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ABSTRACT

The identification of protein–ligand binding sites
is critical to protein function annotation and drug
discovery. The consensus algorithm COACH devel-
oped by us represents one of the most efficient ap-
proaches to protein–ligand binding sites prediction.
One of the most commonly seen issues with the
COACH prediction are the low quality of the pre-
dicted ligand-binding poses, which usually have se-
vere steric clashes to the protein structure. Here, we
present COACH-D, an enhanced version of COACH
by utilizing molecular docking to refine the ligand-
binding poses. The input to the COACH-D server is
the amino acid sequence or the three-dimensional
structure of a query protein. In addition, the users
can also submit their own ligand of interest. For each
job submission, the COACH algorithm is first used
to predict the protein–ligand binding sites. The lig-
ands from the users or the templates are then docked
into the predicted binding pockets to build their
complex structures. Blind tests show that the algo-
rithm significantly outperforms other ligand-binding
sites prediction methods. Benchmark tests show that
the steric clashes between the ligand and the pro-
tein structures in the COACH models are reduced
by 85% after molecular docking in COACH-D. The
COACH-D server is freely available to all users at
http://yanglab.nankai.edu.cn/COACH-D/.

INTRODUCTION

Protein–ligand interaction represents one of the most
important forms of protein function, because proteins
perform their function through interactions with other

molecules. An ideal way to study the interaction is to solve
the complex structures by X-ray or nuclear magnetic reso-
nance techniques. However, these experiments are usually
laborious and costly to carry out. To make it even worse,
it is very difficult or impossible to solve the structures for
some large proteins and membrane proteins with classical
techniques (1). Rather than solving the structure, an alter-
native way is to locate the binding sites by techniques such
as crosslinking and mass spectrometry (2,3).

As it is often time consuming and expensive to solve the
protein–ligand complex structure or determine the interac-
tions by experiments, many computational efforts have been
made to facilitate the study of the interactions. These efforts
include at least the following aspects. The first is the recog-
nition of protein–ligand binding sites, which aims to predict
the binding pockets and the residues involved in the inter-
actions with the ligand (4–9). The second is the modeling
of the protein–ligand complex structure based on molecu-
lar docking (10–13). The third is the development of scoring
functions for the estimation of the binding affinity (14,15).
The studies in the above three aspects are in fact closely re-
lated. The prior knowledge of the binding sites can help
the molecular docking to build the complex structures ef-
ficiently, while accurate scoring functions can be used to se-
lect the binding poses with high binding affinity.

Here, we present the COACH-D server, an enhanced ver-
sion of the COACH server for the prediction of protein–
ligand binding sites and ligand-binding poses. The protein–
ligand binding sites are first predicted based on the COACH
algorithm, which is a consensus of five individual methods
(7). The ligands from the users or the templates are then
docked into the predicted binding pockets using the molec-
ular docking algorithm AutoDock Vina (10). Blind tests
in the CAMEO-LB experiments (16) and benchmark tests
demonstrate the significant advantage of COACH-D over
other state-of-the-art methods.
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MATERIALS AND METHODS

Overview of the COACH-D algorithm

The overall architecture of the COACH-D algorithm is
shown in Figure 1. For submission with amino acid se-
quence, the I-TASSER Suite (17) is used to model the pro-
tein structure first. The structure is then submitted to five
individual methods to predict the protein–ligand binding
sites. Four of them are template-based methods: COFAC-
TOR (6), FINDSITE (4), TM-SITE (7) and S-SITE (7).
These methods predict the binding sites by matching the
query structure and sequence with the ligand-binding tem-
plates from BioLiP (18), which is a semi-manually curated
functional database for biologically relevant ligand–protein
interactions constructed based on the Protein Data Bank
(PDB) (19). The last one is a template-free and structure-
based method ConCavity, which considers both sequence
conservation and structure geometry for the binding sites
prediction (5). The results from individual methods are then
combined to consensus predictions by the COACH algo-
rithm. The detailed descriptions of these methods are avail-
able in the original COACH algorithm (7) and the publica-
tions of the corresponding methods (4–6). The ligand from
the user input or the templates is then docked into the pre-
dicted binding pockets to build their complex structures by
the efficient molecular docking algorithm AutoDock Vina
(10). For each predicted binding pocket, up to 10 bind-
ing poses are generated and the one that matches the best
with the consensus prediction of binding residues is selected
(please refer to the ‘PERFORMANCE OF THE SERVE’
section for explanations about such selection).

INPUT AND OUTPUT OF THE SERVER

Input

The input to the COACH-D server can be either the amino
acid sequence or the three-dimensional (3D) structure of a
query protein. In addition, the users can submit their own
ligand of interest as well. When the amino acid sequence
of the protein is submitted, the I-TASSER Suite (4) will be
used to generate one 3D structure model first. The struc-
ture is then used for the ligand-binding sites prediction and
the subsequent molecular docking. We would like to point
out that except ConCavity, other component algorithms in
COACH-D were designed for monomer structures. Thus,
only the first chain will be extracted when oligomers are
submitted. We plan to extend the algorithm so that it can
work for oligomers in future. An option is provided to pro-
tect the users’ personal data by checking on the checkbox
of ‘Keep my results private’. A password is then assigned to
the users to access the modeling results. In general, it takes
2–5 h to complete the modeling for a structure submission
with ∼300 residues.

Output

One unique job ID and a URL are assigned to each submis-
sion. The users can track the modeling status at the URL
provided. Once completed, the results will be displayed on
the web page of the URL and a notification email will be

sent to the user for accessing the results. The typical output
results for each submission include:

i) One predicted 3D structure model for the submission with
amino acid sequence.

ii) The top five protein–ligand binding pockets and the bind-
ing residues in each pocket.

iii) The top five protein–ligand complex structures with the
input ligand.

iv) The top five protein–ligand complex structures with the
ligands from the PDB template structures.

v) A summary of ligands that are possible to bind the pro-
tein.

All these modeling results are put together into a sin-
gle tarball, which can be downloaded to a local computer
for use. All ligand-binding poses from AutoDock Vina are
also put into the tarball. A confidence score (c-score) in the
range of [0, 1] is provided to judge the reliability of each
prediction. Please refer to the COACH article for more in-
formation about the scoring function of c-score (7).

Figure 2 illustrates the modeling results for an example
submission with a protein structure and a ligand. Explana-
tion about the meaning of each column in the table can be
viewed by hovering the mouse pointer over the correspond-
ing question sign. For this example, the first prediction is
highly confident, as reflected by the high c-score. A total
of 12 residues were predicted to be involved in the ligand
binding. The total number of templates used for making this
prediction is 329 (i.e. the ‘Cluster size’ shown in the figure)
and the one with the highest similarity to the query struc-
ture is from the PDB template 1lwxA. The representative
ligand AZD (3′-Azido-3′-Deoxythymidine-5′-Diphosphate)
was docked into the predicted binding pocket. The complex
structures are visualized based on the 3Dmol library (20).
The default view is for the complex structure built with the
input ligand, which can be switched to other complex struc-
tures by clicking on the corresponding ‘View’ button under
the ‘Poset’ and ‘Poseu’ columns. All complex structures can
be downloaded for further analysis and customized visual-
ization with other molecular graphics systems. The dock-
ing energies for the complex structures are listed under the
‘Energyt’ and the ‘Energyu’ columns.

PERFORMANCE OF THE SERVER

The core algorithm (COACH) of the COACH-D server
for ligand-binding sites prediction have been extensively as-
sessed in the blind tests of the CAMEO-LB experiment (16),
which was hold weekly for more than 4 years between 6 Jan-
uary 2012 and 16 April 2016. We would like to mention that
COACH-D did not participate to this assessment exper-
iment because CAMEO-LB was unfortunately discontin-
ued at the time of COACH-D’s development. However, the
predictions submitted to the CAMEO-LB are the residue-
specific ligand-binding probabilities, which are essentially
the same for COACH and COACH-D as both methods
adopt the same strategy for consensus prediction of bind-
ing sites. The improvement of COACH-D over COACH is
the refined ligand-binding poses, which is out of the assess-
ment of CAMEO-LB and will be discussed below.
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Figure 1. The overall architecture of the COACH-D algorithm.

Figure 2. The output page for each submission to the COACH-D server. The visualization of the complex structure is obtained by the 3Dmol library (20).
The protein structure is shown in grey surface and orange cartoon. The ligand binding poses are shown in magenta balls and sticks. The consensus binding
residues are highlighted in blue sticks.

As listed on the CAMEO-LB website (https://www.
cameo3d.org/lb), COACH predicted the ligand-binding
sites for a total of 10 414 targets between 7 December 2012
and 16 April 2016. Figure 3 shows that the average accu-
racy (i.e. AUC) and the BDT score (21) of the COACH
prediction are 0.79 and 0.44, respectively, which are 14.5
and 22.2% higher than the second best method RaptorX-
Binding (22). Note that by default the CAMEO-LB website
only lists the data in the period of 1 year. The full set of data
is available by requesting a user account and password from
the organizer. The identities and real names for ‘Server xx’
are unknown to us and the public, which was requested by
the corresponding groups.

A dataset consisting of 50 CAMEO-LB targets were used
to compare the performance of COACH-D with COACH.
Based on our analysis and the feedback from the user com-
munity, one of the most commonly seen issues with the
COACH prediction are the low quality of the predicted
ligand-binding poses, which often have severe steric clashes
to the protein structure. The new COACH-D pipeline solves
this issue by using the efficient molecular docking algorithm
AutoDock Vina (10). To check how much the problem of
the steric clashes has been solved, we collected a dataset of
50 targets from CAMEO-LB as follows. Originally, there
are a total of 303 targets in CAMEO-LB’s datasets of the fi-
nal month (i.e. between 26 March 2016 and 16 April 2016).

Four kinds of ligands are defined in CAMEO-LB: ions, or-
ganic ligands, nucleotides and peptides. Here, only targets
with organic ligands were kept as AutoDock Vina was not
designed for other ligand types. Ligands in BioLiP’s artifact
list were excluded as well, which consists of ligands com-
monly used as additives during structure determination and
are thus mostly biologically irrelevant. The ligand-binding
residues were obtained based on atomic distance calcula-
tions with the protein–ligand complex structures, similar to
the procedure used in CAMEO-LB. Targets with too few
(<5) ligand-binding residues were excluded. Targets were
also excluded in case AutoDock Vina failed due to unac-
cepted ligand atom types. In COACH-D, when AutoDock
Vina fails to generate ligand-binding poses, the ones from
the template structures without refinement are reported,
which are thus identical with COACH’s results and not nec-
essary for comparison.

Two metrics are used to compare COACH-D with
COACH. The first one is the Matthews correlation coeffi-
cient (MCC) between the predicted and the native binding
residues. The consensus binding residues are the same for
both COACH and COACH-D (i.e. the last column in the re-
sults table of Figure 2). To directly reflect their differences in
binding poses, we derive the binding residues from the two
set of the predicted complex structures, one before and the
other after molecular docking, with the same identification
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Figure 3. The performance of COACH for ligand-binding sites prediction in the blind tests of CAMEO-LB.

A B

Figure 4. An example showing the improved ligand-binding poses by COACH-D over COACH. (A) and (B) are for the binding poses built with template
and native ligand, respectively. The protein structure is shown in light-blue surface. For (A) the binding poses before and after docking are shown in green
and magenta sticks, respectively. For (B), the experimental and predicted poses are shown in green and magenta sticks, respectively.

procedure of native binding residues. The second one is the
clash score, which is defined as the total number of residues
that have steric clash to the ligand in the predicted complex
structures. A residue is said to have steric clash to the ligand
when the closest atomic distance between the residue’s and
the ligand’s atoms is less than three quarters of the sum of
their Van der Waals radii (10).

The detailed experimental results on the 50 targets are
presented in Supplementary Table S1. The mean MCCs
of COACH-D and COACH are very similar (0.66 versus
0.67). However, the steric clashes are removed significantly
after molecular docking. In the COACH models, the aver-
age clash score is 1.72, which is reduced to 0.26 (i.e. reduced
by about 85%) in the COACH-D models. For 37 out of the
50 targets, steric clashes exist in the COACH models. Ex-
cept four targets (4uj1A, 4ujaA, 5iqxA and 4z6dA), these
clashes are removed or reduced in the COACH-D models.
These data indicate that the COACH-D models are physi-
cally more realistic (i.e. with fewer steric clashes) than the
COACH modes.

As mentioned earlier, the final ligand-binding pose is se-
lected (out of 10 docking poses) as the one that matches
the best with the consensus prediction of binding residues.
Another option is to select the pose with the lowest dock-
ing energy. Supplementary Table S1 presents the results with
such selection method, which shows that both methods lead
to binding poses with the same clash scores (with exception
of one target, 4za0B). However, the MCC for the former is
higher than the latter (0.66 versus 0.62), which is the reason
for our selection of ligand-binding pose. This is anticipated
because the consensus prediction of binding residues is usu-
ally accurate and thus other predictions resemble it should
have a higher chance to be correct.

Figure 4 presents an example target (PDB ID: 5f8bA)
with improved ligand-binding poses. This protein is ‘Glu-
tathione S-transferase psoE’ that binds glutathione (GSH).
The template used for this target is the structure with PDB
ID: 4is0A and the ligand is ‘oxidized glutathione disulfide’.
As reflected in Figure 4A, there are severe steric clashes
between the residues shown in red surface and the ligand
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shown in green sticks (i.e. the one from COACH). These
clashes were removed perfectly after docking in COACH-
D (see the ligand in magenta sticks). In addition, the native
ligand (in blue sticks of Figure 4B) was also submitted to
COACH-D, which was docked into the predicted binding
pocket as well. Figure 4B shows the predicted binding pose
does not have any steric clash with the protein structure and
it overlaps with the experimental binding pose well.

CONCLUSION

We have developed the COACH-D server for protein–ligand
binding sites and ligand-binding poses prediction. The ad-
vantage of COACH-D over our previous method COACH
is the utilization of molecular docking to improve the
ligand-binding poses. In addition, the users can also sub-
mit their own ligand of interest together with the protein to
the server. After the ligand-binding sites are predicted, the
ligands from the users and the templates are then docked
into the predicted binding pockets to build their complex
structures. Blind tests show that the algorithm significantly
outperforms other ligand-binding sites prediction methods.
Benchmark tests show that the steric clashes between the
ligand and the protein structures in the COACH models are
reduced by 85% after molecular docking in COACH-D. We
anticipate the accurate ligand-binding sites prediction and
the improved ligand–protein complex structures could con-
tribute to other related studies, such as drug discovery.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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