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Abstract

Homology-based transferal remains the major approach to computational protein function annotations, but it
becomes increasingly unreliable when the sequence identity between query and template decreases below
30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining
sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's
homology-based protein—protein network mapping. The pipeline was tested on a large-scale set of 1000 non-
redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates
with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487,
0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which
are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed
data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections
from partner's homology-based network mapping and structure-based local and global structure alignments,
the confidence scores of which can be optimally combined through logistic regression. These data
demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to
deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins
that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.

umich.edu/MetaGO/.

© 2018 Elsevier Ltd. All rights reserved.

Introduction

The gap between the exponential growth of known
protein sequences and the slow accumulation of
manual curation of biological function annotation is
continually increasing. As of November 2017
when this paper was submitted, the UniProt [1]
database harbored ~90 million protein sequences,
but only <1% of them were annotated with known
Gene Ontology (GO) terms using experimental
evidence [2]. The incomplete knowledge of protein
function routinely impedes research progress, as
un-annotated proteins are frequently implied to
have functional roles in genetic screening [3],
GWAS studies [4], and laboratory evolution exper-
iments [5]. Development of efficient computational
function annotation methods is highly urgent to fill
the knowledge gap.

0022-2836/© 2018 Elsevier Ltd. All rights reserved.

Many current function prediction methods depend
on sequence homology [6], and transfer function
annotations from inferred homologs [7—10] identified
using tools such as BLAST and PSI-BLAST [11].
There are other approaches that combine data from
multiple different sources and employ advanced
machine learning techniques [12]; but it was found
that most of these methods are not significantly better
than the sequence homology-based detections in the
community-wide CAFA experiments [6,13] and that
homology-based function prediction still constitutes
the largest contribution to the best performing CAFA
methods [12]. Nevertheless, high-sequence similar-
ity does not necessarily imply similar function. For
enzymes, >70% of sequences have different en-
zyme commission numbers even at a sequence
identity >50% [14]. In addition, nearly 87% of protein
sequences in UniProt do not have any function
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template with a sequence identity >50% (Fig. S1), an
observation significantly compromising the general-
izability of purely sequence homology approaches.
To address this issue, tools have been developed to
infer function from conserved local signatures [15]
derived from Hidden Markov Models [16] or function
pattern of sequence motifs [17]. While signature-
based annotations have constituted the majority of
electronic annotation in UniProt [18], such annota-
tions depend on manual curation of the signatures,
which is often laborious and slow to accumulate, and
lack specificity in favor of general terms applicable to
all members of the same protein family (e.qg., “protein
binding”).

To address the shortcomings of sequence-based
approaches, various attempts have been made to
utilize structure-based approaches to assist function
annotations [19-23], in which functional templates are
identified from structure—function databases through
structure comparisons [24,25]. As structural patterns
are usually conserved over longer evolutionary
differences than sequence patterns, structure-based
predictors may generate more sensitive annotations
for “hard” (or non-homology) targets. There are,
however, several factors that can limit their useful-
ness. First, functionally distinct proteins can share
similar global topologies. Typical examples include
“TIM barrel” and “Rossmann” folds, each of which is
adopted by diverse proteins performing >50 different
biological functions. Second, structures are needed for
both query and templates in the structure-based
approaches, but most unannotated sequences have
no experimental structures; meanwhile, ~80% of the
proteins in function databases do not have experi-
mentally determined structures, and thus cannot be
directly used as functional templates in structure-
based pipelines. Finally, many functionally important
proteins do not adopt stable structure under physio-
logical conditions, and thus cannot be modeled via
structure-based approaches. While the first challenge
can be partially mitigated by combining global
structure search and local structure motif identification
[26], the second and third challenges can only be met if
structure-based function annotation is used in appro-
priate combination with non-structural approaches.

To explore the potential of such hybrid approaches,
we propose in this study a new method, MetaGO,
which generates automated GO modeling by com-
bining three complementary pipelines from global
and local structure alignments, sequence and
sequence-profile matches, and protein—protein inter-
action (PPI) network mapping (Fig. 1a). We note that
the ideas of deducing functional insights from
sequence and structural comparisons and PPI
mapping are not new, as these approaches have
been implemented by several previous studies
[19-22,26-30]. The major new ideas that we focus
on exploring include the novel combination of the
global and local structural alignments on distant

function-homology detection, and the possibility to
increase the coverage of function deduction of the
target proteins through the mapping of homologs of
the PPI binding partners, instead of the direct PPI
partners themselves as most previous studies used.
To carefully examine the strengths and weaknesses
of different component pipelines, we systematically
tested MetaGO on a large set of benchmark proteins
in comparison with state-of-the-art methods of the
field. Since the pipeline is mainly designed for
modeling the non- and distant-homology proteins, a
stringent benchmark condition was applied to ex-
clude homologous templates from all the structure
and function prediction libraries.

Results and Discussion

Data sets

To test MetaGO, we curated a set of 1000 non-
redundant proteins randomly taken from the CAFA3
experiment (http://biofunctionprediction.org/cafa-
targets/CAFA3_targets.tgz) but with the following
criteria: (1) the target can be mapped to a UniProt
entry with >90% sequence identity; (2) the length is
between 30 and 300 amino acids; (3) it has
experimental annotations in all three GO aspects:
Molecular Function (MF), Biological Process (BP),
and Cellular Component (CC), excluding the uninfor-
mative “protein binding” GO terms; (4) all proteins
share <30% sequence identity to each other; and
(5) all test proteins have a sequence identity <30% to
any protein used for training the MetaGO pipeline (see
Methods). When structure models are constructed by
I-TASSER [31], all structural templates with >30%
sequence identity are removed from the LOMETS
library [32]. While the benchmark test was mainly
performed on small- and medium-size proteins (<300
residues), the prediction accuracy of MetaGO does
not have apparent dependency on the length of target
proteins (see Fig. S5).

Overall performance of MetaGO and the
comparison to control methods

In Fig. 2, we present a summary of MetaGO
predictions on the three aspects of Gene Ontology,
where the detailed Fmax values are listed in Table S1
in the Supplementary Information (SI). In general, the
CC prediction has on average the highest accuracy,
followed by MF and finally BP. Since MetaGO
generated the GO models mainly by functional
template inference, we used three different sequence
identity cutoffs to filter out the templates, that is, to
consider templates only with a sequence identity
below 20%, 30%, and 50%, respectively. As expected,
the overall performance has a slight dependence on
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Fig. 1. (a) The MetaGO algorithm for GO annotation, which contains three pipelines of global and local structure
alignment (bottom red), PPI partner homolog detection (top green), and sequence homolog identification (center blue),
followed by a logistic regression based combination. (b) An illustrative example of MetaGO being applied to human EBP
protein (Q15125). Left panel is the superposition of I-TASSER model (red) and the PDB structure of the adiponectin
receptor (cyan), which are combined with PPl homolog (green box) and sequence-based predictions (blue box) to create
the complete set of MetaGO predictions (right panel). Highlights are to illustrate how the representative function terms from
individual pipelines are merged into the final MetaGO predictions.

the level of cutoffs. For example, the average Fmax  “BLAST,” and “PSI-BLAST” are three standard
scores are 0.454,0.391, and 0.589 for MF, BP, and CC baseline methods implemented in the CAFA experi-
at the 20% cutoff, and gradually increased to 0.487, ments (see Text S1) [12,33]. The data in Fig. 2 show
0.408, and 0.598, and 0.518, 0.428, and 0.605, when  that MetaGO consistently outperforms the control
the sequence identity cutoffs are increased to 30% and methods in all GO aspects. In particular, although

50%, respectively. MetaGO showed some dependence of the perfor-
As a control, we also list the results from four other ~ mance on the sequence identity cutoffs for templates,
methods, including GoFDR [7], GOtcha [10], Naive, it is much more robust to low template similarity than

BLAST, and PSI-BLAST [11]. Here, GoFDR is one of ~ the control methods that generate GO predictions
the best GO predictors in the CAFA2, while “Naive,”  mainly on sequence homologous transferals [7,11].
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Fig. 2. Fmax score of the GO predictions by MetaGO, compared to that by the three component pipelines (structure,
sequence, and PPl homolog), and four control methods (GoFDR, GOtcha, BLAST, PSI-BLAST, and Naive) at different
sequence identity cutoffs for filtering functional templates. The dotted lines label the performance of MetaGO. A color
version of this figure is provided as Fig. S2 in Supplemental Material.

For example, the average Fmax values on MF by
BLAST, PSI-BLAST, GoFDR, and GOtcha decrease
by 11.267%, 75%, 56%, and 22%, respectively, when
the sequence identity cutoff goes from 50% to 20%,
while that by MetaGO decreases only by 14%. Similar
patterns are also seen in BP and CC predictions. The
robustness of MetaGO on the GO prediction is mainly
due to the introduction of the two additional pipelines
from structural alignments and PPIs, which show
essentially no dependence on the sequence similarity
levels of the functional templates; this is particularly
important for the uses in annotating “hard” targets that
do not have closely homologous templates.

As the function prediction accuracy usually relies
on the confidence score cutoffs, we show in Fig. 3
the precision—recall curves of MetaGO and the
control methods at the 30% sequence identity cutoff.
As expected, a higher confidence score cutoff will
result in a higher accuracy (precision) but with a
lower recall rate. Overall, MetaGO has the highest
precision at all different recall rates.

To examine the contribution of different resources
of information, we also list in Figs. 2 and 3 the
performance of three component pipelines of MetaGO.
The combined MetaGO model has a higher accuracy
than the components through all the recall regions,
demonstrating the importance of appropriate combi-
nation of different sources of information. In Fig. 1b, we
present an illustrative example from the human EBP
protein (Q15125), which is both a steroid delta-
isomerase (G0O:0004769) and a transmembrane
signaling receptor (GO:0004888) for anti-ischemic
drugs. As shown in Fig. 1b, while the PPl homolog-
based approach simply predicts the protein to be an
enzyme (top green box), sequence-based pipeline
predicts it as an isomerase for steroid (central blue
box). The structure-based approach, on the other
hand, found significant structural similarity between the
I-TASSER model (red cartoon) and a transmembrane
adiponectin receptor, ADIPOR1 (PDBID: 3wxvA), with
TM-score = 0.88, based on which it infers the trans-
membrane signaling receptor activity (bottom red box).
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Fig. 3. Precision—-recall curves of GO predictions by MetaGO, compared to that by the three component pipelines
(structure, PPIhomo, and sequence), and five control methods (GoFDR, GOtcha, BLAST, PSI-BLAST, and Naive) at 30%
sequence identity cutoff of functional templates. A color version of this figure is provided as Fig. S3 in Supplemental Material.

The final MetaGO prediction generated the complete
set of annotations (right panel), by combining the
enzymatic activity prediction from the PPl homolog and
sequence-based pipelines and the transmembrane
signaling receptors prediction from the structure-based
pipeline, which well match with the experimental
annotations in UniProt-GOA [18], despite the fact
that all templates with a sequence identity >30%
have been excluded. This example illustrates how
the various pipelines of MetaGO complement each
other to yield a comprehensive annotation of protein
targets.

Performance of structure-based GO prediction

In MetaGO, structure templates with GO annota-
tions are mainly identified from the BioLiP database
[24] using global structure alignment by TM-align [34].
To tackle structural promiscuity, each query-template
pair is re-aligned by combining the global structure
alignment with both evolutionary score and local
functional site comparison. This combinatory pipeline
achieves F-measures of 0.309, 0.254, and 0.438 for
MF, BP, and CC, respectively, if functional templates
sharing >30% sequence identity are removed.

In contrast, under the same sequence identity
cutoff, if the TM-scores of the templates are directly
used, the F-measures will be reduced to 0.204, 0.161,
and 0.290 for the three GO aspects, representing a
drop by 51%, 60% and 51% compared to the full-

version structure-based pipeline. This result affirms
that functional-site-evolution-aware global and local
structure alignments are useful post-processing steps
contributing to MetaGO's performance.

Comparison between PPIl-based and PPI
homolog-based GO prediction

When developing MetaGO, we tested two PPI
approaches, one deducing function from the direct
PPI partners similar to previous approaches [28,29]
and another combining multiple homologs of the PPI
partners. At the 30% sequence identity cutoff, the
direct PPI-based approach has F-measures of 0.222,
0.333, and 0.560 for MF, BP, and CC, which is 52%,
16%, and 0.2% lower than the respective F-measures
of 0.337, 0.386, and 0.561 from the PPl homolog-
based approaches. This is mainly due to the extension
of the functional template entries through the addi-
tional homologous search, which helps increasing the
coverage of functional referrals.

It is of interest to note that both pipelines perform
relatively poorly on the MF relative to the BP and CC
aspects, while most of other methods/pipelines have a
higher performance in MF than BP. This is under-
standable, as proteins that physically interact with
each other do not necessarily perform the same
molecular task (MF), although they generally co-
localize and involve in the same pathway (related to
BP and CC).
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Confidence score for BLAST and PSI-BLAST
baseline methods

As implemented in the CAFA experiments [33], we
have used locallD (i.e., the sequence identity normal-
ized by number of aligned residues) as the confidence
score for the “BLAST” and “PSI-BLAST” in the control
studies (Text S1). However, we note that such a score
might not be the best choice for these baseline
methods. In Fig. S4, we compare the performance of
BLAST and PSI-BLAST using different “confidence
scores,” including locallD, globallD (sequence identity
normalized by the query length), evalue (lowest
E-value), and frequency (the number of homologs
annotated with a GO term of interest among all
identified homologs). It shows that frequency consis-
tently has the highest Fmax at all cutoffs through all
GO aspects, indicating that a consensus of multiple
template hits is probably a more robust indicator than
the score of the best individual template. We therefore
recommend the use of the frequency of (PSI-)BLAST
hits as a more reliable and challenging baseline
method in future assessment experiments. We also
find that sequence identity is more indicative of
GO annotation similarity than E-value, where both
globallD and locallD have consistently a higher Fmax
than evalue.

Based on these observations, in Eq. (6), we have
combined the homologous templates from both
BLAST and PSI-BLAST, with the sequence identity
as the weight of the combinations. The result shows
that the combination outperforms the simple counting
of the frequency in each individual program (Fig. S4).
Thus, even the poorly performing BLAST and PSI-
BLAST methods may be substantially improved by
careful consideration of the applied scoring schemes.

Performance of MetaGO in blind test

As a blind test, an early version of MetaGO
participated in the community-wide CAFAS3 experi-
ment as “Zhang-Freddolino Lab.” Since MetaGO was
not finalized by the time of CAFA3, we were using PPI-
based prediction instead of PPl homolog-based
prediction, and simple confidence score averaging
instead of logistic regression. Due to the limit of
computational resource, we were only able to com-
plete structure-based function prediction for 5000
targets. Nevertheless, MetaGO model was ranked at
the first place in BP prediction among the 148 models
submitted by 80 registered teams (although the
performance of MetaGO in other categories was
relatively worse), according to preliminary results
from the CAFA3 assessors (N. Zhou and |. Friedberg,
personal communication; see also https://www.
synapse.org/#!Synapse:syn11587254).

As a case study, we inspected the MetaGO
prediction for target T96060009790 (Human
Lysozyme-like protein 6, O75951). According to the

experimental annotation obtained after our CAFAS3
model was submitted, this is a sperm protein
exhibiting bacteriolytic activity against gram-
positive bacteria (GO:0042742 defense response
to bacterium). While the structure of this protein is
unknown, the I-TASSER model shows remarkable
similarity to human lysozyme C (PDBID: 1di3A) with
a TM-score of 0.85. Therefore, the structure-based
pipeline of MetaGO asserts that the BP of this
protein is involved in defense response to bacterium
(GO:0042742) with a high confidence score of 0.98.
Interestingly, the sequence-based methods only
give a low confidence score of 0.3 for the BP term
G0:0042742; but these methods identify the bacte-
riolytic MF (GO:003796) with a high confidence
(0.98). Thus, the correct BP and MF annotations are
both assigned with confidence scores >0.9, when
structure, sequence, and PPI information are com-
bined, showing the advantage of multisource infor-
mation in the annotation of highly specific functions.

Conclusion

Protein function is a multifaceted and complex
phenomenon, and there is currently no single
algorithm that can generate models which cover all
aspects of functions. To explore the potential of
multi-source approaches, we developed a new
hybrid method, MetaGO, to predict GO of proteins
by combining information from evolutionary homol-
ogy, structural analogous comparison, and PPI
mapping.

The method was tested on a large-scale set of
1000 non-redundant proteins, which demonstrated
significant advantages on GO prediction compared
to the traditional sequence homology-based ap-
proaches. Detailed data analysis showed that the
major advantage of MetaGO comes from the
introduction of additional pipelines from global and
local structure alignments, and the PPI-based
functional referrals. In contrast with sequence-only
methods, whose performance decreases rapidly
when the sequence identity level of functional
templates is reduced below 30%, the structure-
and PPI-based pipelines have essentially no depen-
dence on the sequence similarity level of the
functional templates, demonstrating the potential of
MetaGO for function annotation of distant- and non-
homologous protein targets, a long-standing prob-
lem in the field of computational biology [12,35].

Despite the encouraging performance, MetaGO can
be further improved in several aspects. For instance,
as shown in CAFAS3, one issue in MetaGO is that the
accuracy of MF is relatively low compared to other GO
aspects. This is partly because MF, especially the
enzymatic activity, usually depends only on a small
number of critical residues, while the current sequence
and PPl homolog pipelines consider only global
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template comparison. Implementing local similarity
comparisons of the critical residues in the pipelines
should help in improving the MF prediction. Another
issue is the relatively slow process of the structure-
based pipeline, as it needs to do alignment search
through the entire BioLiP database, which can take a
few hours for a single protein (Fig. S5). The process
can be significantly accelerated by a hierarchical
search, in which the BioLiP proteins are pre-clustered
by the structural similarity, where an initial scan can be
quickly completed on a representative member of
each cluster, followed by detailed alignment search
only on the interested clusters. Work along these lines
is in progress.

Methods

MetaGO consists of three separate GO prediction
pipelines, which detect functional homologies based
on structure and sequence comparisons, and PPI
networks. A consensus is then deduced by logistic
regression, using the confidence scores of different
pipelines as features. The pipeline of MetaGO is
illustrated in Fig. 1a.

Structure-based GO prediction

The structure-based GO prediction protocol in
MetaGO is extended from the COFACTOR algo-
rithm designed for ligand binding site prediction [26]
(see bottom of Fig. 1a).

Global structure search

The pipeline starts from a structure model predict-
ed by I-TASSER [31]. TM-align [34] is then used to
match the query structure against the BioLiP [24],
which contains a non-redundant set of 35,238
proteins with known GO, where 20 templates with
the highest TM-scores [36] are returned. Next, each
of the templates is re-aligned to the query by a
modified TM-align program using a new Gsim score:

Lai

Gsim = LZ

P(i,a)+0.9-9;

(1)

where L is the length of the query, L,; is the
number of aligned residues, d;is Ca atom distance
between jth pair of aligned residues, and dy = max
{0.5,1.24y/L-15-1.8} is a distance scale, as
defined in TM-score [36]. F(i,a) is the frequency of
amino acid a at the ith position of the sequence
profile generated by searching the query against the
NCBI non-redundant (NR) database using PSI-
BLAST with an E-value cutoff 0.001. P(j,a) is the
log-odds value of a at the ith position in the template
sequence profile, pre-generated for all templates in

—+01: F(i,a)-
1+ d/d Z

the BioLiP. 6; equals 1 when amino acid type at the
ith aligned position is identical in query and template,
and 0 otherwise.

The same heurristic iterative algorithm from TM-align
is used to search for the alignment with the highest
Gsim. Since additional mutation terms are included,
this re-alignment process on Gsim considers both
structural and evolutionary information, where the
latter helps enhance the functional connections
between the proteins.

Local structure alignment

To evaluate the local structure similarity between
query and template, their active/binding sites are
superposed to each other according to

Nall Nall

Lsim = NIZ/SIm, =N, Z

14 d,/3 e

where N;is the total number of residues in the active/
binding site, Ny is the number of aligned residues,
and M; is the normalized BLOSUM®62 substitution
score [37] between the ith pair of aligned residues.

This local structure alignment is performed by an
iterative process similar to that in TM-align. Briefly,
starting from the superposition from the global
structure alignment, a dynamic programming is
performed to create a new alignment using Isim; as
the alignment score and —1 as the gap penalty.
Based on this alignment, the structures of active/
binding residues are re-superposed by TM-score,
where the new superposition will result in a new /sim;;
matrix, which in turn is used to create a newer
alignment and newer superposition by dynamic
programming. This process is repeated iteratively
until the alignment is converged.

Confidence score of GO terms from
structure templates

The confidence score of a structural template hit is
calculated as a combination of the global and local
structure similarities:

2
1+ exp(—(0.6 - Lsim - Sps + Gsim-0.6))

(3)

GL=

with Sps being the sequence identity at the active/
binding site. The confidence score of a GO term g,
which is transferred from N(qg) functional templates,
is calculated by

Cscorestructure(q) — 1= H [1-GLn(q)] (4)
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where GL,(q) is the GL value of the nth template
associated with g. We note that if gis assigned to the
query, its direct parent GO term p should also be
considered annotated to the query. To enforce this
hierarchy relation, we compute the confidence score
for p by

Cscore®™ " (p) = min{1,Cscores"“°'“re(q) {1 + log (%)”
q

(5)

where N, and N, are the numbers of proteins in the
UniProt with GO terms p and q, respectively. Equation
(5) is iteratively applied to all parent terms toward the
root until Cscore®™""(p) > 0.3, as upstream parent
terms with a higher Cscore are automatically included.

Sequence and sequence-profile based
GO predictions

In the sequence-based pipeline, a query is
searched against the UniProt-GOA by BLAST with
an E-value cutoff 0.01 to identify sequence homologs,
where unreviewed annotations with “IEA” or “ND”
evidences are excluded. Similarly, a three-iteration
PSI-BLAST search is performed for the query through
the UniRef90 database to create a sequence profile,
which is used to jump-start a one-iteration PSI-BLAST
search through the UniProt-GOA. The confidence
score of a GO term q transferred from the sequence
templates is

blast
Eg:*] (9) Szlast(q)

Cscore®® " (q) = w . ==L -0~ %/ (6)
Nblast blast
Zn:1 Snas
Npsiblas! il
] M (q)S;r)73| ast(q)
+( _W) ' Npsiblast Spsiblast
Zn:1 n

where SEPst and SPSPast are the sequence identity of
the nth homolog identified by BLAST and PSI-BLAST,
respectively, and NP2t and NPSPESt gre the total
numbers of homologs identified by the two programs.
S,?Iast(q), S,F;SlblaSt(CI), Nblast(q)’ and Npsﬂolast(q) are the
corresponding values for the proteins with GO term g
in UniProt-GOA. To balance the BLAST and PSI-
BLAST terms, the weight w = max{SPPa"} s
introduced as the maximum sequenée identity for all
PSI-BLAST hits, so that BLAST has stronger weight
than PSI-BLAST when close homologs are found.

Protein—protein interaction based GO predictions

We tested two different approaches to utilize the PPI
network for GO prediction (green pipeline in Fig. 1a).
In the first approach, the query sequence is mapped to
its closest BLAST hit in STRING PPI database [38].
Since each protein in STRING can have multiple

interaction partners, the GO terms q of the PPI
partners, as annotated in the STRING database, are
transferred to the query with a confidence score of

SMstr,(q)
PPl ) — §. 2n=151n 7
(9) S (7)

where S is the sequence identity between the query
and the STRING entry that it is mapped to, N is the
total number of PPI partners for this entry, and str, is
the score assigned by STRING as confidence of
interaction. N(qg) and str,(q) are the corresponding
partner numbers and STRING score for PPI partners
annotated with g.

In the second PPI homolog-based approach, the
PPI partners are identified similarly as in the first
approach. Next, these PPI partners are searched
through the UniProt-GOA by BLAST to identify
homologs of the PPI partners. The GO terms (e.g.,
q) of the BLAST homologs are then transferred to the
query with a confidence score calculated by

Cscore

Cscore™om(g) — 5. N 1 lstr,, . Zf"gq)snﬁk(q)]
= N

Z,,;I:1 Strn . Zfi1 Sn,k
(8)

where K,and S,, are the total number of the BLAST
hits for nth PPI partner and the sequence identity
between nth PPI partner and its kth homolog, while
Kn(q) and S, «(q) are those for the PPI partner
homologs annotated with q.

Consensus MetaGO prediction

The final GO prediction in MetaGO is a combina-
tion of the three pipelines, where the confidence
score of a GO term q is calculated through logistic
regression on their weights:

Cscore

MetaGO (q) _ 1
1+ exp[-XnWm - Cscore™(q)-wy

9)

Here, me {structure, sequence, PPlhomo, Naive},
and Cscore™(q)¢ [0, 1] are the confidence score for
g by the mth feature. The first three features in the
regression, “structure,” “sequence,” and “PPlhomo,”
are the confidence score from the three structure,
sequence, and PPl homolog-based pipelines in
Egs. (4)—(8). The fourth feature “Naive” is the
background probability of g being annotated in
UniProt-GOA (see Text S1).

Here, we note that wy and w,, are the only free
parameters in the MetaGO pipelines, where all other
parameters in the structure pipeline in Egs. (1)—(3) are
inherited from the COFACTOR program without further
optimization, and the parameters in Egs. (4)—(8)
have been uniquely determined from the UniProt-
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GOA database, the sequence identity of function
templates, or the confidence score of PPI assigned
by STRING database. The five free parameters are
trained by gradient descend on the 1224 training
proteins that are selected from E. coli genome and
have a sequence identity <30% to any of the test
proteins used in this study (see Table S2).

Assessment criteria of GO prediction

Following the CAFA experiments [12,33], only GO
terms with experimental evidence codes (EXP, IDA,
IMP, IGI, IEP, TAS or IC) are considered as “gold
standards.” To explicitly consider the hierarchical
nature of GO terms, if a child term is annotated to a
protein, all its direct and indirect parents, as defined
by the “is_a” relation, are also considered gold
standards. Similarly, for each prediction, the confi-
dence scores for predicted GO terms are recursively
propagated towards the root of the ontology such
that each parent term receives the highest score
among its children.

To evaluate the predictions, the maximum F1-
score, that is, F-measure, is calculated as [12].

{2 - pr(t) - rc(t)] (10)

Fmax = ma
X X pr(t) + re(t)

te(0,1]

where pr(t) and rc(t) are the precision and recall for
the GO predictions with confidence score > t, defined
by

tp(t)
to(t) + fo(t)’

tp(t)

ro(t) = to(t) + fn(t)

pr(t) = (11)

Here, ip(f) is the number of GO terms correctly
predicted, fp(f) + fo(f) the number of all predicted GO
terms for the query, and ip(?) + fn(f) are all the GO
terms annotated to the query in the “gold standard.”
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