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Abstract
We develop two complementary pipelines, “Zhang-Server” and “QUARK”, based on I-TASSER and

QUARK pipelines for template-based modeling (TBM) and free modeling (FM), and test them in

the CASP12 experiment. The combination of I-TASSER and QUARK successfully folds three

medium-size FM targets that have more than 150 residues, even though the interplay between

the two pipelines still awaits further optimization. Newly developed sequence-based contact pre-

diction by NeBcon plays a critical role to enhance the quality of models, particularly for FM

targets, by the new pipelines. The inclusion of NeBcon predicted contacts as restraints in the

QUARK simulations results in an average TM-score of 0.41 for the best in top five predicted mod-

els, which is 37% higher than that by the QUARK simulations without contacts. In particular, there

are seven targets that are converted from non-foldable to foldable (TM-score >0.5) due to the use

of contact restraints in the simulations. Another additional feature in the current pipelines is the

local structure quality prediction by ResQ, which provides a robust residue-level modeling error

estimation. Despite the success, significant challenges still remain in ab initio modeling of multi-

domain proteins and folding of b-proteins with complicated topologies bound by long-range

strand-strand interactions. Improvements on domain boundary and long-range contact prediction,

as well as optimal use of the predicted contacts and multiple threading alignments, are critical to

address these issues seen in the CASP12 experiment.
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1 | INTRODUCTION

In every two years, the community-wide CASP experiment provides an

objective platform to critically assess the progress and challenges in the

field of protein structure prediction. The methods for protein structure

prediction are generally categorized into template-based modeling

(TBM) and free-modeling (FM), depending on whether homologous

templates could be detected from the PDB library. Considerable

progress has been witnessed in recent CASP experiments in TBM for

modeling distant-homologous proteins and for refining templates closer

to the native structure,1–3 which have been mainly driven by the use of

multiple threading templates.4 While the progress in FM seems more

difficult and slower, excitements have been recently brought about by

the success in the co-evolution based contact predictions and their utili-

zation for guiding the folding of small- to medium-size protein targets.5–8

Although the TBM and FM methods have been primarily devel-

oped for modeling different categories of protein targets, based on

templates or ab initio folding, a recent trend shows that the integration

of their complementarity can be useful in improving the structure mod-

eling accuracy for both categories of protein targets. In CASP10 and

CASP11, for instance, the interplay between the template-based I-

TASSER9,10 method and the ab initio folding QUARK11,12 method has

demonstrated enhancements of accuracy of the final models for FM

targets.13,14 In this approach, the structures of QUARK based models

are compared with those of the templates identified by LOMETS,15

and the templates are re-ranked based on their similarity to the

QUARK models. These templates are then used in the I-TASSER struc-

ture-assembly simulations to predict the final models. Meanwhile, the

integration of the QUARK models into the I-TASSER structure assem-

bly also showed the improvement of local structure accuracy for the
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TBM targets.16 However, constructing ab initio folds for larger proteins

with complicated topologies, in particular for b-proteins that have

long-range b-strand contacts, is still a challenge.5,13,14,17,18

One of the primary reasons for the difficulty of ab initio modeling

in predicting large proteins with complicated topologies is the lack of

precise long-range contact interaction information in the force field

during protein structure assembly simulation. Recently, sequence-

based contact prediction has attracted considerable interest to capture

long-range contact interactions. In particular, sequence-based contact

predictions based on co-evolution19–21 and machine learning22,23 have

demonstrated the usefulness of contact-maps in assisting folding of

large-size proteins.7,8,24 The major advantage for contact based folding

simulation methods is that long-range contacts provide a constraint to

reduce conformational space to be sampled, and help in folding the

proteins with a more complicated topology.24 The success is however

contingent upon precise contact map prediction that in turn depends

on high volume of sequence homologs, particularly in co-evolution

based contact prediction methods. In order to enhance the robustness

of the contact map prediction, we recently developed NeBcon,25 a con-

tact prediction pipeline which combines multiple sources of contact

maps from both co-evolution and machine learning through a novel

naïve Bayes classifier model. The posterior probabilities of the classi-

fiers are then trained with intrinsic structural features using neural net-

work to generate the final contact map.

While continuous progress is on-going in protein structure predic-

tion, a reliable estimation of the quality of the predicted structure mod-

els is critical to guide the biologist users to better use the model

predictions in their experimental research.26 In this regard, it is of par-

ticular importance to identify the trustable regions of the predicted

models by estimating the residue-level quality. ResQ27 is a recently

developed algorithm that has been designed to assess the residue-level

quality of the predicted structure models by combining the structural

variations in the assembly simulation with the local features of second-

ary structure prediction and sequence conservation search.

In CASP12 experiment, we combined NeBcon predicted contacts

with I-TASSER and QUARK to fold proteins that are distantly or non-

homologous to the experimentally solved structures. Additionally, we

used ResQ to assess the residue-level quality of the predicted protein

models based on I-TASSER and QUARK. The focus of this manuscript

is mainly on the analysis of the results generated by the automated

servers, “Zhang-Server” and “QUARK.” The models in the “QUARK”

group are constructed by QUARK-based ab initio folding programs

guided by NeBcon predicted contacts, while those in “Zhang-Server”

are generated based on the I-TASSER pipeline, where NeBcon and

QUARK are incorporated to enhance the accuracy of the models.

2 | METHODS

The pipelines of I-TASSER9,10 and QUARK11 have been described previ-

ously. Here, we briefly outline the two pipelines that are used in CASP12,

followed by some detailed discussion about the recently developed

components added to the pipelines for protein structure prediction.

2.1 | Outline of the QUARK pipeline

The “QUARK” server group in CASP12 is based on a modified version

of QUARK ab initio protein structure prediction pipeline shown in Fig-

ure 1A. At first, if the target protein is detected as a multi-domain pro-

tein by ThreaDom,28 the full length sequence is split into individual

domains. The sequence of the domains (or the target for single domain

proteins) is threaded through a non-redundant set of 6,023 high-

resolution PDB structures by gapless threading to generate position-

specific fragment structures with continuous lengths ranging from 1 to

20 residues. The scoring function for the gapless threading comprises

profile-profile, secondary structure, solvent accessibility, and torsion

angle matches between the target and the templates.12 A histogram of

distances dij for each residue pair (i and j) of the target is derived from

top 200 fragments at ith and jth positions if the fragments are from the

same PDB structure. The histogram that has a peak at the position of

dij< 9Å is converted to a distance profile for the residue pair. In addi-

tion to obtaining distance profiles for the residue pairs, we predict con-

tacts between the residues that are within 8 Å using NeBcon, a

sequence-based contact predictor.25 The distance profile restraint,

sequence-based contact restraint, and inherent knowledge-based and

physical potential terms are used to guide the assembly of the frag-

ments into full structural models by replica-exchange Monte Carlo

(REMC) simulations; the NeBcon-based contact restraints are applied

again at a later stage for decoy filtering.

It is noted that if the target is identified as “trivial” or “easy”, based

on the significance and consensus of LOMETS15 threading alignments

(as described in Equation 2 of our CASP10 report13), the initial struc-

tures and distance restraints are obtained from the LOMETS templates,

which are also used for guiding the QUARK-based REMC simulations.

Next, “decoy” conformations from the QUARK simulation trajecto-

ries are clustered by SPICKER29 to identify cluster centroids, which cor-

respond to low free-energy states. Before clustering, the decoys that

do not satisfy a large portion of the NeBcon predicted contacts are fil-

tered out for the “hard” and “very-hard” targets. The cluster centroids

from the five largest clusters are refined by ModRefiner30 or fragment-

guided molecular dynamics (FG-MD)31 to obtain five final models.

Here, the sequence-based contact restraints are not used, where the

only external restraints in the ModRefiner and FG-MD simulations are

those derived from the initial input models to the programs. The mod-

els from the corresponding clusters are ranked in descending order of

the size of the SPICKER clusters. For multi-domain proteins, the final

structures of the individual domains are assembled together with

appropriate orientations by a rigid-body Metropolis Monte Carlo simu-

lation (see Equation 7 below). Finally, the residue-level quality is pre-

dicted by ResQ.27

2.2 | Outline of the I-TASSER pipeline

The “Zhang-Server” in CASP12 is based on the classical I-TASSER

structure prediction pipeline as shown in the dashed box of Figure 1B.

Similar to the QUARK pipeline, multi-domain proteins are first parti-

tioned into individual domains by ThreaDom.28 The sequence of the
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individual domain or the target is threaded through a representative

template library of the PDB using LOMETS.15 If the target is classified

as “hard” or “very-hard” based on the significance and consensus of the

templates identified by LOMETS, the templates are re-ordered by their

structural similarity to the QUARK models of the target. Fragments are

extracted from the continuously aligned regions of the template

FIGURE 1 Automated protein structure prediction pipelines in CASP12. A, Flowchart of “QUARK” server extended from original QUARK
program with added contact prediction by NeBcon and threading templates from LOMETS. B, The “Zhang-Server” pipeline is based on the
classical I-TASSER pipeline (dashed box) with newly introduced components, including ThreaDom, NeBcon, FG-MD, and ResQ
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structures and assembled into full-length structural models by a modi-

fied REMC simulation procedure.32 A composite force field,10,33,34

which combines the distance restraints calculated from the templates

and the NeBcon derived contact maps with the inherent knowledge-

based energy terms, is used to guide the structural assembly simula-

tions. The decoys from the trajectories of the simulations are clustered

by SPICKER.29

Next, the cluster centroids are aligned against the structures in the

PDB library using TM-align.35 The spatial restraints extracted from the

TM-align templates are used for the second round of REMC simula-

tions. The re-assembled structure models are reconstructed into full

atomic models by REMO36 and further refined by FG-MD31 to gener-

ate the final structure models. For each of these models, we obtain dif-

ferent rankings from five Model Quality Assurance Programs

(MQAPs):14 C-score,37 structural consensus (the average TM-score of

the target model to all other models), and three statistical energy func-

tions (RWplus,38 GOAP,39 and DOPE40). The final ranking of the mod-

els is determined by ascending order of overall MQAP score, calculated

as
P5

p51 rm;p with rm;p being the ranking of the mth model by the pth

program. The models of the multi-domain proteins are assembled

together to form the full-length structure of the proteins. The residue-

level quality of these models is finally estimated by ResQ.27

The “Zhang” human group in CASP12 adopts the same pipeline as

“Zhang-Server” group, except that structure models from other

CASP12 servers are used as an additional set of templates together

with the LOMETS detected templates in the simulations.

2.3 | New components in recent developments

of QUARK and I-TASSER pipelines

2.3.1 | Template re-ordering based on QUARK models

Structural assembly simulations in the classical I-TASSER pipeline

oftentimes cannot accurately fold distantly or non-homologous pro-

teins due to the lack of accurate long-range interaction information.

Therefore, if a target is categorized as “hard” or “very-hard”, we use ab

initio models built by QUARK to re-rank the LOMETS templates in two

steps, with the purpose of identifying the low-scoring templates that

have correct folds. First, for each of the identified LOMETS templates,

we compute its structural similarity to the top-five QUARK models by:

TMscoreinterplay5 max
m51;2;...;5

TMscoremf g (1)

where TMscorem is the TM-score41 between the LOMETS template

and mth QUARK model. TMscoreinterplay for each of the templates

that indicates the structural similarity between the QUARK models and

the templates is used to sort all the identified LOMETS templates

in descending order. Second, the QUARK models are inserted at the

[(m-1)M11]-th position of the sorted template list, where M is the

total number of threading programs in the LOMETS meta-threading

program. Since higher ranked templates have stronger weights in

template-structure-derived distance restraint collection, such ordering

helps to balance the impact of threading the templates and QUARK

models to the I-TASSER structure assembly simulations.

2.3.2 | Integration of sequence-based contact prediction

by NeBcon in structure assembly

In an effort to capture the long-range interaction information based on con-

tacts between residues, sequence-based residue contact prediction is per-

formed by NeBcon.25 An initial set of contact maps are predicted by eight

state-of-the-art contact prediction programs: PSICOV,20 BETACON,22

SVMcon,42 SVMSEQ,23 CCMpred,43 mfDCA,44 STRUCTCH,45 and Meta-

PSICOV.46 The confidence scores of the predicted contacts from these pre-

dictors are then combined by naïve Bayes classifiers (NBC) to obtain

posterior probabilities of the contacts. The contact map derived from the

NBC model is further refined by neural network training, where the NBC

posterior probabilities are coupled with a variety of sequence-based

features, including amino acid composition, Shannon entropy, residue sepa-

ration, predicted solvent accessibility and secondary structure.25

In order to reduce the number of the falsely predicted contacts

that may lead to inaccurate folding of the protein, we discard the con-

tacts between residue pairs (i and j) that have a raw confidence score

of NeBcon, Cscoreij, lower than a confidence score cut-off, which is set

as 0.5, 0.4, and 0.3 for short (ji2jj � 11), medium (12 � ji2jj � 24) and

long (ji2jj > 24) range contacts, respectively. We further remove the

contacts with low confidence scores until the number of contacts in

each range is equal to an estimated number of contacts, as predicted

for each range by a separate neural network predictor that is trained

based on the length and secondary structure composition of the query

sequence. The remaining contacts are used in the following sequence-

based contact restraints, together with other energy terms in QUARK

and I-TASSER based REMC simulations for structural assembly:

Econtact dij
� �

5

2U0
ij; dij < 8A8

2
1
2
U0
ij 12sin

dij29
2

p

� �� �
; 8A8 � dij < 10A8

1
2
U�
ij 11sin

dij245
70

p

� �� �
; 10A8 � dij < 80A8

U�
ij; dij � 80A8

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(2)

Here, dij is the distance between the Ca atoms of ith and jth resi-

dues during the simulations. The upper and lower bounds of the con-

tact potentials U�
ij and U'ij, respectively, are defined as

U�
ij5KbTln

ACCij

0:7

� �
; U'ij5KbTln

ACCij

0:22

� �
(3)

where Kb is the Boltzmann constant and T is the temperature of the repli-

cas in the REMC simulations. ACCij is the posterior probability of residue i

and j being in contact given the raw NeBcon confidence score Cscoreij,

that is, ACCij5P ij in contactjCscoreij
� �

, with P(x) calculated based on a

training set of 517 proteins. This training set was also used to optimize

the above-mentioned confidence score cut-offs and the contact potential

in the recent benchmark studies (manuscript in preparation).

2.3.3 | Decoy filtering based on contact prediction by NeBcon

In QUARK, the NeBcon contact maps are further used after the struc-

tural assembly simulations to filter out decoy conformations that

strongly violate the NeBcon derived contact predictions. For each of
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the decoy structures obtained from the simulations, a Gaussian-like

score is calculated by

Scontact5
X

Cscoreij>Cscorecut
ij

wij
1ffiffiffiffiffiffi

2p
p

r Cscoreij
� � exp 2

1
2

dij2l Cscoreij
� �

r Cscoreij
� �

 !2
0
@

1
A

(4)

which is obtained by summing over contact of every residue pair (i and

j) that has a raw confidence score, Cscoreij, greater than a confidence

score cut-off, Cscorecutij :

Cscorecutij 5

0:6; ji2jj � 11

0:4; 12 � ji2jj � 24

0:7; ji2jj>24

8>><
>>: (5)

Here, wij is the weight for the contact pair (i, j) in the decoy struc-

ture that varies with the sequence separation as

wij5

0:2; ji2jj � 11

0:3; 12 � ji2jj � 24

0:5; ji2jj>24

8>><
>>: (6)

Additionally, dij is the Ca distance between residue i and j in the

decoy structure, and l Cscoreij
� �

and r Cscoreij
� �

are the mean and

standard deviation, respectively, of the residue-residue Ca distance

given the confidence score Cscoreij; both of which are trained based on

the training set mentioned before (manuscript in preparation).

Scontact in Equation 4 is calculated for each decoy structure

generated by QUARK simulation, which is used to sort the decoy set.

Only the top 20% of the decoy structures are retained for the

subsequent SPICKER clustering.

2.3.4 | Domain assembly for multi-domain proteins

For both “Zhang-Server” and “QUARK” groups, a full length multi-

domain protein sequence is split into single domain sequences using

ThreaDom.28 The structure of individual domains is then predicted by I-

TASSER or QUARK pipeline. In order to assemble these domains to form

the structure of the full protein, at first, a rough whole-chain structure is

modeled by I-TASSER that provides a reference template to identify the

orientation of the domains. The domain structures are then docked

together with appropriate orientations by a quick Metropolis Monte

Carlo simulation run, which is guided by a simple energy function:

Eassembly5
1
L

XL
i51

di1
X

dij<dcut

1
dij

(7)

Here, di is the Ca distance between residue i of an individual

domain and that in the rough whole-chain structure, L is the length of

the protein, and dij is the Ca distance between residue i of the first

domain and residue j of the second domain. In the simulation, we con-

sider those distances dij that are smaller than dcut53:7A8 . Finally, FG-

MD simulation31 is applied to remove steric clashes (mainly between

side-chains) between the domains in the assembled full-length structure.

2.3.5 | Residue-level structural error estimation by ResQ

In order to assess residue-specific quality of the structure models, we

use a recently developed algorithm, ResQ.27 Briefly, the algorithm first

extracts the following residue-level features for a target protein: (1)

coverage and structural variations of the LOMETS templates, (2) con-

sistency between the solvent accessibility of the model residues and

that predicted from the sequence by the SOLVE program from the I-

TASSER suite,10 (3) difference between the predicted secondary struc-

ture by PSSpred47 from the sequence and the secondary structure of

the model, (4) structural variations among the decoys obtained from

the REMC simulations, and (5) the deviations of the final model struc-

tures from the templates resulted from TM-align structural alignment

search of the model through the PDB database. These features are

trained by Support Vector regression to predict the deviation of each

residue position in the models from the native residue position.

3 | RESULTS AND DISCUSSION

96 domains from 71 protein chains are assessed in CASP12. Based on

the modeling difficulty, the CASP12 assessors classified the 96 domains

into 39 FM targets, 38 TBM targets, and 19 FM/TBM (or TBM-hard)

targets. Since the “Zhang” human group uses essentially the same

pipeline as our server groups, the following discussion mainly focuses

on the results obtained by the “Zhang-Server” and “QUARK” server

pipelines, with the comparison of the server and human predictions

briefly summarized at the end of the section.

3.1 | Prediction of FM targets remains challenging

We present a summary of the results based on the “Zhang-Server”

models for the 39 FM targets in Figure 2A, where it is shown that 11

targets are successfully modeled with a TM-score >0.5 by the “Zhang-

Server” pipeline. Additionally, there are seven targets, which are rea-

sonably folded with a TM-score in [0.40, 0.5]. While the majority of the

successfully modeled targets are small-size proteins (<150 residues),

there are three correctly predicted medium-size FM targets, T0915-

D1, T0905-D1, and T0899-D1, which have >150 residues (marked by

the arrows in Figure 2A).

T0915-D1, which is an a-protein of 161 residues with an eight-

helix bundle topology (Figure 2B), is of special interest to discuss.

Before the incorporation of QUARK based models in “Zhang-Server”,

the first LOMETS template (4l8tA domain 2) for this target has a low

TM-score of 0.30 (GDT_TS524) to the native due to significant struc-

tural differences of the last four helices between the template and the

native structure, as shown in Figure 2B. As a result, the target is con-

sidered as a “hard” target, and QUARK models, which have the correct

topology of eight-helix bundle with adjacent helices anti-parallel to

each other as in native, are used to re-order the LOMETS identified

templates in the “Zhang-Server” pipeline. Re-ordering the templates

based on the QUARK models significantly improves the quality of the

top LOMETS template (3woyA, TM-score50.43 and GDT_TS536),

which was ranked as 21st in the template list before the re-ordering. As

discussed in Methods, the first QUARK model (TM-score50.49 and

GDT_TS542) is placed above the first template in the re-ordered list

for the I-TASSER. Due to the unique advantage of combining and refin-

ing multiple templates, the final “Zhang-Server” model has a TM-score
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50.53 (GDT_TS545) that is higher than the best of the QUARK mod-

els and LOMETS templates. This particular target highlights the efficacy

of incorporation of QUARK based ab initio modeling in “Zhang-Server”

to fold FM targets.

T0905-D1 (Figure 2C) and T0899-D1 (Figure 2D) are two other

medium-size a/b FM targets with 242 and 259 residues, respectively,

which are correctly folded by the “Zhang-Server” pipeline into typical

Rossman folds with a TM-score50.59 in both cases (GDT_TS539 and

GDT_TS5 36, respectively). The successful models of these targets are

attributed to the templates 4wk0B (TM-score50.55 and GDT_TS5

37) and 3t3pB (TM-score50.51 and GDT_TS531), which are identi-

fied by LOMETS for T0905-D1 and T0899-D1, respectively. It is noted

that due to the use of LOMETS templates in QUARK based simula-

tions, “QUARK” group was also able to correctly fold these targets.

While approximately 50% of the FM targets are modeled either

correctly or reasonably by “Zhang-Server”, the pipelines still face diffi-

culties in modeling of several small-size FM targets. For instance, the

TM-score of the target T0886-D1, a b-protein with a length of 69 resi-

dues, is 0.37 (GDT_TS548). This is due to its complicated topology

with multiple pairs of long-range b-strand pairings, which is difficult to

fold using our current pipelines.

Another significant unsolved issue to us (as well as to the protein

structure prediction community48) is the ranking and selection of the

best predicted models. For the FM targets, for instance, the average

TM-score of the first models is 0.34 (average GDT_TS531), while it is

0.40 (average GDT_TS536) for the best models by “Zhang-Server”.

The failure can be essentially attributed to the inaccuracy of the

QUARK and I-TASSER force fields which fail to rank the best models

as the lowest free-energy clusters in the structural assembly simula-

tions, where the models for the FM domains are mainly ranked by the

size of the SPICKER clusters.

The failure in model selection was also observed for the TBM tar-

gets, which occurs most frequently for the cases when the best tem-

plates are detected only by a minority of the LOMETS programs. Since

the model selection for the TBM domain is dominated by the consen-

sus score of the models, the automated model selection process tends

to select the consensus but less accurate models for these targets, an

issue which has been extensively discussed in the previous CASP stud-

ies.13,16,49 Here these data highlight again the remarkable gap that the

current model ranking process remains to fill up.

3.2 | LOMETS template sorting by QUARK models

is not always beneficial

Given the templates with correct topologies (TM-score>0.5) for a tar-

get, I-TASSER is usually able to utilize multiple template information to

construct the structure model that is often closer to the target. As

shown in Figure 3A, out of 53 the target domains, for which at least one

correct or roughly correct (TM-score>0.4) LOMETS templates are avail-

able in top 20 hits, the first “Zhang-Server” models for 41 targets have a

greater TM-score than that of the best templates. The TM-score differ-

ence between the first “Zhang-Server” models and the best in top 20

LOMETS templates is no >0.03 for the rest of the 11 targets, except in

two cases, T0890 and T0868. For these two targets, the qualities of the

predicted first models are significantly worse than that of the best

LOMETS templates, which have a reasonably correct topology.

FIGURE 2 A, TM-score of the best “Zhang-Server”model for the FM domains versus the length of each domain. The vertical dashed line represents
the length cut-off of 150 residues. The horizontal dashed lines represent the TM-score cut-off of 0.4 and 0.5, respectively. Global structure folds of
three medium size FM targets, T0915, T0905-D1 and T0899-D1, with length>150 are correctly predicted (TM-score>0.5) by “Zhang-Server” as
highlighted by the arrows. B, Native structure and server models for T0915. All structures are colored in spectrum, with blue to red indicating N- to C-
terminal. C, D, “Zhang-Server”models (red) superposed onto the corresponding native structures (green) of T0905-D1 and T0899-D1, respectively
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Here, we note that we lack the prior knowledge of CASP asses-

sors’ domain boundary definition during CASP12. Therefore, the tem-

plate identification and the construction of QUARK models for re-

ordering the templates in the “Zhang-Server” pipeline have been made

based on the domains predicted by ThreaDom. To make a fair assess-

ment of the effect of the internal QUARK sorting process, Figure 3 has

used the same domain definition utilized by our servers in the following

discussion. Nevertheless, we also provide the corresponding data based

on the domain defined by the CASP assessors in Table S1 in the Sup-

plementary Material, to facilitate comparisons with the models by other

groups when needed.

T0890 is a two-domain protein, where the domains are partitioned

as T0890-D1 and T0890-D2 by the CASP assessors. However, Threa-

Dom incorrectly predicted it as a single-domain protein as shown in

Figure 4A. As a result, the first LOMETS template from the second

domain of 3td7A, which covers only the second domain of the target

structure with a TM-score of 0.74 (GDT_TS570), has TM-

score50.46 (GDT_TS541) for the full-length sequence as shown in

the figure. Due to the incorrect domain prediction, the first QUARK

model also has a low TM-score of 0.32 (GDT_TS527) with respect to

the full-length native structure, where only the first domain of the tar-

get was correctly modeled (TM-score50.56, GDT_TS562). There-

fore, re-ordering the LOMETS templates based on the QUARK models

leads to the selection of those templates to be used in the I-TASSER

simulations that have as low as TM-score of 0.32 (GDT_TS527),

which in turn drives the construction of the first “Zhang-Server” model

with incorrect topology (TM-score50.32, GDT_TS528). This indi-

cates that the incorporation of QUARK based ab initio models in

“Zhang-Server” pipeline may have less usefulness in modeling multi-

domain proteins, if the domains are not correctly predicted.

T0868, shown in Figure 4B, is an example of target mis-

categorization based on the significance and consensus of LOMETS tem-

plates, where LOMETS identified the first template, 4g6vA, with a correct

topology (TM-score50.51, GDT_TS547) while the target was catego-

rized as “hard.” As a result, the target is initially modeled by QUARK, and

these models are further used in re-ordering the LOMETS templates.

Unfortunately, the QUARK based ab initio modeling constructs models

with incorrect topologies (TM-score50.36 and GDT_TS537 for the

first model, and TM-score50.47 and GDT_TS549 for the best model in

top five), partly due to the prediction of limited types of secondary struc-

ture by PSSpred and inappropriate usage of contacts that will be dis-

cussed in detail later. The poor quality of the QUARK models, particularly

of the first model, leads to the incorrect LOMETS templates being ranked

at the top of the list, where the top 15 templates are far away from the

native structure (TM-score<0.40). On the other hand, the rank of the

correct template, 4g6vA, is dropped from first to 56th place in the tem-

plate list. As a result, the I-TASSER based simulations in the “Zhang-

Server” pipeline fail to correctly construct the first model (TM-score-

50.48, GDT_TS550), since its simulation is mostly driven by the top

ranked templates. However, it should be noted that although re-ranking

the template list has adverse effects on the quality of the first model by

“Zhang-Server”, the TM-score of the best model among the top five mod-

els for this target is 0.63 (GDT_TS559), as indicated by an arrow in Fig-

ure 3B. One reason for successful prediction of the best model is the

constant utilization of the composite force field to draw the structure

closer to the native state during REMC simulations instead of simply satis-

fying all geometry restraints imposed by the templates. Therefore, while

template quality has strong influence on the I-TASSER simulations, the

prediction result is not completely biased by the low quality of the

templates.

FIGURE 3 TM-score of the “Zhang-Server” models versus that of the best in top 20 LOMETS templates. A, the first “Zhang-Server” model,

B, the best “Zhang-Server” model submitted. The vertical dashed line represents the TM-score cut-off of 0.4 for the best in top 20 LOMETS
templates. For T0868 and T0890, the quality of the predicted first models is significantly worse than that of the best threading templates
as highlighted by the arrows
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3.2.1 | Comparison of templates before and after

QUARK-based sorting

Incorrect prediction of the first models for T0890 and T0868 prompts

us to further examine the regular LOMETS templates before and after

re-ordering them based on QUARK models, as presented in Figure 5.

Based on the data shown in Figure 5A, the average TM-score of the

first LOMETS templates is 0.28 (average GDT_TS529) in the original

templates list, while it is 0.33 (average GDT_TS533) after re-ordering

the templates, where QUARK models are not included in the list.

However, the TM-scores of the best LOMETS templates among

the top 20 hits for several targets do not increase significantly after the

re-ranking of the templates (Figure 5B); in fact, the re-ordering slightly

decreases the average TM-score of the best LOMETS templates from

0.38 to 0.37 (average GDT_TS decreases from 38 to 37). This is under-

standable because the template structures in the original LOMETS

ordering are more diverse than those after QUARK-based re-ordering

that are normally converged into the five QUARK models. Therefore,

there is a higher possibility for the best in the top 20 templates having

a higher TM-score in the original LOMETS ordering. Nevertheless,

since the top templates have a higher weight in the restraint collections

and therefore are usually more important for the I-TASSER simulations,

the QUARK based sorting still turns out to be beneficial to the final I-

TASSER modeling results.

The decrease of the TM-scores of the best templates is prominent

for several targets, including T0868, T0890, and T0896-D1, which

have incorrect QUARK models (TM-score<0.4). The low TM-scores of

the best templates for these targets indicate that the template re-

ordering process may occasionally pose a negative effect on the con-

struction of final models due to the lowering of the rank of the good

templates when the QUARK models have incorrect topologies, despite

its overall benefit to the I-TASSER modeling.

We also compared the TM-score of the first QUARK models and

that of the first LOMETS templates before the re-ranking, as shown in

Figure 5C. The average TM-score of the first QUARK models is 0.38

(average GDT_TS537), which is significantly higher than that of the first

LOMETS templates (average TM-score50.28, average GDT_TS529).

This indicates the usefulness of integration of QUARKmodels into the ini-

tial template pool that improve the quality of the top templates and thus

guide the I-TASSER simulations to correctly construct the models for the

“hard” and “very-hard” targets in “Zhang-Server.” The inclusion of QUARK

models in the re-ordered list also leads to the improvement of the TM-

score of the best in top 20 templates from 0.37 to 0.40 (GDT_TS

improvement from 38 to 39) as shown in Figure 5D. Overall, the data pre-

sented in Figure 5 suggests that the insertion of QUARK models into the

template list and re-ranking the templates based on the models are often

beneficial to further improve the quality of the templates and hence the

final models of the I-TASSER simulations, especially for the “hard” and

“very-hard” protein targets.

3.3 | Why does not high-accuracy contact prediction

result in correct ab initio structure?

One of the distinct features in our CASP12 pipelines compared to that

in the previous CASP experiments is the incorporation of the

FIGURE 4 A, The native structure, best LOMETS template, and the QUARK and Zhang-Server models for T0890, which is a two-domain
protein. The domains are distinguished as per the domain assignment by CASP12 assessors, where the first domain is colored in black while
the second domain is shown with grey. B, The native structure, the template structure (before and after sorting) and the first QUARK model
for T0868. Residues 96–123 are colored in black. C, Secondary structure of residues 96–123 of T0868 assigned by STRIDE using native
structure and that predicted by PSSpred. “H” stands for A-helix in STRIDE and any helix type in PSSpred. “G” stands for 3/10 helix in

STRIDE
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sequence-based contact prediction by NeBcon.25 Here, we examine

the contribution of NeBcon predicted contacts to model the structure

of “hard” and “very-hard” target domains. For this purpose, in Figure

6A, we show the comparison of final models constructed by QUARK

pipeline with NeBcon predicted contacts, that is, by “QUARK” server,

and that by the original QUARK pipeline without NeBcon, which is per-

formed as a post-CASP experiment on the 47 “hard” and “very-hard”

targets. Here, since the contact map and the final QUARK models are

both created using the internal ThreaDom domains, for the sake of

consistency and to better calibrate the difference of the two modeling

pipelines we presented the data using again the same domain definition

as the contacts and models were predicted. Nevertheless, we also pres-

ent the corresponding data based on CASP assessor’s definition in the

Table S2 in Supplementary Material for the purpose of providing more

information.

As shown in Figure 6A, the TM-scores for almost all the targets

have been increased with the addition of the NeBcon contacts as

restraints in the QUARK simulations. For example, the TM-score for

the first model of T0897-D2 by the original QUARK without contact is

0.24 (GDT_TS525), while it was increased to 0.67 (GDT_TS552) in

the CASP12 “QUARK” server. The significant improvement of the

model quality by the “QUARK” server is due to the correct prediction

of contacts (Figure 6B dashed lines) that capture the information of

b-sheet formation and interaction between b-strand and a-helix (Fig-

ure 6C rectangles and circle). Overall, the average TM-score of the first

models is 0.27 (average GDT_TS526) by original QUARK for all the

“hard” and “very-hard” targets, while the addition of contact restraints

in the QUARK pipeline increases the average TM-score to 0.36 (aver-

age GDT_TS534). Similarly, the average TM-score of the best model

among the five submitted QUARK models is increased from 0.30 to

0.41 (average GDT_TS increases from 29 to 37) due to the inclusion of

NeBcon contacts in the QUARK pipeline. The significant increase of

TM-scores demonstrates the effectiveness of contacts in improving the

quality of models based on QUARK ab initio folding. However, correct

FIGURE 5 Effect of QUARK-based sorting on the LOMETS templates for the “hard” and “very-hard” targets defined by LOMETS. A, TM-
score of the first template after sorting versus that without sorting. B, TM-score of best out of the top 20 templates after sorting versus
that without sorting. C, TM-score of the first QUARK model versus that of the first LOMETS templates without sorting. D, TM-score of the
best out of the top 20 templates, which include sorted templates and QUARK models used by “Zhang-Server” in CASP12, versus that with-
out sorting and are used in the classic I-TASSER pipeline. Three targets (T0868, T0918-D2, and T0896-D1), for which the sorting process
significantly reduces the quality of the templates, are marked with arrows
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folds (TM-score<0.5) are not obtained for most of the “hard” and

“very-hard” targets, which are probably due to the lack of prediction or

inappropriate usage of the predicted contacts.

Figure 7A shows the precision of the predicted contacts versus

the TM-score of the best QUARK models for the same set of targets. It

is shown that the precision of the top L/5 all-range (ji2jj � 6) contacts,

where L is the length of the target, is weakly correlated to the TM-

score of the best QUARK models with a Pearson correlation coefficient

50.59. While the data is not shown here, the correlation between the

precision of top L/5 long-range (ji2jj � 24) predicted contacts and the

TM-score of the best QUARK models is also not remarkable (Pearson

correlation coefficient 50.49), indicating that the high precision of pre-

dicted contacts does not guarantee to generate correct models. In

order to further investigate the reason for obtaining less accurate mod-

els based on the QUARK simulations with highly accurate top L/5 con-

tacts, we consider T0918-D4 as an example as it has a high contact

precision (0.76) but low TM-score (0.34) and low GDT_TS (21), high-

lighted with the arrow in Figure 7A.

T0918-D4 is a two-domain target as shown in Figure 7B, while

ThreaDom incorrectly predicted it as a single domain target. Each

domain in the target is a b-fold with both parallel and anti-parallel

b-strand pairings. The precisions of top L all- and long-range predicted

contacts are 0.63 and 0.57, respectively, and those of top L/5 all- and

long-range contacts are both as high as 0.76. However, NeBcon fails to

predict the inter-domain contacts as highlighted with the arrows in

Figure 7C, where the black dots in the upper triangle represent the

contacts in the native structure of the target and grey dots in the lower

triangle represent the NeBcon predicted contacts. As a result, orienta-

tion between the domains was not correctly modeled during QUARK

simulations. Additionally, NeBcon cannot predict contacts for three

long-range parallel b-strand pairings in the second domain as marked

with rectangles in Figure 7C. The lack of prediction for these b-strand

pairings leads to incorrect modeling of b-pairing in the second domain,

as evidenced by low TM-score (0.4) and low GDT_TS (34) of that

domain. Therefore, the overall TM-score of the final model is 0.34

(GDT_TS521), although the first domain is correctly predicted

(TM-score50.51, GDT_TS545). The incorrect modeling of this target

due to the lack of prediction of long-range contacts emphasizes the

importance of accurate prediction of long-range contacts to correctly

fold hard targets, especially those with multiple domains. In other

words, the long-range contact predictions, although with a high accu-

racy, are not sufficiently divergent to cover the entire range of the

sequence (in particular for the regions critical to determining the overall

topology and domain orientations).

We have also investigated how the model quality of T0868, shown

in Figure 4B, is affected by the NeBcon predicted contacts that are

used as restraints in the QUARK simulations. It is observed that the

precisions for top L/5 and top L long-range contacts are 0.65 and 0.35,

respectively, while the TM-scores of all the models are low for this tar-

get, as mentioned before. A closer check finds out that the QUARK

FIGURE 6 A, Comparison between TM-score of the first model for “hard” and “very-hard” targets generated by QUARK with NeBcon pre-
dicted contacts (“QUARK” server group in CASP12) and that by original QUARK without contacts (post-CASP experiment). B, Native struc-
ture of T0897-D2 with the NeBcon predicted contacts shown by black dashed lines and the first QUARK model constructed during
CASP12. C, Native contact map for T0897-D2 (upper-left triangle) and NeBcon predicted contact map (lower-right triangle), which was
used in structure assembly simulations. Each cross point represents a native or predicted contact. The NeBcon predicted contacts for paral-
lel b-strand pairings and for interaction between b-strand and a-helix are highlighted by rectangles and circles, respectively
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simulations of this target severely lack long-range contact restraints;

only three predicted long-range contacts are used in the simulations,

since the majority of the predicted long-range contacts are ignored due

to low confidence scores. This illustrates the significance of use of opti-

mized number of long-range contacts in ab initio modeling to correctly

fold proteins.

Overall, there are multiple reasons that have resulted in the weak

correlation between the contact prediction accuracy and the quality of

the final models, in particular the observation that high-accuracy con-

tact predictions failed to lead to high-quality model predictions. The

major one is probably the lack of correct long-range contacts despite of

the accurate short- and medium-range contacts, which are less deter-

minative for the global topology. In some cases, such as T0918-D4,

which have even high-accuracy long-range contacts, these contact pre-

dictions are not sufficient divergent to cover the entire sequence, espe-

cially for the regions that are critical to the global topology and domain

orientations. The second important reason is that the integration of the

contact restraints with the inherent force fields in I-TASSER and

QUARK is not yet optimized. The combination of contact restraints is

particularly subtle for an automated pipeline when the target type and

the accuracy of contact predictions are unknown, where the weight of

contact-map retraints could not be too strong (which could dominate

and destroy the correct restraints from the threading templates for the

“easy” targets) or too weak (which could not be sufficient to guide the

folding simulations for the “hard” targets that do not have homologous

templates).

3.4 | Current contact predictions cannot improve

model quality of easy targets

While contact plays important roles in ab initio modeling to predict

structure of hard targets, its impact on template-based modeling of

easy targets may not be as strong. To examine this issue, we perform a

post-CASP experiment on 38 “trivial” and “easy” targets using a modi-

fied I-TASSER protocol that is identical to “Zhang-Server” in CASP12,

except it does not use NeBcon-derived contacts in the simulations. As

shown in Figure 8, TM-scores of the first models from the “Zhang-

Server” and the modified I-TASSER without contact do not significantly

differ (average TM-scores of 0.70 in both pipelines). This is mainly due

to the fact that the quality of the template structures detected by

LOMETS for the TBM targets is on average better than that from the

ab initio contact predictions. Therefore, the inclusion of the contact

predictions in the structural assembly simulations does not result in sig-

nificant improvement for the easy targets, which is consistent with the

observation made previously.23

3.5 | Prediction of specific type of secondary

structure is important

The importance of secondary structure prediction has been discussed

in our CASP11 reports.14,16 Here, we further examine the importance

of specific type of secondary structure prediction to the correct 3D

structure prediction. Since the TM-scores of QUARK models for T0868

FIGURE 7 A, TM-score of the best in top five QUARK models versus the precision of top L/5 contacts predicted by NeBcon for “hard”
and “very-hard” targets. The target, T0918-D4, which has a high contact accuracy (0.76) but with a low TM-score (0.34) and GDT_TS (21) is
highlighted with an arrow. B, The native structure and the best QUARK model of T0918-D4. The first domain is colored in black while the
second domain is colored in grey as assigned by CASP12 assessors. C, Native contact map (upper-left triangle) and NeBcon predicted
contact map (lower-right triangle) used in structure assembly simulations for T0918-D4. Each cross point represents a native or predicted
contact. The dashed line marks the domain boundary assigned by CASP12 assessors. The parallel b-strand pairings, which are not detected
by NeBcon, are highlighted by rectangles. Inter-domain contacts in the native structure are highlighted by arrows
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are low, we have checked the secondary structure of residues 96–123

(highlighted with black color in Figure 4B) in the native structure, the

first QUARK model, and the templates. While the secondary structure

for this range of residues is predicted to be a helix by PSSpred, shown

in Figure 4C, we find that the residues 96–105 and 110–123 are

a-helices, and the residues 106–109 correspond to a short 3/10 helix

in the native structure as assigned by STRIDE. This subtle difference in

helix type induces a helix kink in the native structure as highlighted

with the arrow in Figure 4B. It is not possible to capture such a specific

type of secondary structure by PSSpred that only predicts three states

(helix, strand and coil) secondary structure. As a result, QUARK simula-

tions incorrectly construct an a-helical conformation for the whole resi-

due 96–123 segment in the first QUARK model. Such a limitation of

PSSpred necessitates the use of programs that can predict more spe-

cific detailed types of secondary structures,50,51 which are essential to

the modeling of the global fold of FM targets such as T0868.

3.6 | Comparison between server and human

predictions

The “Zhang-Sever” and “Zhang” human groups use the same pipeline in

the CASP12 experiment, where the only difference is that the ”Zhang-

Sever” starts from the in-house LOMETS templates while the “Zhang”

human group also includes the models from other CASP servers in the

pool of the input templates and models. To examine the impact of the

additional templates to the final model prediction, we present in Figure

9A a comparison of the TM-score of the first models by the two groups

for all 96 domains as defined by the CASP assessors. Although the

overall model quality of the two groups is largely comparable, there are

two domains (T0901-D2 and T0905-D2) for which the TM-score of

the “Zhang” models (0.54 and 0.45, respectively) is significantly higher

than that of the “Zhang-Server” models (0.19 and 0.17, respectively).

The GDT-TS scores are 24 and 23 versus 59 and 53 for the two targets

by “Zhang-Sever” and “Zhang” respectively.

Interestingly, T0901 and T0905 are a pair of homologous proteins

with a pair-wise sequence identity 36.9% and have a similar structure

(TM-score50.70 returned by TM-align35). Both targets are two-

domain proteins with the second domain having a discontinuous

domain structure, that is, T0901-D2: 34–41, 265–326 and T0905-D2:

42–47, 290–349. However, ThreaDom fails to detect the discontinu-

ous domain structure and the “Zhang-Server” thus tries to fold the pro-

tein as a single domain which results in the completely incorrect

structure for these domains because of the lack of correct templates

from LOMETS. In the “Zhang” human group, however, the initial tem-

plate set includes a correct template, 5dllA, detected by one of the

CASP server groups which had probably the correct domain split,

where the TM-score for the template of 5dllA is 0.428 and 0.430 for

T0901-D2 and T0905-D2, respectively. After the I-TASSER refinement,

the TM-score of the submitted model1 by the “Zhang” human group is

increased to 0.54 and 0.45, respectively (see Figure 9B,C), which is

apparently attributed to the inclusion of the 5dllA template. Here, we

like to mention that for T0905-D2, the “Zhang-Server” created a cor-

rect model (model3) with a TM-score50.56 probably due to the inte-

gration of the QUARK models in the initial modeling pool, where the

TM-score of the first QUARK model is 0.49. But this best model is not

ranked as the model1 by the MQAP selection. Overall, these two

examples further highlight the issues of the automatic pipeline in

domain split and assembly (especially for the targets of complex contin-

uous domain structures), as well as in the MQAP-based model selection

process. The data also indicate that the inclusion of additional comple-

mentary threading programs in LOMETS will increase the coverage of

the initial template pool, which can further improve the quality of the

final model of the I-TASSER pipeline.

3.7 | ResQ robustly estimates residue-level

quality of model structures

In CASP12, we use ResQ to evaluate the quality of the structure of the

models at residue-level by estimating distance of the residues of the

models from the corresponding residues of the native structures. The

estimated residue-level quality is recorded in the “temperature-factor”

field of the PDB files that are generated for the output models by the

pipelines. Following the protocol of CASP12 assessors (http://www.

predictioncenter.org/casp12/doc/help.html#ASE), we calculate the

accuracy of ResQ prediction based on Accuracy Self Estimate (ASE)

score:
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where L is the number of residues in a target protein, tfi is the pre-

dicted distance error by ResQ for residue i, and d055A8 is a scaling

constant. Additionally, di is the distance between residue i in the model

structure and that in the native structure after the model is superposed

FIGURE 8 TM-scores of the first models from “Zhang-Server”
with contacts versus those from I-TASSER without contacts for 38
targets that have significant templates identified. Both of these
pipelines use the same pool of templates identified during CASP12
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onto the native. The superimposition of the model and the correspond-

ing native is performed by the TM-score program.41 The value of ASE

ranges between 0 and 100, where the value of 100 indicates the per-

fect prediction by ResQ.

Figure 10A shows a scattering plot of the ASE score of the

“Zhang-Server” first models for the CASP12 targets versus the

TM-score of the models. As it is seen from the figure, the ASE

scores for 90 out of 96 targets are >60 (marked with a dashed line in

FIGURE 9 Comparison of the first model obtained by “Zhang-Server” and “Zhang” human group. A, All-to-all TM-score comparison, with
two FM targets (T0901-D2 and T0905-D2) whose qualities of the models by “Zhang-Server” are significantly lower than that by “Zhang”,
marked by arrows. B, C, The native structures, “Zhang-Server” and “Zhang” models for T0901-D2 and T0905-D2

FIGURE 10 A, The accuracy of ResQ predicted residue-level quality (ASE score) versus TM-score for the first “Zhang-Server” model. The
horizontal dashed line corresponds to ASE score of 60. The FM target T0866-D1 is indicated by an arrow. B, Superposition of the native
structure and the first “Zhang-Server” model of T0866-D1 (TM-score50.51, GDT_TS548, ASE581.51). The native structure is colored in
grey, except for the C-terminal tail (residues 119–141) that is colored in black. The same C-terminal tail in the “Zhang-Server” model is high-
lighted by a dashed circle. The “Zhang-Server” model is colored in spectrum color scheme according to predicted residue quality by ResQ,
where blue to red color indicates increasing distance error. C, Overlay of the distance error predicted by ResQ and the actual distance error
(y axis, higher values indicate worse residue qualities) for T0866-D1. The region of 119–141 with a high distance error is highlighted with a
dashed rectangle
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Figure 10A), indicating the robustness of the ResQ prediction. In partic-

ular, ResQ showed remarkable performance in terms of accuracy of the

prediction for the TBM and FM/TBM targets, where the average ASE

scores are 86.67 and 74.83, respectively, for the targets modeled by

“Zhang-Server.” We should emphasize that while the CASP12 asses-

sors evaluate the ResQ prediction for the TBM and FM/TBM targets

only, ResQ is also notably accurate for the FM targets. The average

ASE score for the FM targets modeled by “Zhang-Server” is 69.24,

where 33 out of the 39 FM targets have an ASE >60. Due to the

robustness of the ResQ prediction, it can be potentially useful in

atomic-level refinement of the models. To further illustrate this point,

we discuss about a particular target, T0866-D1 (highlighted with

an arrow in Figure 10A), for which the ResQ prediction is reliable as

evidenced with the ASE score of 81.5.

T0866-D1 is an FM target with a b-barrel topology as shown in

Figure 10B, where the C-terminal tail (residues 119–141) of the native

structure is represented with black color and the rest of the residues

are shown with grey color. The superimposed “Zhang-Server” predicted

model, which is represented with the spectrum color scheme according

to the ResQ prediction with blue to red indicating increased distance

error, onto the native structure shows that the C-terminal tail (high-

lighted with dashed circle in Figure 10B) in the model is far from the

native. The ResQ prediction also shows that the residue distance error

is high for this region, as highlighted with dashed rectangle in Figure

10C, indicating the region with the worse residue quality. This example

shows the usefulness of ResQ in identifying low-quality regions, which

may require extra attention during refinement process to enhance the

structural quality of the predicted models.

4 | CONCLUSION

We have tested two updated 3D structure prediction pipelines,

I-TASSER and QUARK, as “Zhang-Server” and “QUARK” in the

CASP12 experiment. One of the most noticeable additions to the pipe-

lines, which have found significant impact to the modeling results, is

the incorporation of the sequence-based contact prediction from NeB-

con.25 The predicted contact maps were used as soft restraints in the

QUARK and I-TASSER simulations that help improve the structural

quality of the predicted models. There are seven “hard” targets that

were essentially converted from non-foldable to foldable due to the

contact restraints used in QUARK simulations. Target T0897-D2 is one

of such examples in which contact restraints play important roles to

fold a challenging target (discussed in Figure 6).

Nevertheless, the limitation of our contact predictor to correctly

predict long-range and divergent contacts and the non-optimum usage

of the predicted contacts may reduce the potential usefulness of the

contact information to structure modeling. For instance, due to low

confidence scores of the majority of predicted contacts for the hard

targets, several long-range contacts are ignored that could have been

useful in the simulations to correctly fold the targets, as discussed for

T0868 (Figure 4). Therefore, continuous efforts should be given

to improve the accuracy of contact map prediction and the optimum

integration of the predicted contacts to the QUARK and I-TASSER sim-

ulations. One possible solution to incorporate the ignored correct con-

tacts with low confidence scores in the simulations can be the use of

ranking, instead of confidence score, as a parameter in the contact

potential. Most recently, efforts to integrate contacts into LOMETS

threading process have showed promise for non-homologous template

selection (manuscript in submission).

The second noticeable component feature, newly introduced to

the CASP12 structure modeling pipelines, is the application of the

residue-level quality estimation method, ResQ,27 which shows effi-

ciency and robustness in predicting the quality of local structure of the

predicted models. The successful prediction of residue-level quality can

be used to identify regions with poor quality that can potentially be

improved in the structure refinement stage, as discussed for the case

of T0866-D1 (Figure 10).

While our CASP10 report13 describes the effectiveness of inter-

play of QUARK and I-TASSER for protein structure prediction, here we

further examine its importance, particularly in ab initio structure predic-

tion. For instance, while the quality of the first LOMETS template is

considerably bad (TM-score50.30 and GDT_TS524) for the FM tar-

get, T0915, re-ordering the templates list based on its QUARK models

and addition of the models in the list significantly improve the quality

of the top-ranked templates. In particular, the TM-scores of the first

LOMETS template after re-ranking and the first QUARK model are

0.43 (GDT_TS535) and 0.49 (GDT_TS542), respectively, which play

vital roles to guide the simulations for correctly folding the target (TM-

score50.53 and GDT_TS545). However, the use of re-ordered

LOMETS templates and QUARK models are occasionally detrimental

to the construction of the first model for the cases like T0868, T0890,

and T0896-D1 that have completely incorrect QUARK models. One

possible way to address this issue may be to determine the template

orders based on a combination of original ranking of the templates,

estimated quality of the QUARK models, and their structural similarities

to the templates.

Predicting structure of multi-domain proteins based on our pipe-

lines remains a significant challenge, specifically for the hard targets, as

illustrated for several cases, such as T0890 and T0918-D4. Several limi-

tations are currently prevailing in the pipelines that restrict the correct

prediction of structure of multi-domain proteins. First, threading based

domain boundary prediction is not always reliable for “hard” targets

due to the lack of structural templates with significant alignments. The

development of sequence-based domain boundary prediction program

can be a possible solution to overcome this issue. Second, although

NeBcon predicts contacts with reasonable precision within a domain, it

often fails to detect inter-domain contacts, which are helpful to cor-

rectly model multi-domain proteins. Therefore, an on-going effort is to

expand the capability of NeBcon to correctly predict inter-domain con-

tacts. Third, our current domain assembly protocol, which depends on

whole-chain reference structures constructed by I-TASSER simulation,

often cannot embed correct domain orientation information. Hence,

the development of a specific force field based on domain-domain

interactions is needed for ab initio domain assembly.
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Finally, folding hard b-proteins with complicated b-strand pairing pat-

terns continues to be a hard, unsolved problem, especially when contact

prediction fails to detect long-range b-pairings. In the absence of appropri-

ate contact restraints, the current ab initio QUARK structure assembly

process has difficulty in sampling such complicated topologies within the

given simulation time. In the future, this deficiency may be addressed by

enumerating all possible b-folds as initial conformations for ab initio fold-

ing, and by implementing swapping movements between two b-strands in

the structure assembly simulations. Studies along this line are in progress.
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