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Abstract

Motivation: Accurate prediction and interpretation of ligand bioactivities are essential for virtual

screening and drug discovery. Unfortunately, many important drug targets lack experimental data

about the ligand bioactivities; this is particularly true for G protein-coupled receptors (GPCRs),

which account for the targets of about a third of drugs currently on the market. Computational

approaches with the potential of precise assessment of ligand bioactivities and determination of

key substructural features which determine ligand bioactivities are needed to address this issue.

Results: A new method, SED, was proposed to predict ligand bioactivities and to recognize key

substructures associated with GPCRs through the coupling of screening for Lasso of long

extended-connectivity fingerprints (ECFPs) with deep neural network training. The SED pipeline

contains three successive steps: (i) representation of long ECFPs for ligand molecules, (ii) feature

selection by screening for Lasso of ECFPs and (iii) bioactivity prediction through a deep neural net-

work regression model. The method was examined on a set of 16 representative GPCRs that cover

most subfamilies of human GPCRs, where each has 300–5000 ligand associations. The results

show that SED achieves excellent performance in modelling ligand bioactivities, especially for

those in the GPCR datasets without sufficient ligand associations, where SED improved the base-

line predictors by 12% in correlation coefficient (r2) and 19% in root mean square error. Detail data

analyses suggest that the major advantage of SED lies on its ability to detect substructures from

long ECFPs which significantly improves the predictive performance.

Availability and implementation: The source code and datasets of SED are freely available at

https://zhanglab.ccmb.med.umich.edu/SED/.

Contact: kexiaoyan@njmu.edu.cn or zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug discovery often begins with the screening of a high number of

chemical compounds against a therapeutic protein target via bio-

logical high-throughput assays in vitro. Subsequently, leading hits

are selected based on their bioactivities and optimized to make them

stronger binders or more target selective (Unterthiner et al., 2014).

However, biological high-throughput assays and bioactivity deter-

minations are usually time and labor intensive. Currently, only a

small part of ‘available compounds’ can be synthesizable or avail-

able for drug design studies. Thus, it is not possible to employ
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experimental high-throughput screening assays to determine the bio-

activities for all the compounds (Blum and Reymond, 2009), where

computer-based virtual screening becomes an important comple-

ment to the experimental efforts.

Virtual screening can be classified into receptor-based and

ligand-based approaches (Cherkasov et al., 2014). The receptor-

based approaches screen compounds via simulating physical interac-

tions between a drug target protein and known compounds, but

they are only valid when the 3D structure of the biomolecular target

is available (Ceretomassagué et al., 2015). Ligand-based techniques

learn the bioactivity of a compound acting with a target protein

using known experimental data; of these, machine learning-based

methods have been the most popular and widely applied in drug

design (Ceretomassagué et al., 2015). A common approach to the

machine learning-based virtual screening is to build predictive mod-

els through the training on the fixed-length hand-crafted features.

Recently, deep learning-based methods have witnessed impressive

success in ligand-based virtual screening (Ramsundar et al., 2017;

Unterthiner et al., 2014; Wallach et al., 2015; Winkler and Le,

2017; Xu et al., 2017). For instance, in 2012, Merck organized a

challenge for the design of machine learning methods to model the

bioactivities of ligands acting with target proteins, and methods

using deep learning achieved the best performance. Later, Ma et al.

(2015) proposed a deep neural net model for determining quantita-

tive structure–activity relationships (QSARs), which demonstrated

better performance than random forest models for most of the data

they studied (Ma et al., 2015). Most recently, we proposed a

weighted deep learning algorithm that takes arbitrarily sized inputs

and generates bioactivity predictions which are significantly more

accurate than the control predictors with different molecular finger-

prints and descriptors (Wu et al., 2018).

In addition to the accurate prediction of ligand bioactivities,

comprehensive interpretation of predictors by precise identification

of key substructures that control ligand bioactivities is equally im-

portant to the virtual screening and drug discovery studies. In this

regard, the utilization of the extended-connectivity fingerprints

(ECFPs), which are circular fingerprints whose features denote the

presence or absence of particular substructures, have been shown

beneficial to an accurate interpretation of ligand bioactivities

(Rogers and Hahn, 2010). In addition, ECFPs have several useful

features: (i) they do not need to be predefined and can code an infin-

ite number of different molecular features, which is critical to the

improvement of virtual screening performance; (ii) they can be

rapidly calculated; and (iii) the ECFP algorithm can be tailored to

produce different kinds of circular fingerprints, optimized for differ-

ent usages.

In order to precisely predict ligand bioactivities, long ECFPs are

required for obtaining optimal performance. For instance, after

removing rarely occurring features, Unterthiner et al. created a

43 000-dimensional ECFP vector, where the ECFP12 fingerprints

(chemical substructures) with long dimensions were found ideal for

representing compound properties in QSARs (Unterthiner et al.,

2014). More importantly, the use of long ECFPs can reduce the

occurrence of bit collision, which helps determine more accurate

substructures of each bit of the input compound molecule in feature

retrieval (Rogers and Hahn, 2010). A drawback to the use of long

ECFPs is, however, the requirement of greater computational and

storage costs. Furthermore, the use of long fingerprints for com-

pounds usually results in extremely sparse data, which may lead to

the ‘Curse of Dimensionality’ (i.e. the drastic decrease in prediction

performance) in many real-world ligand-based virtual screening

campaigns, especially for drug targets without sufficient data.

To the best of our knowledge, there have been no previous studies

on the efficient utilization of long ECFPs in ligand-based virtual

screening with the aim of improving the predictive performance of

models and increasing the interpretability of experimental results.

It is generally assumed that ligand bioactivity is determined by

some local regions and is usually closely related to a small number

of chemical substructures (Crisman et al., 2008). Currently, one of

the most popular methods to find the important and explainable

substructures is through the least absolute shrinkage and selection

operator (Lasso), which is a widely used regression technique for

identifying sparse representations (Tibshirani, 1996). However,

with high-dimensional ECFPs, the identification of relevant features

by solving the Lasso problem remains challenging because it is com-

putationally expensive and may not be possible to load the feature

matrix into the main memory (Wang et al., 2013). Fortunately,

screening for Lasso helps quickly recognize irrelevant features that

have zero components in the solution, and then ignores these in the

optimization. Therefore, we can work on a reduced-feature matrix

when dealing with the Lasso problem, which would result in sub-

stantial savings in computational cost and memory usage, as well as

alleviating the ‘Curse of Dimensionality’. Moreover, the irrelevant

features removed by screening for Lasso are guaranteed to have zero

coefficients in the solution stage, so there is no loss of accuracy or

optimality (Wang et al., 2013).

In this work, we describe a novel method that employs screening

for Lasso of ECFPs and deep neural nets (SED) for predicting the

bioactivities. Our focus will be on the ligands associated with G

protein-coupled receptors (GPCRs), mainly because of their signifi-

cant importance in drug discovery studies, where currently drugs

targeting GPCRs account for �27% of the global therapeutic drugs

market (Hauser et al., 2017). For this purpose, we collect ligands

from 16 human GPCR datasets that cover most families of human

GPCRs. The testing results show that SED can achieve exceptional

performance in terms of predicting ligand bioactivities. In particular,

on datasets without sufficient ligand samples, the model perform-

ance exhibits a significant improvement just by adopting relevant

ECFP features selected by screening for Lasso. If long ECFPs are

used, further improvements can be observed. Moreover, in order to

precisely interpret bioactivities of ligands interacting with the

GPCRs, a case study was performed to examine key substructures

which determine ligand bioactivities.

There has been an unfortunate lack of open-source code for vir-

tual screening tools, as most have been designed for commercial

usage. In this work, a demonstration program including the source

code and data was produced and released on our webserver for the

benefit of academic usage. As a general Lasso screening method for

long ECFPs and a deep neural network (DNN) model were adopted

by our approach for predicting the bioactivities of ligand molecules,

it is straightforward for users to design virtual screening models for

their targets of interest. All SED code and data are freely available at

https://zhanglab.ccmb.med.umich.edu/SED/.

2 Datasets and methods

2.1 Datasets
We first downloaded the ‘all interaction data’ file from GLASS data-

base (http://zhanglab.ccmb.med.umich.edu/GLASS/), which con-

tains 533 470 unique GPCR–ligand interaction entries (Chan et al.,

2015). Entries with the match ‘Standard units¼nM’ were retained,

and GPCR–ligand pairs with multiple bioactivity values were

replaced with their median value to reduce the influence of outliers.
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For each GPCR, an experimental dataset was built with active

ligands, which contain the canonical SMILES strings and target-

associated bioactivities of these ligands.

For GPCR data, we downloaded the ‘7tmrlist’ file, which

includes 3093 GPCRs, from the UniProt database (http://www.uni

prot.org/docs/7tmrlist) (The UnitProt Consortium, 2008). After

parsing this file, a total of 825 human GPCR proteins were found,

of which only 55 had 3D structures available in the PDB (Berman

et al., 2000; Zhang et al., 2015) (see also https://zhanglab.ccmb.

med.umich.edu/GPCR-EXP/). Sixteen representative GPCRs with-

out a solved structure, having at least 300 ligands, were selected as

the experimental targets. These GPCRs are not homologous with

each other with the maximum pair-wise sequence identity of 50%

(for P0DMS8 and Q99835) and about 80% of pair-wise sequence

identity is less than 30%. They cover four GPCR classes (A, B, C

and F) and 13 subfamilies (see Supplementary Table S1). Other sub-

families with no or few experimental ligand associations were not

considered because the lack of sufficient samples would preclude the

construction of reliable models; these include, for instance, the sub-

family ‘Sensory receptors’ in Class A, ‘Adhesion receptors’ in Class

B, ‘Sensory receptors’ and ‘Orphan receptors’ in Class C, among

others (Chan et al., 2015; Isberg et al., 2014). Such diversity of data-

set selections is important for examining the generality of the models

and to avoid cross-learning from homologous targets during the

training process. As the raw bioactivity values of ligands span a

large range, we adopted the p-bioactivity metric throughout this

work. This is defined as � log 10v, where v is the raw bioactivity that

can be evaluated using IC50, EC50, Ki, Kd and so on (Cortes-Ciriano,

2016). In our experimental datasets, the p-bioactivity ranges from

�11 to 2.523, where smaller values indicate lower ligand activity.

Some control ligands were added into each GPCR dataset to en-

sure more robust feature selection and regression models for ligand-

based virtual screening. The control ligands, without association

with the target GPCR, were randomly selected from the remaining

subfamily irrelevant GPCR datasets, representing approximately

20% of the original ligands. As for the control ligands, the p-bio-

activity was fixed to �11, which is the upper bound of all GPCR–

ligand interaction entries in GLASS database. Supplementary Table

S1 presents a detailed description of the 16 GPCR datasets used in

this work.

2.2 Methods
We propose a three-stage method to effectively screen key sub-

structures from long ECFPs and then predict the bioactivities of

ligands acting with GPCR targets. The proposed SED approach

involves three steps: (i) ECFP generation, (ii) key substructure se-

lection and (iii) bioactivity prediction using a DNN regression

model (Fig. 1).

2.2.1 Generation of extended-connectivity fingerprints

ECFPs are among the most popular molecular fingerprints. Based on

the Morgan algorithm (Morgan, 1965), they are highly suitable for

the identification of the presence or absence of particular substruc-

tures and are often used for QSAR model building in the lead opti-

mization process (Rogers and Hahn, 2010).

The ECFP generation contains three steps: (i) initial assignment

of atom identifiers, (ii) iterative update of identifiers and (iii) dupli-

cation removal (Rogers and Hahn, 2010) (also see https://docs.chem

axon.com/). ECFP generation starts with the assignment of an initial

integer identifier to every nonhydrogen atom of the input ligand

molecule. This integer identifier catches some local information on

the corresponding atom such that various properties (e.g. atomic

number, connection count) are wrapped into a single identifier by a

hash function. Several iterations are then implemented to merge the

initial atom identifiers with those of neighbor atoms until a prede-

fined diameter is reached. Each iteration captures a greater circular

neighborhood around each atom and packs this into a single integer

identifier through the appropriate hashing methods. The final stage

of the generation process is to remove multiple identifier representa-

tions for identical atom neighborhoods. Here, two neighborhoods

are treated as identical if they occupy the same set of chemical bonds

or if their hashed integer identifiers are the same.

In this study, ECFPs were generated using three key parameters:

diameter, length and count (Rogers and Hahn, 2010) (also see

https://docs.chemaxon.com/). The diameter determines the max-

imum diameter of the circular neighborhoods employed for each

atom. This is the main ECFP parameter, regulating the number and

maximum size of the atom neighborhoods, and thus determines the

length of the identifier list representation and the size of ‘1’ bits in

the fixed-length string representation. The parameter ‘length’ defines

the length of the bit string representation, whereas the parameter

‘count’ controls whether identical integer identifiers are saved with

occurrence counts or kept only once. To decrease the likelihood of

bit collision and information loss, the diameter was fixed to 12 in

this study; the count was set to the default ‘No’ option, meaning

that each identifier was stored only once. The ECFPs were generated

by the program GenerateMD, which was authorized by the

ChemAxon Ltd. with the free license for academic research.

2.2.2 Feature selection

Consider the ligand sample dataset D ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg,
where xiði ¼ 1; . . . ;nÞ represents the ith ligand molecule that takes

Fig. 1. Schematic of SED. The approach is composed of three stages: long

extended-connectivity fingerprint (ECFP) representation for ligand molecules,

feature selection by screening for Lasso and construction of deep neural net-

work regression prediction models
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the encoding ECFP of each molecule as input and yi denotes its p-

bioactivity value.

Lasso (Tibshirani, 1996) is widely used to obtain sparse data rep-

resentations or predictive models. Standard Lasso takes the form

b� ¼ argmin
b2Rp

1

2
ky�Xbk2

2 þ kkbk1 (1)

where X ¼ ½x1; x2; � � �; xn� is the n� p ECFP feature matrix, y ¼
½y1; y2; � � �; yn� is the p-bioactivity response vector, b� is the optimal

sparse representation and k � 0 is the regularization parameter.

When the dimension of the ECFP feature space is long, solving

the Lasso problem may be challenging because we might not be able

to read the data matrix into main memory. To solve large-scale

Lasso problems efficiently, the standard Lasso can be written in its

dual form (Wang et al., 2013)

sup
h

1

2
kyk2

2 �
k2

2

����h� y

k

����
2

2

:

����½X�Tj h

���� 	 1; j ¼ 1; 2; . . . ;p

( )
(2)

where h denotes the dual variable and ½X�j is the jth column of X.

Let h�k be the optimal solution of (2) and b�k be the optimal solution

of (1). The Karush–Kuhn–Tucker (KKT) conditions are imple-

mented by

y ¼ Xb�k þ kh�k (3)

ðh�kÞ
Txi 2

signð½b�k�iÞ; if ½b�k�i 6¼ 0

½�1;1�; if ½b�k�i ¼ 0

(
(4)

where ½b�k�i denotes the ith component of b�k. Considering the KKT

condition in (4), the following rule holds: jðh�kÞ
Txij < 1) ½b�k�i ¼

0) bi denotes an inactive feature.

The inactive features occupy the zero components in the optimal

solution, b�k, and can be discarded from the optimization without

any sacrifice of the performance of the optimal value in the objective

function (1). We refer to this approach as the Safe Screening Rules.

SAFE (Ghaoui et al., 2010) is an efficient safe screening method. In

SAFE, the ith entry of b�k is removed when

��xT
i y
�� < k� kxik2kyk2

kmax � k
kmax

(5)

where kmax ¼ maxijxT
i yj is the maximal parameter value such that

the solution is non-trivial. To fine tune the value of k, methods such

as cross-validation can be applied to the Lasso problem along with a

sequence of parameters k0 > k1 > . . . > kj. However, this may be

very time-consuming. Enhanced Dual Polytope Projection (EDPP) is

a much more efficient form of safe screening rules (Wang et al.,

2013). An implementation of EDPP is available on GitHub: http://

dpc-screening.github.io/lasso.html.

Consequently, the reduced data matrix ~X can be optimized and

the original problem (1) can be transformed into

~b
�¼ argmin

~b

1

2

��y� ~X~b
��2

2
þ k
��~b
��

1
(6)

where ~b 2 R
p�p0 , p0 is the number of zero components in b�,

~X 2 R
n�ðp�p0Þ, y ¼ ½y1; y2; . . . ; yn� denotes the p-bioactivity

responses, ~b
�

is the optimal sparse representation, and k � 0 is the

regularization parameter. Applying the Lasso solver from the SLEP

package (Liu et al., 2009) (http://www.yelab.net/software/SLEP/),

only a small subset of the original features are selected for use in the

final model. This improves the prediction performance and inter-

pretability of regression models.

2.2.3 Deep neural network training

A neural network model is a hierarchical network composed of mul-

tiple layers. The lowest layer takes the molecular descriptors as the

model input, whereas the uppermost layer outputs the predicted activ-

ities. Between the two are one or more hidden layers, which form a

very complicated nonlinear transformation from the input descriptors

to the output variables. A DNN holds more than one hidden layer and

can model complex relationships among the input descriptors.

A standard DNN model is specified by three basic components

(Haykin, 1994; Xu et al., 2017). The first is the interconnections be-

tween layer nodes. These interconnections are weighted according to

the strength of the relationship between nodes, and the input value for a

node is a weighted sum of the output values of nodes in the previous

layer. The second component is the activation function, which performs

the nonlinear transfer of the weighted sum of input values to the output

at each node. The final component of a neural network is the optimiza-

tion scheme, which tunes the weights to best match the activities.

The stage for updating the weight parameters is known as training

and proceeds in an iterative fashion. During the optimization process,

the weights are tuned to decrease the divergence between the prediction

and the real bioactivity. For regression problems, the standard cost func-

tion for optimization is the mean square error (MSE). Because of the

hierarchical structure of DNNs, the training process for reducing errors

is usually called backpropagation. Because DNNs have many hyper-

parameters, it is time and labor intensive to implement the whole set of

grid search. Since most previous studies on applying DNNs for ligand-

based virtual screening optimized the adjustable weights in the neural

network model, here we adopted the set of hyperparameter values that

work well in similar tasks (Ma et al., 2015). The settings are as follows:

(i) the DNN has four hidden layers containing 4000, 2000, 1000 and

1000 nodes, respectively; (ii) the dropout rates in the DNN are 0% in

the input layer, 25% in the first 3 hidden layers, and 10% in the last

hidden layer; (iii) the activation function is the rectified linear unit

(ReLU); (iv) no unsupervised pretraining is conducted, and the network

weights were initialized as random small values; (v) the size of each

mini-batch is 20 and the number of epochs is 200; and (vi) the parame-

ters for the optimization step are fixed to their default values, i.e. the

learning rate is 0.05, the momentum strength is 0.9 and the weight cost

strength is 0.0001. The DNN model runs in Python, and the code is

available at https://github.com/Merck/ DeepNeuralNet-QSAR.

2.3 Evaluation criterion
In the Kaggle challenge organized by Merck in 2012, the correlation

coefficient (r2) was used to assess the performance of drug activity

predictions. This metric is calculated as

r2 ¼

Xn

i¼1
ðyi � �yÞðŷi � �̂yÞ

h i2

Xn

i¼1
ðyi � �yÞ2

Xn

i¼1
ðŷi � �̂yÞ2

(7)

where yi is the true activity, �y is the mean of the true activity, ŷi is

the predicted activity, �̂y is the mean of the predicted activity and n is

the number of ligand molecules in the dataset. The larger the value

of r2, the better the prediction performance.

A common metric for evaluating regression models is the root

mean square error (RMSE), given by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ
2

s
(8)

where yi and ŷi are the true and predicted activity values, respective-

ly, and n is the number of ligand molecules. The smaller the RMSE

value, the better the prediction performance.
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To remove the influence of random selection, three sets of con-

trol ligands were collected for each GPCR dataset, and the regres-

sion model for predicting the ligand bioactivities was trained

separately. The mean criterion value of the three models was desig-

nated as the final result. Moreover, the Wilcoxon signed-rank test

was performed to verify the statistical significance between the per-

formance of the compared methods.

3 Results and discussion

3.1 Performance of top features selected from various

ECFPs
We compared the ligand bioactivity prediction performance after fea-

ture selection from various sizes of ECFPs. Full-length ECFPs with

1024 bits were used to build the baseline prediction model. All regres-

sion models were implemented by DNN. For different sizes of ECFPs,

the top 300 dimensions, ranked by the Lasso weight values, were used

to construct DNN regression models. The GPCR datasets were divided

into two groups according to their number of ligand samples. Datasets

with sufficient samples (more than 600) formed Group I, whereas those

with insufficient samples (	600) formed Group II (details are given in

the ‘# of ligands’ column in Supplementary Table S1).

The results show that, when the number of ligand samples is suffi-

cient (Group I), baseline methods perform well on all GPCR datasets

(r2: 0.9224 6 0.0181; RMSE: 1.1693 6 0.1351). Indeed, after feature

selection, there is no significant difference between the performance of

models based on the top 300 features (r2: 0.9186 6 0.0189; RMSE:

1.2812 6 0.2455) and the baseline methods (Wilcoxon signed-rank

test, two-tailed P-value ¼ 0.0663) (Table 1). With long ECFPs, the per-

formance of the regression models improved on most GPCR data after

feature selection. For example, with 10 240 bits, the Group I GPCR

datasets give r2 ¼ 0.9267 6 0.0273 and RMSE ¼ 1.099 6 0.1834.

When there are insufficient ligand samples in a GPCR dataset (Group

II), the performance of the baseline method is often poor (r2:

0.7943 6 0.1020; RMSE: 1.5655 6 0.2868). In this case, after feature

selection, the performance of models based on the top 300 features

exhibits significant improvements (r2: 0.8358 6 0.0807; RMSE:

1.4110 6 0.2444). Using long ECFPs, the models achieve further

improvements in performance when using the top 300 features, with

the average improvement on r2 of 12% and RMSE of 19% against the

baseline predictors. In addition, we further consider the effect of the

size of ligand samples in the GPCR datasets on model performance.

The results show that, after feature selection for the baseline methods,

the improvement in r2 on the GPCR datasets of Group II is significantly

better than that of Group I (Group I: �0.0026 6 0.0073; Group II:

0.0572 6 0.0556) (Supplementary Fig. S1A). Using long ECFPs (based

on the best results, highlighted in boldface in Table 1), the improve-

ment in r2 on the GPCR datasets of Group II was again significantly

better that of Group I after feature selection (Group I:

0.0093 6 0.0084; Group II: 0.0554 6 0.0653) (Supplementary Fig.

S1B). These results show that our SED method can improve perform-

ance on datasets without sufficient ligand samples.

When the number of ligand samples in a GPCR dataset is sufficient,

the baseline method usually performs well, and it is difficult to obtain

further improvement. This is because the dimension of the ECFPs used

in the baseline methods is only 1024, too small for any obvious ‘Curse

of Dimensionality’ problems, and therefore the performance will not

be significantly improved after feature selection. When long ECFPs are

used, the model performance can be improved because more compre-

hensive information is captured by including more substructures.

When the number of ligand samples is insufficient, the baseline

methods perform poorly on most GPCR datasets. This is because the

‘Curse of Dimensionality’ probably exists in the baseline methods

when 1024-bit ECFPs are used, as this is greater than the number of

ligand samples in each dataset. When the most irrelevant features are

removed via feature selection, the prediction performance improved

significantly, which suggests that the bioactivity of a ligand is related to

relatively few substructures. Moreover, when using long ECFPs, the

model performance would be further improved by feature selection be-

cause more comprehensive information can be captured by the inclu-

sion of larger and more substructures.

3.2 Influence of regression models
We investigated the dependence of SED on the regression model and

applied Gradient Boosting Decision Tree (GBDT), Support Vector

Regression (SVR), Random Forest (RF) and DNN to the GPCR

datasets. The input of each regression model was the top 300 fea-

tures selected from the optimal bits of the ECFPs. For each GPCR

dataset, the optimal bit is the ECFP length corresponding to the opti-

mal result (highlighted in boldface in Table 1). The optimal parame-

ters of the RF, GBDT and SVR models were obtained through three-

fold cross-validation with a standard grid search method, and the

optimal model was evaluated by addressing the mean of r2 value of

three-fold cross-validation. Specifically, for RF, the number of trees

in the forest is set to 1000, and the number of features to consider at

each split is set to ‘sqrt’. For GBDT, the learning rate is set to 0.1,

and the number of boosting stages to perform is set to 1000. For

SVR, the ‘rbf’ kernel type is used, and the gamma is set to 0.2.

Figure 2 shows a head-to-head comparison of SED implementa-

tions with different regression models, where the same training and val-

idation datasets in the cross validation have been used. Here, a lower

RMSE or higher r2 value indicates better model performance. The

results show that the DNN regression models achieve an optimal per-

formance with all GPCR datasets and evaluations, with a mean r2

value of 0.8913 which is 0.047, 0.1147 and 0.0597 higher than that of

RF, GBDT and SVR, and a mean RMSE value of 1.1847 which is of

0.0425, 0.1510 and 0.0919 lower than that of RF, GBDT and SVR, re-

spectively (see Fig. 2 and Supplementary Table S2). In addition, the r2

value of DNN statistically significantly better than that of the runner-

up method RF (with the two-tailed P-value ¼ 0.0004 in the Wilcoxon

signed-rank test). Thus, the DNNregression model was employed in

SED because of its robust performance.

In Supplementary Table S3, we present a comparison of SED

with WDL-RF, which was previously developed for modeling ligand

bioactivities by combining weighted network learning and random

forest regression (Wu et al., 2018). Here, the input to WDL-RF is in

the format of canonical SMILES and the bioactivity values of com-

pounds, where the default parameters of the WDL-RF program are

adopted, that is the number of module units (L) is set to 4, and

nestimates ¼100 and maxfeatures ¼ 0sqrt0 in the random forest regres-

sion. The results show that the SED models achieve a better per-

formance with all GPCR datasets and evaluations: the mean r2 value

is 0.907 which is 0.243 higher than that by WDL-RF, and the mean

RMSE value is 1.185 which is of 0.239 lower than that of WDL-RF

(see Supplementary Table S3). The main reason for the better per-

formance of SED over WDL-RF is that SED adopts long molecular

fingerprints, with the maximum of 102 400 bits, whereas WDL-RF

employs short molecular fingerprints, with only 50 bits.

3.3 Effect of number of selected features
We now examine how the prediction of ligand bioactivities is

affected by the number of features selected (K), where the features
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are ranked in order of weight values returned by Lasso. In this

paper, we compare the predicted ligand bioactivities given by

K¼50, 100, 300, and 600. For each GPCR dataset, the optimal bit

is the ECFP length corresponding to the optimal result (highlighted

in boldface in Table 1).

The results show that the model performance based on the top

300 features is better than that based on both the top 50 features

and top 100 features on all GPCR datasets (Fig. 3). Moreover, the r2

values given by using the top 300 features significantly better than

those based on the top 50 features (Wilcoxon signed-rank test, two-

tailed P-value < 0.05) on the vast majority of GPCR datasets (14/

16), and also obviously superior to those based on the top 100 fea-

tures (Wilcoxon signed-rank test, two-tailed P-value < 0.05) on

most GPCR datasets (9/16) (Fig. 3). Moreover, the r2 values based

on the top 300 features are better than those based on the top 600

features on the majority of GPCR datasets (9/16) (Fig. 3). Thus, the

default value of K was set to 300 in this study.

3.4 Correlation analysis of selected features
To further verify the effect of feature selection, we performed correl-

ation analysis. For each selected feature, we calculated the Pearson

Table 1. Performance of deep neural networks with top features selected from various sizes of long ECFPs

Groupa GPCRs ECb Baselinec Top 300 features selected from various sizes

1024 1024 5120 10 240 51 200 102 400

I P08908 r2 (") 0.9268 0.9249 0.9310 0.9314 0.9227 0.9127

RMSE(#) 1.0483 1.0878 0.9968 0.9879 1.0636 1.0982

Q9Y5N1 r2 (") 0.9513 0.9464 0.9468 0.9598 0.9272 0.921

RMSE(#) 1.0218 0.9627 0.9748 0.9486d 1.0827 1.0889

P28335 r2 (") 0.9096 0.9066 0.8989 0.9095 0.8983 0.8903

RMSE(#) 1.1475 1.1335 1.1533 1.1184 1.1549 1.1723

P35372 r2 (") 0.9034 0.8968 0.8966 0.8954 0.8796 0.8814

RMSE(#) 1.2931 1.3478 1.1616 1.1547 1.2367 1.2384

Q99705 r2 (") 0.9389 0.931 0.9393 0.9436 0.9295 0.9327

RMSE(#) 1.1132 1.2236 0.9649 0.8928d 0.9464d 0.9351d

P0DMS8 r2 (") 0.8937 0.8859 0.8864 0.8938 0.8781 0.8555

RMSE(#) 1.1979 1.2348 1.1987 1.1907 1.2572 1.3375

Q16602 r2 (") 0.9268 0.9326 0.9514d 0.9533d 0.9516d 0.9527d

RMSE(#) 1.2783 1.8135 1.6057 1.4746 1.4675 1.3730

P51677 r2 (") 0.9329 0.9216 0.9338 0.9405 0.9211 0.9161

RMSE(#) 1.0194 1.2781 1.0674 1.0280 1.0048 1.0989

P48039 r2 (") 0.9180 0.9209 0.9108 0.9147 0.9126 0.908

RMSE(#) 1.4047 1.4495 1.4607 1.3635 1.3699 1.3831

II Q9H228 r2 (") 0.8152 0.8636d 0.8789d 0.8870d 0.9100d 0.8942d

RMSE(#) 1.6521 1.3965d 1.5009 1.372d 1.3231d 1.3239d

Q8TDU6 r2 (") 0.8830 0.9124 0.9329d 0.9206d 0.9165d 0.9077

RMSE(#) 1.3289 1.1804 1.0253d 1.0906d 1.1056d 1.1713

Q8TDS4 r2 (") 0.9154 0.9262 0.929 0.9222 0.9378d 0.9348d

RMSE(#) 1.0707 1.0445 1.1328 1.1051 0.9567d 0.9906

Q9HC97 r2 (") 0.6047 0.7097d 0.7649d 0.8508d 0.8264d 0.7801d

RMSE(#) 1.7889 1.5855d 1.6228d 1.3631d 1.3282d 1.4242d

P41180 r2 (") 0.7784 0.7916 0.8253d 0.8435d 0.8029 0.8217d

RMSE(#) 1.9226 1.7581 1.7082 1.5410d 1.5869d 1.5510d

Q14833 r2 (") 0.7429 0.7682 0.7947d 0.7743d 0.7424 0.7302

RMSE(#) 1.6512 1.5453 1.4635d 1.4754d 1.6216 1.6719

Q99835 r2 (") 0.8203 0.8790d 0.892d 0.8933d 0.8999d 0.9028d

RMSE(#) 1.5439 1.3669 1.1953d 1.1924d 1.155d 1.1239d

aGroup I: original number of ligands >600; II: original number of ligands 	600.
bEvaluation Criterion: " (#) indicates that larger (smaller) values are better; the best results for each evaluation criterion are highlighted in boldface.
cBaseline: full-length ECFPs with 1024 bits.
dIndicates that the performance of the method using the top 300 ECFP features selected from various ECFPs is significantly better than that of the baseline

methods based on Wilcoxon signed-rank test.

Fig. 2. Effect of regression model on performance. GBDT, Gradient Boosting

Decision Tree; SVR, Support Vector Regression; RF, Random Forest; DNN,

deep neural network. (A): P08908; (B): Q9Y5N1; (C): P28335; (D): P35372; (E):

Q99705; (F): P0DMS8; (G): Q16602; (H): P51677; (I): P48039; (J): Q9H228; (K):

Q8TDU6; (L): Q8TDS4; (M): Q9HC97; (N): P41180; (O): Q14833; (P): Q99835
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correlation coefficient (PCC) between their values and the ligand

bioactivities. A positive value indicates a positive correlation, and

vice versa. The greater the absolute value, the stronger the correl-

ation. Here, we focused on the absolute values of the PCCs and con-

sidered the top 300 features identified by sparse screening and Lasso

(marked as ‘T300’ in Fig. 4). For comparison, another group of 300

features were randomly selected from all dimensions of the ECFPs

(marked as ‘R300’ in Fig. 4). The boxes in Figure 4 indicate the dis-

tribution of PCCs of the top 300 and random 300 features on each

GPCR dataset. The results show that the absolute values of PCCs

for the top 300 features are significantly different from those for the

random 300 features (Wilcoxon signed-rank test, two-tailed P-value

< 0.01). On all GPCR datasets, the mean absolute value of the

PCCs for the top 300 features was 0.1537, much higher than that of

the random 300 features (0.0333). As a comparison, we also display

the data based on the top 100 and 50 features (marked as ‘T100’

and ‘T50’ in Fig. 4). The result shows that the average PCCs for top

100 (0.2074) and top 50 (0.2530) features are slightly higher than

that of top 300, but they generally have a larger fluctuation (indicat-

ing a lower reliability) than the top 300 ones. Overall, PCCs by all

top 300, 100 and 50 features are significantly higher (with P-value

< 0.01) than the randomly selected top 300 features, suggesting that

our selected features by sparse screening and Lasso are effective and

feasible.

3.5 Case study
Sphingosine 1-phosphate receptor 5 (S1PR5) is a GPCR which binds

the lipid-signaling molecule sphingosine 1-phosphate. Its agonists

have been proposed as an innovative mechanism for the treatment

of neurodegenerative disorders (such as Alzheimer’s disease) and

lysosomal storage disorders (such as Niemann–Pick disease) (van

der Kam et al., 2014). As shown in Supplementary Table S1, the

S1PR5 dataset contains 320 original and 60 control ligand samples.

As indicated in Table 2, the regression performance based on the top

300 features is improved significantly when feature selection was

applied to the baseline method, which is then improved further

when long ECFPs were used. Using 51 200 bits, the model achieved

improvements on 12% in r2 and 20% in RMSE compared with the

baseline method.

Screening for Lasso issued by SED is to identify the key substruc-

tures of ECFPs that affect ligand bioactivities. Visualization and cor-

relation analysis of the key substructures which determine ligand

bioactivities is important for understanding GPCR–ligand interac-

tions and designing new drugs. The JChem Suite of ChemAxon

(Csizmadia, 2000) provides a lookup service for the substructures

encoded in ECFP fingerprints. Its ‘ECFPFeatureLookup’ class

retrieves substructures corresponding to a given integer identifier

or bit position. The program MarvinView was used to visualize

substructures. The top 50 substructures identified by SED are pre-

sented in Table 2, and the top 51–300 substructures are presented in

Supplementary Table S4, along with the associated PCCs between

the attribute values of each dimension and ligand bioactivities.

The top substructures have the potential of guiding further opti-

mization of lead compounds by constructing new and better ligand

molecules.

4 Conclusions

We have developed a novel method, SED, which combines the

screening for Lasso of ECFPs with DNNs to predict the bioactivities

of GPCR-associated ligand molecules. The method is comprised of

three consecutive steps: (i) generation of long ECFPs for ligand sam-

ples, (ii) feature selection by screening for Lasso of ECFPs and (iii)

bioactivity prediction using a DNN regression model. Large-scale

benchmark tests show that SED can generate excellent bioactivity

predictions from various datasets. Using GPCR datasets without suf-

ficient ligand samples, the regression model performance exhibits

significant improvements by simply adopting the relevant ECFP fea-

tures selected by screening for Lasso; if long ECFPs are used, the per-

formance can be further improved. The results indicate that the SED

method can quickly remove irrelevant features, resulting in a

reduced feature matrix for the Lasso problem. This may lead to sub-

stantial reductions in computational cost and memory usage, as well

as greatly alleviate the potential for the ‘Curse of Dimensionality’.

In addition, a visualized study was examined to clearly explore key

substructures which determine bioactivities of ligand molecular act-

ing with GPCRs for accurate understanding the experimental

results.

At present, the relationship between ligand binding and biology

remains unclear. In this regard, the SED method can help to quickly

screen key substructures that determine ligand bioactivities. Current

results have showed that further improvement can be achieved by

models based on the top identified substructures, especially for

GPCRs datasets without sufficient ligand samples. Moreover, PCCs

between their values and the ligand bioactivities were calculated for

Fig. 3. Dependence of SED performance on the number of selected features.

(A): P08908; (B): Q9Y5N1; (C): P28335; (D): P35372; (E): Q99705; (F): P0DMS8;

(G): Q16602; (H): P51677; (I): P48039; (J): Q9H228; (K): Q8TDU6; (L): Q8TDS4;

(M): Q9HC97; (N): P41180; (O): Q14833; (P): Q99835

Fig. 4. Pearson correlation analysis of selected features. T300, T100 and T50:

The top 300, 100 and 50 features identified by screening for Lasso. R300: the

300 features randomly selected from all dimensions of the ECFPs.

(A): P08908; (B): Q9Y5N1; (C): P28335; (D): P35372; (E): Q99705; (F): P0DMS8;

(G): Q16602; (H): P51677; (I): P48039; (J): Q9H228; (K): Q8TDU6; (L): Q8TDS4;

(M): Q9HC97; (N): P41180; (O): Q14833; (P): Q99835
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each selected feature, where the top substructures tend to have a

higher correlation with bioactivity values. These analyses can help

provide a better understanding of the success of the SED method,

and the top substructures are likely to be new and correct in the con-

text of the machine learning experiment. Ideally, the best and reli-

able choice for the model controls is to validate the method through

biomedical experiments, where the next important work is to apply

the SED model to virtual screening for specific drug targets. The

work along this line is currently in progress.

The SED source code and datasets are freely available at https://

zhanglab.ccmb.med.umich.edu/SED/, with the code usage provided

in Supplementary Text S1.

Table 2. Top 50 substructures identified by SED along with the associated Pearson correlation coefficients

Top 1–10        

(Pearson coefficients)

Top 11–20        

(Pearson coefficients)

Top 21–30        

(Pearson coefficients)

Top 31–40        

(Pearson coefficients)

Top 41–50        

(Pearson coefficients)

0.668 –0.258 0.325 –0.209 –0.162

–0.483 –0.329 0.311 –0.199 –0.162

–0.468 –0.337 0.311 –0.278 –0.162

–0.48 –0.306 0.311 –0.306 –0.162

–0.417 –0.306 –0.159 –0.282 –0.162

–0.436 –0.327 0.27 –0.321 –0.162

–0.503 –0.332 0.355 –0.162 –0.162

–0.436 –0.23 –0.162 –0.162 –0.162

–0.282 0.325 –0.199 –0.162 –0.162

–0.258 0.325 –0.162 –0.162 –0.162
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