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1. The detailed composition of the benchmark datasets 

Table S1. The detailed composition of the R-GCM and MBD datasets. 

Dataset No. of 

Genes 

Cancer Type / Subgroup No. of 

Samples

Cancer Type / Subgroup  No. of 

Samples

R-GCM 11,370 

Breast adenocarcinoma (BR) 12 Uterus adenocarcinoma (UT) 10 

Prostate adenocarcinoma (PR)  14 Leukemia (LE) 30 

Lung adenocarcinoma (LU) 12 Renal cell carcinoma (RE) 11 

Colorectal adenocarcinoma (CO) 12 Pancreas adenocarcinoma (PA) 11 

Lymphoma (LY) 22 Ovarian adenocarcinoma (OV) 12 

Bladder transitional cell carcinoma (BL) 11 Pleural mesothelioma (MS) 11 

Melanoma (ML) 10 Central nervous system (CNS) 20 

MBD 54,675 
WNT-subgroup (WNT) 8 subgroup-3 (G3) 16 

SHH-subgroup (SHH) 10 subgroup-4 (G4) 39 

2. Low-Rank representation of high-dimension data 

Low-rank representation (LRR) was first proposed by Liu et al. [1], which is a matrix decomposition 
algorithm to segment high-dimensional data into subspaces for reducing its dimensions. Let 

T
1 2[ , ,. , , , ] d

i dx x x x= ∈ x R  be a d-dimensional feature vector of a sample (e.g., gene expression 
data in this study), where ix  is the i-th feature component. A set of n samples can then be 
formulated by a data matrix 1 2[ , , , ] d n

n
×= ∈X x x x R , each column of which is a sample. X  can 
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be decomposed as: 
 =X AZ                           (S1) 

where 1 2[ , , , ] d m
m

×= ∈A a a a R  is a dictionary matrix which consists of m bases, and 

1 2[ , , ..., ] m n
n

×= ∈Z z z z R  is a coefficient matrix. Based on this decomposition, each sample ix  can 
be represented by the linear combination of the m bases in dictionary A  with the corresponding 
coefficient iz . Hence, iz  is termed as the representation of ix . 

To capture the global structure of the data X , low-rankness is used as the criterion to guide the 
decomposition of X  by solving the problem of Eq. (S2) [1]: 

min
Z

rank(Z)

s.t.,  X = AZ






                                        (S2) 

The optimal solution *Z  of Eq. (S2) is termed as the “lowest-rank representations” of data X  with 
respect to dictionary A . 

In real-world application scenarios, the data are often noisy, redundant and have outliers. 
Extracting an additional sparse matrix 1 2[ , , , ] d n

n
×= ∈E e e e R  from X  would help to reduce 

noises and recover the intrinsic global structure of the data [1]. We assume that matrix E  should be 
sparse because noise often only affects a part of data. Hence, the problem of Eq. (S2) can be 
reformulated as: 

 
min

Z,E
rank(Z) + λ E

0

s.t.,  X = AZ + E






                                 (S3) 

where 0E  means the 0 -norml  of matrix E, which guarantees the sparsity of the matrix, and λ is a 
parameter to balance the effects of the two parts. Problem in Eq. (S3) is an optimization problem, 
which is difficult to solve due to its non-convexity. Here, we replace the minimizations of the rank of 
Z and the 0 -norml of E  with that of the nuclear norm of Z  and the 2,1 -norml of E , respectively, 
following Ref. [1]. Hence, the optimization problem of Eq. (S3) can be reformulated as 

 
min

Z,E
Z

*
+ λ E

2,1

s.t.,  X = AZ + E






                                 (S4) 

where * = ( )ii
σZ Z  denotes the nuclear norm of Z , ( )iσ Z  means the i-th singular value of Z , 

and ( )2

2,1 1 1
[ ]n d

ijj i= =
=  E E  denotes the 2,1 -norml of E . 

According to self-expressive scheme, the data matrix itself can serve as the dictionary, which not 
only contributes to subspace segmentation, but also simplifies the calculation [2]. Accordingly, the 



3 

Eq. (S4) can be rewritten in the form of 

 
min

Z,E
Z

*
+ λ E

2,1

s.t.,  X = XZ + E






                                   (S5) 

The optimal solution *Z  of Eq. (S5) is the final lowest-rank representation of the original data 
matrix X , which will be used for the subsequent computation in this study. 
 

3. Configuration parameters 

(1) λ  for LRR. The λ  in LRR is a regularizing parameter which balances the effects of 
*Z  

and 2,1E  (cf. Eq. (10)). We applied a grid search strategy to optimize the value of λ , and found that 
the proposed method can achieve the robust satisfactory performance when 3 42 ,2λ − ∈  .  

(2) Distance metrics for clustering. The selection of distance metric is crucial for the success of 
a clustering algorithm, and a suitable distance metric will do great help to achieve good clustering 
performance. Jaskowiak et al. [3] presented several guidelines, which are intrinsically 
empirical-based, on how to choose distance metric for gene expression data. Hence, we also 
exploited several distance metrics, including Euclidian, Minkowshi, Cosine, Pearson, and 
Rank-Magnitude [4], on the benchmark datasets. According to our local testing results, it was found 
that the Minkowshi metric as defined in Eq. (S11) is a better choice. 

( )
1

1
Minkowshi ,

n

i i
i

a b
ξ

ξ

=

 = − 
 
a b                          (S6) 

Nevertheless, there is still a parameter ξ  in Minkowshi distance metric. We optimized the 
value of ξ  by performing a grid search strategy on each of the two benchmark datasets and found 
that { }3 02 , 2ξ ξ= =Z E  and { }2 22 , 2ξ ξ= =Z E  are best choices for R-GCM and MBD, respectively. 

(3) Parameters for SVM, Label Propagation, and Semi-PNMF. SVM [5] is a typical 
supervised classification/regression algorithm, which has been widely used in bioinformatics fields 
including cancer classification because of its superior performance. Radial basis function (RBF) is 
chosen as the kernel function. The other two parameters, i.e., the regularization parameter  and the 
kernel width parameter  of RBF, are set according to the optimization results from a grid search 
strategy with a 10-fold cross validation. Label propagation [6] is a commonly-used semi-supervised 
learning model, which is implemented using a RBF kernel function in this study. The kernel width 
parameter σ  of RBF and the clamping factor α  in Label Propagation, are set using the strategy 
similar to that in SVM. Semi-PNMF [7] is a recently proposed semi-supervised learning model that is 
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specifically designed for cancer classification on gene expression data. The two parameters in 
Semi-PNMF, i.e., regularization constant α  and trade-off factor β , are optimized by using the 
method suggested in reference [7]. The optimized parameter pairs of ( ,α β ) Semi-PNMF are 
( 2, 0.0001α β= = ) and ( 0.2, 0.01α β= = ) on R-GCM and MBD datasets, respectively. 

4. Traditional self-training method 

In machine learning field, self-training refers to a type of semi-supervised method which can utilize 
both the labeled and unlabeled data [8]. Traditional self-learning works as follows: For a given 
dataset with labeled and unlabeled data, it first trains a learning model (e.g., classification or 
clustering model) based on the labeled data; Then, the trained model is used to predict the labels of 
the unlabeled data, and those unlabeled data, whose labels are predicted with high confidence (score), 
will be selected and added to the training subset; This practice continues until the entire dataset is 
labeled. Self-training method is particularly suitable for processing biological data, where there often 
exists large volume of unlabeled data due to the high cost of annotation [9]. However, traditional 
self-training method has the potential to reinforce model mistakes, termed as mistake-reinforcement, 
if falsely predicted data are selected and added into the training subset during the data selection 
procedure in each iteration [10-12]. 
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