the native and the top N
(CMnative) predicted contacts.

The data show a modest but obvious correlation between the improvement of CEthreader

over HHsearch and the CMOacc values. For example, the average ΔTM-score = 0.087 for the

targets with CMOacc>0.5, while ΔTM-score = 0.073 for the targets with CMOacc below 0.5.

There was also a correlation between ΔTM-score and the effective number of homologous

sequences, Neff, where ΔTM-score = 0.092 (or 0.081) for targets with Neff > 128 (or< 128).

This is understandable because the contact prediction in ResPRE was based on training using

multiple sequence alignments [43], where a higher Neff corresponds to a more complete

sequence profile and therefore can result in, on average, better contact map prediction accu-

racy. Overall, ΔTM-score was >0 for 98 and<0 for 4 out of the 102 Hard targets. In 83 cases,

the TM-score by CEthreader was significantly higher (with p-values < 0.05) than that by

HHsearch, while HHsearch only had a significantly higher TM-score in 3 cases (see stars

marked in Fig 4D). Here, the p-values were calculated using Wilcoxon signed-rank tests for all

of the ~150 templates for each target.

In Fig 4E and 4F, we present an example from the hypothetical protein MS0332 (SCOPe

ID: d2db7b_) to illustrate the impact of contact map prediction on threading results. For this
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target, both CEthreader and HHsearch identified the Cyanobacterial Photosystem I protein

(SCOPe ID: d1jb0l_) as the top template. The query had a four-helix bundle fold, but

HHsearch could only align the C-terminal helix of the query (helix H2) to the C-terminal helix

of the template (helix H3) based on profile and secondary structure information, which

resulted in a low TM-score (= 0.3) compared to the native. On the other hand, utilizing the

contacts predicted by ResPRE between the residues in helices H1 and H2, CEthreader correctly

aligned all four helices between the query and template by maximizing the overlap between the

contact maps of the query and template structures, which resulted in a query-template align-

ment with a TM-score of 0.615. This example again demonstrates how the predicted contact

map information helps correctly align two proteins that do not share any homologous

relationship.

CEthreader goes beyond simple contact map prediction

The core of the CEthreader development involves the integration of contact maps with profile

and secondary structure information to improve the threading alignment accuracy. Based on

our former benchmark tests, the combination of contact maps with the profile and secondary

structure features can help CEthreader to generate significantly better template alignments

than the methods built on either profile or contact map alignment. To further examine their

impact on the full-length homologous model constructions, S6 Table listed a summary of the

TM-score and RMSD of the full-length models constructed by MODELLER based on the tem-

plate alignments generated by CEthreader and other profile- and contact-based threading

algorithms for the proteins in Benchmark Set-I. It was observed that the TM-scores of the first

models generated by CEthreader/MODELLER are 0.708 and 0.476 for Easy and Hard targets,

respectively, which were significantly higher than the corresponding average TM-scores for

models built by EigenThreader/MODELLER (0.656 and 0.449) or HHsearch/MODELLER

(0.698 and 0.330), with p-values <4.42E-05 for all cases. These data suggest that CEthreader

helps improve the template alignments and full-length model construction for both Easy and

Hard targets.

To further improve the modeling quality, we coupled the CEthreader threading alignments

with the predicted contact map information using a recently developed contact-guided struc-

tural assembly pipeline, C-I-TASSER [44], to build full-length structural models. The

C-I-TASSER folding engine is based on the classical template-based modeling approach,

I-TASSER [5], but with a new energy term to account for the contact-map restraints from the

deep neural network predictions (see METHODS). The CEthreader/C-I-TASSER folding

engine was modified here to use the top five ranked CEthreader templates and the ResPRE

contacts as restraints. In S7 Table, we presented a comparison between the full-length models

constructed by the C-I-TASSER and the models generated by the pure template-based model-

ing tool, I-TASSER, starting from the same top five CEthreader templates for all 614 targets in

Benchmark Set-I. As a control, we also listed the results from the models built by the Crystal-

lography & NMR System (CNS) program [45], utilizing the same set of predicted contacts

from ResPRE. For the 211 Hard and 403 Easy targets, the TM-scores of the first full-length

models generated by the pure template-based structural assembly approach, CEthreader/

I-TASSER, were 20.2% and 39.2% higher than that by ResPRE/CNS, respectively; which partly

reflects the advantage of model construction using contact-guided threading templates over

that using only predicted contact maps. When using CEthreader/C-I-TASSER, the TM-scores

of the first models were further increased by 1.8% (41.7%) and 13.5% (36.5%) for Easy and

Hard targets, respectively, compared to that by the CEthreader/I-TASSER (ResPRE/CNS)

pipelines. The result illustrates how the synergistic interplay between contact-guided threading
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and contact-map predictions can overcome the weaknesses of both pure threading-based

modeling and pure contact-based modeling methods.

In Fig 5, we presented the modeling results for the ARF guanine-nucleotide exchange factor

1 (PDB ID: 1re0B), which is an α-protein consisting of 10 helices. For this target, ResPRE accu-

rately predicted the contact map with a CMOacc of 0.915 (Fig 5A). Using the predicted con-

tacts, CEthreader identified a template, 1xszA3 (Fig 5B), that fully covered the C-terminus of

the target with a local TM-score of 0.808 (normalized by the length of the template) and a

CMOq of 0.335, but had the N-terminal region completed missed. Despite the fact that the

local alignment quality of the template was good, due to the low alignment coverage (59%), the

full-length model generated by CEthreader/I-TASSER had a near random coil conformation

in the N-terminus region, resulting in a relatively low overall TM-score of 0.578 (Fig 5C).

These data show that template-based modeling approaches lose much of their accuracy in gap

regions where the aligned template information is absent. On the other hand, since the pre-

dicted contact map overlapped well with the native contact map for the entire protein (Fig

5D), ResPRE/CNS constructed a full-length model with a slightly improved TM-score of 0.637

(Fig 5E). However, ResPRE/CNS utilized restraints from all of the predicted contacts (95%

true positive contacts and 93% false positive contacts), where the false positive contact between

residue 85 and 124 (black box in Fig 5D) drew helix H6 close to helix H8 in the C-terminus

(Fig 5E sub-figure) during the CNS simulation. This caused the position to shift away from

Fig 5. Modeling results for the ARF guanine-nucleotide exchange factor 1 (PDB ID: 1re0B). (A) Overlay of contact maps for the native query (gray circles),

ResPRE-predicted contacts (red circles), CEthreader detected template (blue circles), and CEthreader/I-TASSER model (cyan circles). (B) The structure

superposition of the templates (blue) and the native (gray). (C) The structure superposition of the CEthreader/I-TASSER model (cyan) and the native (gray).

(D) Overlay of contact maps for the native query (gray circles), ResPRE-predicted contacts (red circles), overlapped contacts between the ResPRE prediction

and the CEthreader detected template (blue circles), the ResPRE/CNS model (pink circles), and the CEthreader/C-I-TASSER model (green circles). (E) The

structure superposition of the ResPRE/CNS model (pink) and the native (gray). (F) The structure superposition of the CEthreader/C-I-TASSER model (green)

and the native (gray).

https://doi.org/10.1371/journal.pcbi.1007411.g005
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that found in the experimental structure and produced even more false positive contacts in the

C-terminus of the final CNS model. Therefore, when only considering the C-terminus region,

the TM-score of the ResPRE/CNS model was much lower than that of the CEthreader/I-TAS-

SER model (0.477 vs 0.833). This analysis shows that pure contact-based modeling is still not

as accurate as template-based modeling when high quality templates can be identified. In the

CEthreader/C-I-TASSER pipeline, since both contact-map and threading template were con-

sidered in the structural assembly simulations, the final model had a reasonable accuracy on

both N- and C-terminal regions (Fig 5F), which resulted in a full-length model with a much

higher TM-score (0.792) than that by either CEthreader/I-TASSER (0.578) or ResPRE/CNS

pipelines (0.637). This example highlights again the advantage of contact-map and threading

template combinations in structural assembly simulations, in particular for the cases when

low-coverage templates are identified, where contact map predictions can be used to help

model the threading-unaligned regions.

After predicting the final structure models of a target, it is important to estimate the accu-

racy of the models, e.g., determining whether a target was correctly folded (TM-score of the

model�0.5) or not (TM-score <0.5). In Fig 6A and 6B, we examined the correlations of the

TM-score of the first C-I-TASSER model with two metrics of the C-I-TASSER C-score

(defined in Eq 8 in METHODS) and the threading Z-score (Eq 7). It was shown that the Pear-

son correlation coefficient (PCC) between TM-score and C-score (0.800) was much higher

than that between TM-score and Z-score (0.579). If we selected a C-score cutoff of -0.18 to esti-

mate the fold of final models, it would result in a maximum Matthews correlation coefficient

(MCC) of 0.600, which was also much higher than the maximum MCC achieved by the thread-

ing Z-score (0.463). Here, it is noted that Fig 6B presented the TM-score of the C-I-TASSER

models which might have only indirection relation with the threading Z-scores. To avoid the

bias, we presented in Fig 6C the correlation data between the TM-score of the first threading

template and the Z-score, where the PCC and the maximum MCC for the threading templates

were 0.647 and 0.558, which were still lower than that from C-score/TM-score correlations

(0.800 and 0.600). These results suggest that the C-score values by combining contact map,

Fig 6. Accuracy estimation of predicted models using different score functions. (A) TM-score of the first C-I-TASSER model versus C-score defined by Eq

(8). (B) TM-score of the first C-I-TASSER model versus CEthreder threading Z-score defined by Eq (7). (C) TM-score of the first threading template by

CEthreader versus the Z-score. Blue circles and red crosses represent Easy and Hard targets respectively. The dashed vertical lines mark the score cutoffs that

result in the maximum MCC value for distinguishing models with correct (TM-score>0.5) and incorrect (TM-score<0.5) folds, where values given in the

sections indicate the number of points in each of the sections.

https://doi.org/10.1371/journal.pcbi.1007411.g006
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threading and MC simulation information should provide more accurate estimation on the

final model quality compared to the widely threading Z-score.

Discussion

In this study, we developed a new contact-guided threading approach, CEthreader, with the

aim of significantly improving template-based structure modeling and fold-recognition for

distant-homology proteins. The method first deduces residue-residue contact maps from mul-

tiple sequence alignments by integrating precision matrices with deep residual convolutional

neural-network training. The predicted contact maps are then converted into single-body

eigenvector products through eigen-decomposition, which enables the utilization of two-body

contacts to guide the alignment construction and template selection using the Needleman-

Wunch dynamic programming algorithm [46].

CEthreader was tested on two large-scale benchmark sets containing 614 non-redundant

protein structures collected from the PDB and 539 domains selected from different families in

the SCOPe database [36]. For the Hard proteins from Set-I that lacked homologous templates,

CEthreader could detect the first-ranked templates with an average TM-score of 0.453, which

was 9% or 45% higher than the best start-of-the-art threading approaches based exclusively on

contact maps (map_align) or profiles (HHsearch), respectively, after excluding all templates

with a sequence identity >30% to the query. Additionally, the number of correct templates

with TM-scores >0.5 detected by CEthreader was 36% or 176% higher than the number iden-

tified by map_align or HHsearch. For Benchmark Set-II, CEthreader successfully recognized

templates with the same SCOPe Fold as the query in 323 cases after excluding homologous

templates in the same Superfamily, which was 20% or 114% higher than the number identified

by EigenThreader or HHsearch, respectively. The detailed data analyses show that the major

advantage of CEthreader lies in the utilization of contact map information in threading, which

helps recognize the similarity between the global folds of the query and templates during the

alignment procedure, even when the evolutionary relationship between them is weak; this is

essential for modeling the structures of distant-homology proteins.

CEthreader was also compared to other profile- and contact-based threading methods for

full-length 3D model constructions. Using the CEthreader alignments, MODELLER con-

structed full-length models with TM-scores >0.5 for 476 out of the 614 Benchmark Set-I pro-

teins, which was 14% or 18% higher than the number of correct models built using either

EigenThreader or HHsearch alignments, respectively. The performance of CEthreader-based

template modeling can be further improved by coupling the template information with the

predicted contact maps in the structural assembly simulations, for which the models con-

structed by CEthreader/C-I-TASSER demonstrated significantly higher TM-scores and fold-

ing success rates than those produced by CEthreader/I-TASSER or ResPRE/CNS. The data

suggests that the interplay of contact-guided threading with predicted contact maps can fur-

ther improve protein structure modeling and makes the CEthreader/C-I-TASSER approach

go far beyond model reconstruction strategies built purely on contact map prediction or tem-

plate recognition.

Despite the ability of CEthreader to recognize distant-homology templates, there is still

room for further improvement. Currently, only positive eigenvalues have been considered in

the eigen-decomposition process, which may result in a loss of information for some targets

due to the omission of negative eigenvalues that are often important for precisely recovering

the contact map matrix. Based on the statistics of the results of the Benchmark Set-I, for a typi-

cal protein, 47% of the eigenvalues are positive and 53% are negative (i.e., for a protein with 50

residues, there usually exist at least 23 positive eigenvalues) when performing eigen-
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decomposition utilizing native contact maps. Therefore, the inclusion of both positive and

negative eigenvalues, which although may increase the implementation time of the program,

should help further improve the contact-guided threading accuracy.

Methods

CEthreader is a fold-recognition algorithm to identify similar-fold structures from the PDB

under the guidance of predicted contact maps. The core part of the algorithm consists of con-

tact map prediction, eigen-decomposition of the contact matrix, and contact-guided template

search and selection, where the flowchart of the pipeline is depicted in Fig 1.

Contact map prediction and the selection of residue-residue contacts

The contact map for a query sequence (with Cβ-Cβ distances<8 Å) is predicted using the

ResPRE method, which couples evolutionary precision matrices with deep residual neural net-

works [43]. Precision matrices are generated by ridge estimation of the inverse covariance matrix

of the multiple sequence alignment, which is represented by an L×L×21×21 array of evolutionary

couplings for a protein with L residues and L×L residue pairs. For each residue pair, the 21×21

coupling matrix is fed directly to the deep residual network (ResNet) [47], which is composed of

22 residual blocks where each block adds an identity map of the input to the output of the feed-

forward neural networks. ResPRE was trained using the Adam optimization algorithm [48]

under the supervision of binary cross entropy loss and is implemented in PyTorch [49].

The ResPRE predicted contacts with sequence separation�5 are selected and used by

CEthreader, where residue pairs located at the same helix with a separation of 4 are also con-

sidered in order to enhance helix alignment. The top N(= ∑cr2{long,medium,short}σcrL) predicted

residue pairs, which are ranked by their confidence scores of prediction, are selected to form

the final contact map, where cr refers to the long-, medium- and short-range contacts with

sequence separation |i−j|� 24, 23� |i−j|� 12, and |i−j|� 11, respectively. The parameters σcr
were determined by maximizing the TM-score of CEthreader on a set of 905 training protein-

pairs; these pairs were selected from the all-to-all alignments by TM-align [37] from a set of

335 non-redundant domains in SCOPe, where the TM-scores were roughly evenly-distributed

in the range [0.5~0.95], i.e., with 241, 205, 190, 181 and 88 pairs with TM-scores in the range

0.5~0.6, 0.6~0.7, 0.7~0.8, 0.8~0.9 and 0.9~0.95, respectively. As shown in S4A Fig, the average

TM-score of the CEthreader alignments is sensitive to σcr, where the maximum value occurs

near σsum = 2.51 (= ∑cr σcr = 1.79+0.41+0.31), although the fraction of aligned contacts, CMOq,

decreases monotonously with σsum (S4B Fig). In S4C Fig, we present the correlation data

between the number of short, medium and long-range contacts and protein length calculated

from 9,896 non-redundant SCOPe domains, where the linear regression with the fitted param-

eters coincides well with the experimental structure data.

In S8 Table, we list the performance of CEthreader on 905 training protein-pairs using con-

tact maps from 18 different predictors. Although CEthreader was trained on the ResPRE con-

tact maps, the data shows a strong correlation between the alignment performance and the

accuracy of the contact map prediction from all different predictors. On average, ResPRE has

the highest accuracy (84.6%) which also results in the highest TM-score (0.633) and CMOq
(0.480) values used by CEthreader for the 905 training proteins.

Eigen-decomposition of the contact maps

Contact maps can be represented by an L×L symmetric binary matrix, M, in which residue

pairs in contacts are designated as 1 and non-contacting pairs are set to 0. Based on the eigen-
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decomposition theory [50], we can infer that

M ¼
XL

k¼1

lk Vk

!

�Vk

!

T ð1Þ

where λk represents the k-th eigenvalue of M, and Vk

!

¼ v1;k; v2;k; � � � ; vL;k
� �T

is the correspond-

ing eigenvector. Since the contribution of each eigenvector depends on the absolute magnitude

of the eigenvalue in Eq (1), we reorder the eigenvalues in descending order

(l1 � l2 � l3 . . . � lL), where the contact map can be approximated by considering only the

largest K positive eigenvalues and associated eigenvectors:

M �
XK

k¼1

lk Vk

!

�Vk

!

T ð2Þ

Here, we do not consider the negative eigenvalues because it introduces complex numbers

into the following computation.

Based on Eq (2), any pair of contacts between residues i and j can be written as

Mi;j � ð
ffiffiffiffiffi
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p
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l2

p
vi;2; . . . ;
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lK
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ffiffiffiffiffi
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ffiffiffiffiffi
lK

p
vj;KÞ

T
ð3Þ

In this way, the contact profiles of the i- and j-th residues are described by the vectors of

Ui

!

¼ ð
ffiffiffiffiffi
l1

p
vi;1;

ffiffiffiffiffi
l2

p
vi;2; . . . ;

ffiffiffiffi
lk

p
vi;KÞ
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!
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ffiffiffiffiffi
l1

p
vj;1;

ffiffiffiffiffi
l2

p
vj;2; . . . ;

ffiffiffiffi
lk

p
vj;KÞ

ð4Þ

8
<

:

This representation of contact maps using single-body profiles allows the integration of

contact map information into a dynamic program alignment algorithm for fold-recognition

(see S2 Text and S5 Fig in the SI for more details). In CEthreader, we set K = 7 as a trade-off

between accuracy and speed for the alignment procedure (see S3 Text and S6 Fig).

Contact-guided fold-recognition

The fold-recognition in CEthreader is performed by threading the query sequence through a

non-redundant structure set taken from the PDB library. The contact-guided alignment score

for aligning the i-th residue of the query with the j-th residue of the template protein is repre-

sented by

Scmþssþprof ði; jÞ ¼ w1 � Scmði; jÞ þ w2 � Sprof ði; jÞ þ w3 � Sssði; jÞ þ w4 ð5Þ

Here, the first term accounts for the contact map match between the query and template by

(S4 Text and S7 Fig in SI):

Scmði; jÞ ¼

Ui

!

� Pj

!

maxðjUi

!

j; j Pj

!

jÞ
2

if jUi

!

j 6¼ 0
*

and j Pj

!

j 6¼ 0
*

0 jUi

!

j ¼ j Pj

!

j ¼ 0
*

ð6Þ

8
>><

>>:

where Ui

!

and Pj

!

are the contact eigenvectors for the i-th residue of the query and the j-th residue

of the template as defined by Eq (4). This term helps to align the residues pairs from the query

and template that have similar contact eigenvectors, and therefore enhances the match between

the global contact maps of the two proteins (see S8 Fig). There are several previous studies

Fold-recognition through contact map alignments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007411 October 17, 2019 21 / 27

https://doi.org/10.1371/journal.pcbi.1007411


trying to use a cosine function or a standard inner dot product function [28,29,31,33] as the

scoring function when aligning the contact eigenvectors. However, cosine functions only con-

sider the angle between two contact eigenvectors and ignore their lengths, which is suboptimal

as both angle and length are important when deciding the similarity between two contact eigen-

vectors. Moreover, although the inner dot product function considers the lengths of the contact

eigenvectors, it increases the contribution of the lengths of the contact eigenvectors when one of

them is dramatically bigger than the other (see discussion in S4 Text). Indeed, based on our

tests on the 905 query-template pairs (S8 Table), the scoring function defined by Eq (6) per-

forms significantly better than the inner dot product-based scoring function in terms of query-

template alignment TM-scores and CMOq values.

The second and third terms, Sprof(i,j) andSss(i,j), in Eq (5) ,which are explained in S5 Text,

take into account the sequence profile-to-profile and secondary structure alignment scores

between the i-th residue of the query and the j-th residue of the template. The weighting

parameters are w1 = 0.5, w2 = 0.4, w3 = 0.1 , and w4 = 0.1, which were determined by maximiz-

ing the alignment TM-score for the 905 training protein-pairs described above.

The Needleman-Wunsch (NW) dynamic programming algorithm [46] is used to align two

protein sequences, where an affine penalty scheme is utilized. For an l residue gap the gap pen-

alty, G is determined by G = go + gel, where go,e = w1go,e(cm)+w2go,e(prof)+w3go,e(ss) with

go(cm) = go(prof) = go(ss) = −1.0, ge(cm) = ge(prof) = ge(ss) = −0.1 and ge(ss) = −0.077. These

parameters were determined by optimizing the alignment performance on the 905 training

protein pairs (see S5 Text). The gap penalty is used only for residues in the middle of the

query and template sequences, and no penalty is applied to the terminal ends. Since changing

the sign of νi,k and νj,k simultaneously gives the same Mi,j in Eq (3), for a given eigen solution,

there are 2K different vectors all satisfying the eigen-decomposition equation. Thus, CEthrea-

der needs to calculate
PK

k¼1
2k alignments for one query-template pair, where the alignment

with the highest alignment score is selected.

In order to select the best alignment, CMOq is used to rank all the templates. Additionally,

we can compute the Z-score based on CMOq to assess the quality of the template alignments

with respect to the average, and further distinguish between good and bad templates. The Z-

score is calculated by

Z � scoreðiÞ ¼
CMOqðiÞ � hCMOqi

sðCMOqÞ
ð7Þ

where CMOq(i) is the CMOq of the i-th template, and hCMOqi and σ(CMOq) are the average

CMOq and standard deviation, respectively, across all templates for CEthreader.

Structure assembly simulations based on an interplay of threading and

contact map predictions

C-I-TASSER [44] (Contact-guided Iterative Threading ASSEmbly Refinement) is a fully-auto-

mated structure prediction pipeline that was used in 13th community-wide Critical Assessment

of Structure Prediction (CASP13) experiment. It is built on the I-TASSER [5] pipeline, but

uses contact map information to enhance the accuracy of protein structure prediction. For a

residue pair (i and j) that is predicted to be in contact, the restraint is added to the inherent

Å

Å

Å

Å
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I-TASSER potential by
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where Uij is the contact probability between residue pair i and j predicted by ResPRE, dij is the

Cβ-Cβ distance between residue i and j in the simulation decoys, and D = 16 Å.

Following the simulations, the decoys from the simulation trajectories are clustered by

SPICKER [51], where the conformations that are closest to cluster centroids are selected and

refined by FG-MD [52] to generate the final top 5 structure models. The accuracies of the

C-I-TASSER models are estimated through the confidence score (or C-score) which is calcu-

lated by

C � score ¼ ln
M
Mtot
�

1

hRMSDi
�

Z � scoreð1Þ
Z0

þ
OðCMQ;CMMÞ

NðCMQÞ

� �� �

ð9Þ

where M is the number of structure conformations in the SPICKER cluster; Mtot is the total

number of C-I-TASSER structure decoys used for clustering; hRMSDi is the average RMSD of

the decoys to the cluster centroid; Z – score(1) is the highest Z-score of the templates identified

by CEthreader and Z0 = 6.8 is the corresponding Z-score cutoff for distinguishing between

good and bad templates, which was determined based on the training dataset; N(CMQ) is the

number of contacts used by CEthreader and O(CMQ, CMM) is the sum of probabilities pro-

vided by ResPRE for the overlapped contacts between the query and structure models.
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