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A Self-Training Subspace Clustering Algorithm

under Low-Rank Representation for Cancer
Classification on Gene Expression Data

Chun-Qiu Xia, Ke Han, Yong Qi, Yang Zhang, and Dong-Jun Yu

Abstract—Accurate identification of the cancer types is essential to cancer diagnoses and treatments. Since cancer tissue and normal
tissue have different gene expression, gene expression data can be used as an efficient feature source for cancer classification.
However, accurate cancer classification directly using original gene expression profiles remains challenging due to the intrinsic
high-dimension feature and the small size of the data samples. We proposed a new self-training subspace clustering algorithm under
low-rank representation, called SSC-LRR, for cancer classification on gene expression data. Low-rank representation (LRR) is first
applied to extract discriminative features from the high-dimensional gene expression data; the self-training subspace clustering (SSC)
method is then used to generate the cancer classification predictions. The SSC-LRR was tested on two separate benchmark datasets
in control with four state-of-the-art classification methods. It generated cancer classification predictions with an overall accuracy 89.7

percent and a general correlation 0.920, which are 18.9 and 24.4 percent higher than that of the best control method respectively. In
addition, several genes (RNF114, HLA-DRB5, USP9Y, and PTPN20) were identified by SSC-LRR as new cancer identifiers that
deserve further clinical investigation. Overall, the study demonstrated a new sensitive avenue to recognize cancer classifications from

large-scale gene expression data.

Index Terms—Cancer classification, gene expression data, low-rank representation, self-training, semi-supervised learning,

subspace clustering

1 INTRODUCTION

ANCER is a major and serious public health problem

worldwide. It is the second leading cause of death in the
United States and about 1,600 Americans died from cancer
per day in 2016 [1]. Since the accurate identification of cancer
types plays an essential role in both cancer diagnosis and
prognosis, cancer classification has become an important field
of cancer research [2]. Traditional approaches to cancer classi-
fication rely on the subjective interpretation of clinical and
histopathological information [3], which can lead to variable
and uncertain results in the clinical diagnoses and prognoses
even for the same cancer patient, because of the subjective
interpretations and doctors” personal experiences [4].

With the development of high-throughput cancer detec-
tion technology, large volumes of cancer data have been
quickly accumulated. Among the molecular-level cancer
data, gene expression is one of the most commonly used
resources for cancer classification, due to the fact that the
tumor tissues often have specific pattern different from

o C.-Q. Xia, K. Han, Y. Qi, and D.-]. Yu are with the School of Computer
Science and Engineering, Nanjing University of Science and Technology,
Xiaolingwei, Nanjing 210094, China.

E-mail: billxia2012@yahoo.com, {hanke, qyong, njyudj}@njust.edu.cn.

o Y. Zhang is with the Department of Computational Medicine and
Bioinformatics, University of Michigan, Ann Arbor, MI 48109.

E-mail: zhng@umich.edu.

Manuscript received 14 Feb. 2017, revised 17 May 2017 ; accepted 1 June 2017.
Date of publication 6 June 2017; date of current version 6 Aug. 2018.
(Corresponding authors: Dong-Jun Yu and Yang Zhang.)

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TCBB.2017.2712607

normal tissues in the gene expression [5]. Most of the quan-
titative cancer classification approaches on gene expression
are based on machine learning. According to the specific
techniques that are used, the machine-learning approaches
can be grouped into three categories of unsupervised,
supervised and semi-supervised methods. The unsuper-
vised methods, which do not utilize the label information,
are often used to classify unlabeled data. Many unsuper-
vised clustering algorithms, such as K-means, the finite mix-
ture of Gaussians and hierarchical clustering, have been
successfully applied to cancer gene expression data [6].
Recently, more sophisticated unsupervised methods,
including graph regularized subspace segmentation based
on nonnegative matrix factorization (NMF) [7] and Gauss-
Seidel based NMF [8], were proposed to improve the accu-
racy of the classifications.

Compared with unsupervised methods, the supervised
methods tend to provide a more precise classification by
training a model on a labeled dataset. Support vector
machine (SVM) [9], [10] is one of the most commonly used
supervised learning techniques for the classification of gene
expression data. For example, Piao et al. proposed an
ensemble correlation-based gene selection algorithm using
SVM to perform cancer classification [11]. Liu et al. devel-
oped a cancer classification method that combines principal
component analysis (PCA) and SVM training [12]. Other
supervised learning models, such as total principal compo-
nent regression [13], decision tree model [14] and random
forest [15], have been also investigated for gene expression-
based cancer classifications.
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Recently, much attention has been paid to semi-
supervised methods due to the accumulation of large vol-
ume of unlabeled gene expression data, which cannot be
well utilized by traditional supervised learning methods
[16]. For example, Cai et al. proposed a semi-supervised
dimensionality reduction based on random subspace seg-
mentation for cancer classification [17]. Halder and Misra
presented a semi-supervised fuzzy k-Nearest Neighbor
algorithm based on the self-training technique for cancer
classification [18]. These studies demonstrated usefulness of
the unlabeled data by the semi-supervised methods.

Although progress has been made in gene expression-
based cancer classification, challenges remain to the
machine learning approaches. First, gene expression data is
intrinsically a high-dimensional data, which often has tens
of thousands of feature components to train; Second, the
size of most publicly available gene expression dataset, i.e.,
the number of samples, is usually small; Third, labeled gene
expression data accounts for only a small fraction of total
data; those large volume of unlabeled data contains valu-
able information for cancer classification and deserves deep
exploration. All these aspects make the analysis of gene
expression data a typical high-dimensional and small sam-
ple size problem with unlabeled data instances [19].

Considerable effort has been made to meet the challenges.
Dimensionality reduction algorithms have been proposed to
deal with the high-dimension and small size problems of the
data samples. For example, nonnegative PCA was used to
analyze the latent structures contained in the high-
dimensional data with lower dimensional features [20];
Sharma et al. proposed a top-r feature selection algorithm to
overcome the shortcoming of conventional feature selection
algorithm [21]. There have also emerged many semi-super-
vised methods for exploiting the information buried in unla-
beled data. For example, label propagation, which utilizes
the unlabeled data by a label propagation mechanism based
on the hypothesis that similar data should have similar
labels, has been applied to gene expression-based classifica-
tion [22]. Semi-supervised projective non-negative matrix
factorization (Semi-PNMF) is also a semi-supervised learn-
ing method, which jointly learns a non-negative subspace
from concatenated labeled and unlabeled samples, and has
demonstrated its potential for cancer classification [4].

In this study, we aim to make further progress in dealing
with these challenges. A new composite method, called
SSC-LRR, which integrates self-training subspace clustering
(SSC) [23] and low-rank representation (LRR) [24], is pro-
posed by considering the three characteristics of gene
expression data, i.e., the high-dimensionality, the small
sample size, and the existence of unlabeled data. Compared
to other cancer classification approaches, the main merit of
SSC-LRR is in two aspects: (1) LRR is introduced to perform
subspace segmentation that can reduce the dimension of
the gene expression data; and (2) an enhanced semi-
supervised self-training subspace clustering algorithm
based on LRR can effectively utilize both the labeled and
unlabeled gene expression data. The testing results on sev-
eral publicly available benchmark gene expression datasets
showed that a composite approach by SSC-LRR can achieve
more accurate cancer classification with the accuracy out-
performing the state of the art methods.
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2 MATERIAL AND METHODS

2.1 Benchmark Datasets

Two gene expression datasets were used to benchmark the
methods of this study. The first is called GCM, which was
created by Ramaswamy et al. [3] and is publicly available at
http:/ /portals.broadinstitute.org/cgi-bin/cancer/datasets.
cgi. GCM consists of the expression profiles of 218 tumor
samples representing 14 common human cancer types, and
each sample contains 16,030 gene expression values. The
authors further divided the GCM dataset into three subsets:
a training subset of 144 samples, a testing subset of 54 sam-
ples, and a subset of 20 poorly differentiated samples
(tumors). Considering that the poorly differentiated sam-
ples may induce a biased evaluation result, only the well-
differentiated samples, i.e., 144 samples in training subset
and 54 samples in testing subset, were combined to form a
benchmark dataset in this study. This reduced GCM dataset
is termed as R-GCM in the subsequent description. To
remove the noise of very low values and the saturation
effects of very high values in the R-GCM dataset, Zhang
et al. [4] performed a pre-processing step by placing the
gene expression data into a specific box constraint ranging
from 20 to 16,000 units and then excluding those genes
whose ratios across samples are under 5 and absolute varia-
tions across samples are under 500, respectively. After the
pre-processing step, 11,370 genes remain which are eventu-
ally used in this study.

The second dataset is MBD, which consists of 76 medullo-
blastoma samples representing 4 cancer subgroups [25], i.e.,
WNT-subgroup, SHH-subgroup, subgroup-3, and subgroup-
4. We removed the samples that are unlabeled or outliers, and
the final MBD dataset contains 73 medulloblastoma samples,
each of which contains 54,675 gene expression values.

Supplementary Table S1, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu-
tersociety.org/10.1109/TCBB.2017.2712607, summarizes the
detailed composition of the R-GCM and MBD datasets. We
noticed that the magnitudes of expression values vary sig-
nificantly between different sets of gene expression data. In
light of this, we rescaled each gene expression value into
the range of (0, 1) by using a sigmoid function, and the
rescaled gene expression data were then used to benchmark
cancer classification methods.

2.2 Self-Training Subspace Clustering under LRR
In this study, we propose a novel semi-supervised self-
training clustering algorithm under low-rank representation
(SSC-LRR), which integrates both the advantages of low-
rank representation and self-training. Particularly, we uti-
lize an efficient data selection procedure to relieve the mis-
take-reinforcement problem of self-training. A detailed
description of the concepts of LRR [24] is provided in the
Supplementary Section 2, available online.

Let X = [x1,Xy,...,X,] € R”" be an original data matrix,
among which each column is the d-dimensional feature vec-
tor of a sample (gene expression data in this study), and n is
the total number of samples. Suppose that only part of sam-
ples is labeled, a SSC-LRR pipeline is designed as follows:

Step 1: Perform LRR on original data matrix X. First,
we apply LRR to the original data matrix X with
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Supplementary (S5), available online, and the decomposed
low-rank matrix Z and sparse matrix E are obtained.

The matrix Z can be divided into a labeled matrix
Z, =[2,,2),...,2] R and an unlabeled matrix
Z,=z{,25,....2; ] € R™ (P according to the labels of
samples. By re-arranging the orders of samples, Z can be
rewritten as Z = [Z; Z,]. Similarly, matrix E can also be
divided into E; and E,, and be rewritten as E = [E; E,].

Step 2: Perform K-means clustering algorithm on Z and
E, respectively. The key problem for performing K-means is
how to initialize the central points of clusters. Taking
Z =[Z; Z,] as an example, the initial point of cluster (class)
1 can be determined by

)

p" = —":é)zl’j : 1)
ny
where p(” is the initial point of cluster i, n}n is the number of
points of the cluster ¢ in Z;, ZYJ) is the jth sample in Z; belong-
ing to the cluster i with 1 <i < C, and C'is the total number
of clusters (classes).

Based on the initial central points of clusters obtained by
(1), we perform the standard K-means algorithm on matrix
Z until each of the unlabeled samples is clustered into one
of the C clusters. According to the clustering results on Z,
the labels of those unlabeled samples are predicted. The
predicted labels of Z,, together with the labels of Z;, form
the label vector of Z, denoted as 1z. This procedure can be
formulated as follows:

1z = K-means(Z, distz), @)

where distz denotes the distance metric used for clustering Z.
Similarly, we can obtain the label vector of E, denoted as
Ig, by using the same procedure of obtaining 1z, i.e.,

lE = K-meanS(E, dlStE)a (3)

where distg denotes the distance metric used for clustering E.

The K-means algorithm outline above can be easily
extended, with any other appropriate distance scales, to
facilitating different application scenarios of data clustering
problems.

Step 3: Select unlabeled samples as labeled ones for next
round clustering. After obtaining the clustering results, i.e.,
Iz and 1lg, we need to decide which unlabeled samples
should be selected and used as labeled samples for the next
round clustering.

An unlabeled sample, say sample i in Z,,, will be selected
as the labeled data for the next round clustering if and only if
ly,

i

— 1, 4)

where [, is the predicted label of the unlabeled sample ¢
(i.e., z) according to the clustering results of 1z, and [, is
the predicted label of the unlabeled sample i (i.e., e!)
according to the clustering results of lg. All the unlabeled
samples satisfying (4) constitute the set of chosen samples,
denoted as S, for next round clustering.

Step 4: Decide whether to terminate the algorithm, and
update Z and E. If S = ® or current iteration number is
greater than the predefined iteration number, the procedure
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is stopped with Iz returned as the final clustering results.
Otherwise, Z and E are updated as follows:

For each selected unlabeled sample ¢ in S, we update Z; and
Z,, by moving z{ from Z, to Z;. Similarly, we update E; and E,,
by moving e! from E, to E;. Further, the updated Z; and Z,
will be merged as new Z, and the updated E; and E, will be
merged as new E, for next round clustering. After this update
step, the procedure goes to Step 2 for next round clustering.

Algorithm 1. Pipeline of the Semi-Supervised
Self-Training Clustering Algorithm under Low-Rank
Representation

X- The original data matrix;

A- The control parameter of LRR;

distz, distg- The distance metrics of K-means for
clustering Z and E, respectively;

maxIterNum- The max number of iteration.

Input

Output  Iz- The clustering results, among which the labels

of unlabeled samples are predicted.

Step 1:  Perform LRR on original data matrix X.

nZn]? 1z, + )\HEHQJ

sit., X=XZ+E;
Re-arrange Z and Eas Z=[Z; Z,] and E= [E; E,],
respectively;
currentlterNum « 0; // Counter of clustering
iterations

Step 2: Perform K-means algorithm on Z and E,
respectively.

1z = K-means(Z, distz); //Using (1) to determine
the initial point of each cluster.

Ig = K-means(E, distg); // Using a method similar to
(1) to determine the initial point of each cluster

//1z and Ig are the clustering results on Z and E,
respectively;

currentlterNum « currentlterNum + 1;

Step3:  Select unlabeled samples as labeled ones for

next round clustering.

S — &
FOR each unlabeled sampleiin Z,
Let I, and [, be the predicted labels of sample i
according to the clustering results of 1z and Ig,
respectively.
IFl,, =l
S« SU{i}; //select an unlabeled sample
ENDIF
END FOR
Decide whether to terminate the algorithm, and
update Z and E.

IF S = () or currentIterNum

RETURN 1gz;

ELSE

FOR each selected unlabeled sampleiin S
move z{ from Z, to Z;;
move e} from E, to E;;

END FOR

Z —[Z, Z,); / /update Z

E — [E; E,}; //update E

GOTO Step 2;

END IF

Step 4:

> maxIterNum:
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TABLE 1
Comparisons of Different Methods for Cancer Classification on the R-GCM and MBD Datasets™

Datasets Method REC FPR MCC Overall Acc (Q)  General Corr (GC)
K-means 0.647 (1.72x10°)  0.031 (1.69x10°)  0.639 (3.04x10°)  0.691 (2.38x10°)  0.713 (2.20x10°°)
RGey  Kemeans with PCA - 0471 (4.11x 10°  0.056 (1.11x10°)  0.458 (1.39x10°)  0.532 (2.42x107)  0.633 (1.40x10)
K-means with LRR  0.706 (3.76x10Y)  0.026 (6.49x10%)  0.678 (3.63x102)  0.734 (6.23x10%)  0.749 (3.13x10®)

SSC-LRR 0.715 0.023 0.762 0.753 0.762
K-means 0.846 (8.42x107%)  0.112 (2.32x10%)  0.717 (3.74x107%  0.644 2.58x10)  0.833 (7.16x107)
MBD K-means with PCA  0.675 (1.14x107)  0.171 (6.94x10°)  0.532 (3.68x107)  0.459 (7.24x10”)  0.698 (3.22x10)
K-means with LRR  0.762 (6.62x10™%)  0.079 (1.32x10%  0.770 (5.05x10)  0.765 (8.93x10)  0.836 (4.69x10)

SSC-LRR 0.959 0.033 0.888 0.897 0.920

“Parameter M for splitting benchmark dataset is set to 6. Values in parentheses are p-values in student t-test relative to SSC-LRR.

The detailed procedures of the proposed SSC-LRR are
summarized in Algorithm 1.

2.3 Evaluation Indexes and Validation Protocol

The prediction results of a multi-class predictor can be rep-
resented as a C x C confusion matrix, denoted as
M = [my;]“*¢, where m,; represents the number of cases in
which a sample in class ¢ was predicted as that in class j,
and C is the total number of classes [26]. The Recall (REC),
False Positive Rate (FPR), and Matthews Correlation Coeffi-
cient (MCC) are calculated by

REC(i) = TP(i)/(TP(i)+FN(i))
FPR(i) = FP(i) /(TN (i) + FP(i))

MCC(i) = (TP(i) - TN (i) = FP(i) - FN(i))/
V/(TP(i)+FP(i))-(TP(i)+ FN(i))- (TN (i) + FP(i)) (TN (i) + FN(0)),

(5)

where TP(i), FP(i), TN(z), and FN(i) represent the true
positive, false positive, true negative, and false negative
rates for class i, respectively.

The Overall Accuracy (Q) and Generalized Correlation
(GC) are calculated by [26], [27]:

Q =YL, TP(i)/N
C mij—eij

> Z (6)

J=1_ %j
N(C-1)

GC =

where N =3¢ 3¢ 5-1m;; is the total number of samples
and ;= (TP( )+ EN(2)) x (TP(j) + FP(j))/N is the
expected number of cases in cell (i,j) of the confusion
matrix under the null hypothesis assumption that there is
no correlation between assignments and predictions.

To examine the efficiency of the methods, we first ran-
domly split each of the benchmark datasets (R-GCM and
MBD) into separate training and testing subsets. The sam-
ples in the training subset are considered as labeled data,
with those in the testing subset as unlabeled. Then, we
applied learning models to the datasets (i.e., the union of
training and testing subsets) to obtain the predicted labels
of the unlabeled samples in the testing subset. The proce-
dure is repeated independently for 100 times to eliminate
randomness, with the average prediction performance
reported.

Note that in this validation protocol, a crucial issue is
how to split a benchmark dataset into training and testing
subsets. For fair comparison, unless otherwise stated, the M

is set to 6 for evaluating all the considered methods, because
the numbers of samples for most cancer types are close to 12
(cf. Supplementary Table S1, available online).

3 RESULTS AND DISCUSSION

3.1 LRR and Self-Training Help Improve Cancer
Classification Performance

To examine the effects of LRR and self-training to gene
expression-based cancer classification, we performed a com-
parison between K-means, K-means with PCA, K-means
with LRR, and SSC-LRR @i.e., K-means with LRR and self-
training) on the R-GCM dataset using the validation protocol
in Section 2.3, where the parameters in the models are
decided by a protocol descripted in Supplementary Section
3, available online. For a fair comparison, we also applied the
same procedure for determining the initial points of clusters
to the three compared methods. Table 1 summarizes the
detailed performance comparisons between the three meth-
ods with M = 6 for splitting benchmark dataset.

The results in Table 1 showed that the proposed
SSC-LRR outperformed K-means, K-means with PCA, and
K-means with LRR methods on both R-GCM and MBD
datasets regarding all the five evaluation indexes. On the
R-GCM dataset, for example, the overall accuracy Q and the
generalized correlation GC, which are two overall perfor-
mance indexes, of K-means are improved by 6.2
(= (0.734 — 0.691)/0.691) and 5.0 percent, respectively, by
incorporating LRR into K-means (i.e., K-means with LRR).
This observation demonstrates that LRR can extract more
discriminative features from high-dimensional data. We
also found that the Q and GC values can be further
improved by 2.5 and 1.7 percent, respectively, by incorpo-
rating self-training into K-means with LRR (i.e., SSC-LRR),
which demonstrates the positive effects of unlabeled data in
self-training. Similar (or even more) improvements were
observed on the MBD dataset, where Q and GC are
improved by 17.2 and 10.0 percent, respectively, by incorpo-
rating self-training into K-means with LRR in this dataset.
We found that the performance of K-means with PCA is
even worse than K-means. A possible reason is that PCA
abandons too much information hidden in original high
dimensional feature components.

In Table 1, the values in parentheses are the p-values in
the student’s t-test between SSC-LRR and other methods.
Most of the p-values are far below 0.05 (except for the REC
in relation to K-means with LRR method on R-GCM
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TABLE 2
Comparisons of SSC-LRR with Other Methods for Cancer Classification on the R-GCM and MBD Datasets*

Datasets Method REC FPR MCC Overall Acc (Q) General corr (GC)
SVM 0.510 (1.79 x 107)  0.052 (1.25 x 10 0.503 (5.55 x 107) 0.554 (3.37 x 10°) 0618 (1.34 x 10°)
RPCA +SVM  0.521(1.20 x 10  0.051 (3.79 x 10°) 0.512(3.52 x 10°) 0.562 (8.96 x 107)  0.624 (1.48 x 10°)
R-GCM  Label Propagation 0.324 (5.26 x 10°)  0.056 (2.85 x 10%) 0.308 (2.96 x 107)  0.409 (2.34 x 10™*) 0.445 (2.79 x 10™*)
Semi-PNMF 0.658 (8.07 x 104 0.029 (8.64 x 10°) 0.633 (9.03 x 10°) 0.707 3.17 x 10®°)  0.710 (5.10 x 10™)

SSC-LRR 0.715 0.023 0.762 0.753 0.762
SVM 0.636 (1.56 x 10°)  0.167 3.70 x 10°) 0.504 (1.34 x 10°) 0.471 (1.34 x 10%)  0.651 (7.67 x 10™)
RPCA+SVM 0.451 (1.16 x 10%)  0.175 (6.92 x 10°)  0.279 (5.85 x 10®)  0.653 (6.35 x 10®)  0.385 (2.28 x 10®)
MBD Label Propagation  0.553 (9.99 x 10°) 0.184 (8.94 x 10™%) 0.348(3.77 x 107) 0.646 (7.85 x 107) 0.415(1.09 x 10
Semi-PNMF 0.884 (4.62 x 102 0.106 (3.96 x 10%)  0.635(9.78 x 10°) 0.708 (3.49 x 10?) 0.676 (1.58 x 10°)

SSC-LRR 0.959 0.033 0.888 0.897 0.920

“Parameter M for splitting benchmark dataset is set to 6. Values in parentheses are p-values in student t-test relative to SSC-LRR.

dataset), suggesting that the improvement by SSC-LRR is
statistically significant.

3.2 Comparisons with Other Cancer Classification
Methods

In this section, we compare SSC-LRR with several widely
used supervised and semi-supervised cancer classification
methods, including two supervised methods (Support Vec-
tor Machine (SVM) [9], [10] and RPCA+SVM [12]), and two
semi-supervised methods (Label Propagation [22], Semi-
supervised Projective Non-negative Matrix Factorization
(Semi-PNMF) [4]), for cancer classification on the two
benchmark datasets with the same validation protocol.

3.2.1 Performance Comparisons on R-GCM Dataset

The upper part of Table 2 lists the performance comparisons
between SVM, RPCA+SVM, Label Propagation, Semi-
PNMF, and SSC-LRR, on the R-GCM dataset with the
parameter M = 6 for splitting benchmark dataset. Several
observations can be made from the data in Table 2.

First, SVM has been recognized as a powerful supervised
classification method for dealing with small sample size
and high-dimensional problems. However, it is found that
the two considered semi-supervised methods, i.e., SSC-LRR
and Semi-PNMF performed significantly better than SVM
with an improvement of 19.9 and 15.3 percent on Q, and
14.4 and 9.2 percent on GC, respectively. A possible reason
is that the extremely severe conflict between sample size
and sample dimensionality (i.e., 198 versus 11,370) seriously
deteriorated the performance of SVM, where Semi-PNMF
and SSC-LRR effectively utilized the information buried in
unlabeled samples and can thus achieve a better classifica-
tion performance than SVM.

Second, the proposed SSC-LRR outperformed RPCA +
SVM with an improvement of 9.0 and 13.8 percent on Q and
GC, respectively. The underlying reasons may be as follows:
in RPCA+SVM, a robust PCA is used to obtain a sparse
matrix from the original data and only the sparse matrix is
then used to identify key genes for training the SVM model.
While in SSC-LRR, LRR is applied to decompose the original
data matrix into a LRR matrix and a sparse matrix. Impor-
tantly, both the LRR matrix, which encodes the intrinsic struc-
tures of gene expression data, and the sparse matrix, which
encodes key genes, are utilized for training a prediction

model (see Section 3.3 below). On the other hand, compared
with RPCA+SVM, SSC-LRR has the capability of learning
from unlabeled data by introducing a self-training procedure.
These two aspects account for the major contributions to the
observed improvement of SSC-LRR over RPCA+SVM.

Third, it was found that SSC-LRR outperformed Semi-
PNMF, which is a most recently proposed semi-supervised
model specially designed for cancer classification on gene
expression data. SSC-LRR achieved the best performance
on R-GCM with the highest Q (0.753) and GC (0.762), which
are 4.6 and 0.52 percent, respectively, higher than that of the
second-best performer (Semi-PNMF). This observation fur-
ther demonstrates the efficacy of the SSC-LRR for perform-
ing cancer classification on gene expression data.

Finally, Label Propagation is a semi-supervised method
that also utilized unlabeled samples as Semi-PNMF and
SSC-LRR do. However, we found it performed even worse
than SVM that only uses the labeled samples. In Label Prop-
agation, samples are represented as points and there is an
edge between every two points. The weight of the edge is
calculated based on the euclidean distance between two
points. As described in Supplementary Section 3, available
online, it is found that the euclidean distance metric is not a
good choice for reflecting the distribution of gene expres-
sion data. We speculate that this is probably the reason that
accounts for the poor performance of Label Propagation.

In Table 2, the p-values between SSC-LRR and other
methods are all below 107, suggesting that the difference
between SSC-LRR and the other control methods is statisti-
cally significant.

We also investigated the effects of the parameter M (i.e.,
how many samples of each class are selected to constitute
the training subset) on the classification performances by
varying the values of M from 2 to 6 with a step size of 1.
Figs. 1a and 1b list the performances regarding Q and GC,
respectively, of the five methods considered under different
values of parameter M.

The data in Fig. 1 showed a slight dependence of the per-
formances of the methods on M. It is a common knowledge
that the performance of a learning model increases with the
number of labeled data used for training. Clearly, the trend
of the performance variation is consistent with this knowl-
edge, although there exist slight fluctuations for Label Propa-
gation. Meanwhile, the relative performance of different
methods is largely consistent, where SSC-LRR outperformed



1320
0.8 = sVM C=IRPCA+SVM .
[ITITI Label Propagation 722 SSC-LRR = 7
) Semi-PNMF 7 7
7 7
ol
0.6 . /// N 7
7 %
KR 4 N NN
Q & :
; g/ N \Z
0.4 s N7 N/ N7
g g: N% % \%
2 W SN \%
0.2 E;: \ // /
N7 SN 7
@ = V) N
K Y/ N
0.0 ~ 74 / N
1 2 5 6
0.8
==svM RPCA+SVI -
[T Label Propagation 71 SSC-LRR 7 Z
5273 Semi-PNMF 7 ¢ 7
% 2 Z 7
0.6 X /] N7
_0 g By
GC 5 BN \ N7 ' \7
0.4 % SN/ N /
= 3 \ \Z
0.2 = X \ N\
% N\ 7 N7
N 7 N7
(b) = \ 2N 7 N
0.0 N \ N/

M

Fig. 1. Performance comparisons between SVM, RPCA+SVM, Label
Propagation, Semi-PNMF, and SSC-LRR under different values of
parameter M on R-GCM dataset. (a) Comparison results regarding Q.
(b) Comparison results regarding GC.

the control methods when M > 2, demonstrating the robust-
ness of SSC-LRR. However, we found that the accuracy of
SSC-LRR is slightly lower than that of Semi-PNMF when M
= 2. The reason is that SSC-LRR generates mistaken rein-
forcement when M is low due to the too few initial training
samples, although it has been designed to eliminate mis-
taken reinforcement during the iterative learning procedure.

3.2.2 Performance Comparisons on the MBD Dataset

To comprehensively investigate the efficacy of the proposed
SSC-LRR, we made a further performance comparison of
SSC-LRR with the four control methods on the MBD data-
set, the result of which is summarized in the lower part of
Table 2.
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In the MBD dataset, the conflict between sample size and
sample dimensionality (73 versus 54,675) is even more severe
than that (198 versus 11,370) of the R-GCM dataset. Neverthe-
less, it was found again that the proposed SSC-LRR achieved
a better performance than the control methods, regarding
both the three averaged binary indexes (i.e., REC, FPR, and
MCC) and the two global indexes (i.e., Q and GC). The Over-
all Accuracy (Q = 0.897) and General Correlation (GC =
0.920) by SSC-LRR are 18.9 and 24.4 percent, respectively,
higher than that of the second-best performer (Semi-PNMF).

Interestingly, the RPCA+SVM method, which used
RPCA to extract key genes for classification, performed
much worse than SVM itself regarding REC, FPR, MCC, and
GC. We analyzed the detailed classification results of
RPCA+SVM and found a large number of samples belong-
ing to WNT, SHH, and G3 cancers have been mistakenly
classified into G4 cancer, leading to a lower performance
than that of SVM. This is probably due to the dominantly
high sample of G4 cancers in the MBD dataset, where the
number of samples of G4 cancer is about 2~5 times as much
as that of other three cancers of WNT, SHH, and G3; there-
fore, the RPCA-+SVM model trained on the MBD dataset has
been biased to the majority cancer type (G4).

3.3 Why Does SSC-LRR Achieve Better
Performance?

Taking the R-GCM dataset as an example, the gene
expression data can be represented by a matrix of
X = [x1,Xa, - .., %,] € RM71% "among which each column
is a sample. Without loss of generality, the samples in X are
arranged according to their class labels in an ascending
order, i.e., the label vector of X is I, =[1,1,...,1,2,2,...,
2,13,13,...,13,14,14,...,14] € R'®, where the class labels
of 1,2, ..., and 14 represent the cancer types of BR, PR, ...,
and CNS, respectively (cf. Table S1). Then, the data matrix
X can be decomposed into a low-rank representation matrix
Z € R and a sparse matrix E € R'"¥™!% by using (S5)
in Supplementary Information, available online. Each
matrix can be displayed as an image by regarding each ele-
ment in the matrix as a pixel value. Considering that there
exists minus values in the decomposed matrix Z and E, we
linearly scaled the elements in Z and E into range of (0,1) for
drawing images. In addition, we scaled the heights of X and
E to the size of 198 for better visual effects. Fig. 2 illustrates
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Fig. 2. An intuitive explanation of why SSC-LRR can achieve better performance on gene expression data. (a) Image of original data matrix X.

(b) Image of low-rank representation matrix Z. (c) Image of sparse matrix E.
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TABLE 3
The Top 10 Most Influential Genes and Their Related Cancer
Types ldentified on R-GCM Dataset

No. Official Related Cancer

of Genes” Symbol' Types

5128 RNF114 Potentially related
7179 MEG3 CNS, LU, etc.

3916 JUNB LE

3648 MYC LE, LY, etc.

4276 HLA-DRB5 Potentially related
3077 CFL1 CNS

1608 EXT1 LE, Non-melanoma Skin Cancer
6839 RABIF PA

4232 DBI LU

7180 MRPLA48 Adrenocortical Carcinoma

"No. of Genes: Row no. of genes in the R-GCM data matrix.TOfficial Symbol:
Unique symbol provided by HGNC (HUGO Gene Nomenclature Committee).

the color images of the three matrices, X, Z, and E,
respectively.

3.3.1 LRR Matrix Unveils the Intrinsic Structures for

Different Cancer Types and Subtypes

The image in Fig. 2b shows that there are multiple rectan-
gles, highlighted with yellow border along the diagonal of
the image Z, which contain relatively higher pixel values
for each type of the 14 cancers (In MBD dataset, there will
be 4 rectangles for 4 subtypes of medulloblastoma). These
rectangles indicate that samples belonging to the same class
often have the same subspace structure. In other words, the
low-rank representation matrix Z can unveil the intrinsic
structure of data much better than the original data matrix
X. Accordingly, the low-rank representation matrix Z can
provide more useful discriminative information than X,
leading to a better classification performance. From a bio-
logical point of view, different types of cancers are often
associated with some specific genes and therefore the corre-
sponding gene expression data may fall into specific feature
subspaces, which can be unveiled by using LRR.

3.3.2 Sparse Matrix Encodes the Key Genes for
Discriminating Cancer Types and Subtypes

A critical step in the SSC-LRR is to utilize both the LRR
matrix and the sparse matrix E for the selection of unlabeled
samples as labeled ones (cf. (3) and (4)). The reason why we
use the sparse matrix is that it encodes key genes for dis-
criminating cancer types.

As displayed in Fig. 2¢, there are few nonzero values in
sparse matrix E, and each nonzero value in E partially
reflects the up- or down-regulated genes of differential
expressions. Since each row of the sparse matrix E corre-
sponds to a specific gene, we can calculate the significance
of each gene by summing up the absolute values in the cor-
responding row of the sparse matrix E. Generally, the
higher the significance of a gene is, the more important the
gene will be. According to the calculated significances of
genes, we can locate the most influential genes by choosing
those genes with larger significances. Table 3 lists the top 10
most influential genes and their related cancer types regard-
ing the R-GCM dataset.
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TABLE 4
The Top 10 Most Influential Genes Identified on MBD Dataset*

No. of Gene®  Official Symbol' Related Cancer Types
16070 USP9Y PR
4657 LINCO01419 Hepatocellular carcinoma
24466 PTPN20 Multiple myeloma
19136 HLA-DRB4 LE
3477 HCGI11 PR
20625 TBX1 LU, PR, CO
20701 PCDHA2 LY
19348 MAGEA3/6 Medulloblastoma
18692 TFPI2 Glioma
22453 HOXA10 Glioblastoma

"No. of Genes: Row no. of genes in the MBD data matrix.
1Official Symbol: Unique symbol provided by HGNC.

Among the top 10 identified key genes, 8 of them have
been verified by previous studies to be related to one or sev-
eral cancers considered in R-GCM dataset. For example,
MEGS3 [28], which can activate the expression of the TP53
[29], and EXT1 [30] are tumor suppressors and their loss has
been found in various types of tumors, including CNS, LE,
LU. JUNB is a target gene of miRNA-149", which can
influence the cell cycle and proliferation capacity of
T-ALL (T-cell acute lymphoblastic leukemia, a subtype
of LE) cells [31]. MYC is overexpressed in many types of
tumors, such as LE, LY, and regulates the expression of
two immune checkpoint proteins on the tumor cell sur-
face [32]. CFL1 is highly related to the invasiveness of
the malignancy of the central nervous system (CNS) [33].
RABIF transcripts are overexpressed in pancreatic cancer
(PA) tissues compared to normal pancreas [34]. DBI con-
trols lung cancer (LU) progression by regulating g-oxida-
tion [35]. MRPL48 is a candidate diagnostic marker and
tumor suppressor for adrenocortical carcinoma [36].

It is interesting that two key genes, i.e.,, RNF114 and
HLA-DRB5, which were identified from the sparse matrix
E, have not yet been reported to relate with any caner types
considered in R-GCM. Nevertheless, both play an important
role in immune systems reported by existing studies:
RNF114 regulates the immune responses and may involve
in T-cell activation [37]; HLA-DRB5 plays a central role in
the immune system and is related to an autoimmune dis-
ease, systemic lupus erythematosus [38]. Considering that
the two genes were identified as key genes for cancer classi-
fication, further experimental validation on their roles in
cancer development will be important.

Similarly, the top 10 genes identified on MBD dataset are
listed in Table 4. Among the top 10 genes, MAGEA3/6, TFPI2
and HOXA10 are highly linked to medulloblastoma and
related cancers, because medulloblastoma and glioblastoma
are two kinds of glioma. MAGEA3/6 is a direct target for
miR-34a and is aberrantly expressed in many cancers includ-
ing medulloblastoma [39]. TFPI2, a metastasis-suppressor
[40], is highly expressed in low-grade gliomas, but there is no
expression in high-grade gliomas, which suggests that repres-
sion of TFPI2 contributes to glioma progression [41]. DNA
methylation at key regulatory CpGs in HOXA10 is associated
with HOX-signature expression in glioblastoma [42].

The other identified genes have not been found responsi-
ble for medulloblastoma, but they are cancer-related and
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may play important roles in medulloblastoma progression.
For example, USPYY is a biomarkers of prostate cancer (PR)
[43]. LINCO01419 is a long non-coding RNA and is signifi-
cantly overexpressed in hepatocellular carcinoma [44].
PTPN20 is a potential cancer-testis antigens in multiple
myeloma [45]. The frequency of HLA-DRB4 increased sig-
nificantly in male-patients with childhood acute lympho-
blastic leukemia (LE) [46]. HCG11 is also a long non-coding
RNA and its low expression level may predict a poor prog-
nosis in prostate cancer (PR) [47]. TBX1 is overexpressed in
various types of tumor compared to normal adult tissues,
including LU, PR, and CO [48]. The down-regulation of
PCDHAZ2 is responsible for hemophilic cell adhesion and its
expression level is related to Burkitt lymphoma (LY) [49].
Among these genes, USP9Y and PTPN20 are male-specific,
which may be responsible for that medulloblastoma is more
prevalent in males [25].

In summary, the three characteristics of the proposed SSC-
LRR, i.e., the intrinsic structures unveiled by low-rank repre-
sentation matrix, the key genes encoded by sparse matrix,
and the capability of learning from unlabeled data, made the
major contributions to the performance of SSC-LRR on the
gene expression-based cancer classifications.

4 CONCLUSIONS

The high-dimensionality, small sample size, and enrich-
ment of unlabeled samples of the gene expression data rep-
resent three major obstacles for the machine-learning
approaches to cancer classifications. To overcome these dif-
ficulties, we proposed a novel semi-supervised self-training
subspace clustering algorithm based on low-rank represen-
tation, called SSC-LRR, for quantitative cancer classification
using gene expression data. Here, LRR is introduced to
relieve the conflictions between high-dimensionality and
small sample size data features, by the extraction of the
intrinsic structure of gene expression data, which are then
encoded into low-dimensional discriminative features. An
image-based analysis in Fig. 2 reveals that LRR does have
the ability to identify the low-dimensional structure of gene
expression data, which is of important benefit to the cancer
classification task.

To utilize the information from the unlabeled gene
expression data, self-training technique (cf. Supplementary
Section 4, available online) was applied in SSC-LRR. How-
ever, traditional self-training method is prone to reinforcing
model mistakes, termed as mistake-reinforcement [50], [51],
[52]. In light of this, a new efficient sample selection proce-
dure (cf. Algorithm 1) has been developed to relieve the
mistake-reinforcement problem of the traditional self-
training methods.

The efficiency of LRR and self-training has been exam-
ined by the step-wise incorporation with the baseline
K-means clustering algorithm. The experiment results dem-
onstrated the capability of utilizing unlabeled gene expres-
sion data. The performance of the SSC-LRR were further
benchmarked with several state of the art supervised and
semi-supervised classification methods on two separate
gene expression datasets, where SSC-LRR achieved an over-
all accuracy 89.7 percent and a general correlation 0.920,
which are 18.9 and 24.4 percent higher than that of the best
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control method, respectively, on the MBD dataset. Further
analysis of the SSC-LRR results also shows that it has the
ability to identify key genes as possible cancer classifiers.
For example, USP9Y and PTPN20 are recognized as two
influential genes highly related to medulloblastoma, while
RNF114 and HLA-DRB5 are shown to be potential cancer
identifiers that deserve further clinical investigation.

Despite of the encouraging results of SSC-LRR, there is
still considerable room for further improvement. First, more
efficient methods are needed for identifying the intrinsic
structure of gene expression data to extract more discrimi-
native features for cancer classification. Second, only
K-means clustering algorithm was explored in this study
for implementing the SSC-LRR. More efficient clustering
algorithms such as spectral clustering should have the
potential to further improve the classification accuracy.

Finally, the SSC-LRR algorithm is not limited to the cancer
classification, as it can be readily extended for other bioinfor-
matics applications, such as image-based protein subcellular
localization [53], image-based Alzheimer’s disease classifica-
tion [54], and protein interaction site prediction [55], where
similar issues of high-dimensionality, small sample size, and
enrich of unannotated data problems exist. The applications
of SSC-LRR on these issues are under progress.
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