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ABSTRACT
Introduction: Protein function is determined by protein structure which is in turn determined by the
corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are
understood, it should be possible to refine or even redefine the function of a protein by working
backwards from the desired structure to the sequence. Automated protein design attempts to calculate
the effects of mutations computationally with the goal of more radical or complex transformations than
are accessible by experimental techniques.
Areas covered: The authors give a brief overview of the recent methodological advances in computer-
aided protein design, showing how methodological choices affect final design and how automated
protein design can be used to address problems considered beyond traditional protein engineering,
including the creation of novel protein scaffolds for drug development. Also, the authors address
specifically the future challenges in the development of automated protein design.
Expert opinion: Automated protein design holds potential as a protein engineering technique, parti-
cularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility
and immunogenicity issues, automated protein design is initially more likely to make an impact as a
research tool for exploring basic biology in drug discovery than in the design of protein biologics.
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1. Automated protein design: radical protein
engineering by computer

Proteins play multiple important roles in living organisms [1].
As functional biomolecules, proteins catalyze metabolic reac-
tions, transport molecules and metabolites, coordinate
response to stimuli, have vital roles in the transfer of biological
information (i.e. for DNA/RNA replications, transcriptions, and
translations), and are at the heart of many other specific
biological processes, which make them critical for regulatory
systems and communication between cells. As structural scaf-
folding, proteins also form rigid but flexible supports for dif-
ferent functions, such as in the cytoskeleton of eukaryotic cells
[2], or in motor proteins in muscle cells [3,4].

This diverse range of functions is indebted to the peculiar
construction of proteins in comparison to other polymers:
each protein consists of single or multiple polyamide chains
made out of a unique combination of 20 different amino acid
residues. Each residue is characterized by different chemical
functional groups. The group’s rotational degrees of freedom
allow a protein to attain a conformation that yields attractive
physical forces and chemical interactions that stabilize the
protein structure in a global sense. At the same time, they
also have the local flexibility to selectively bind and to speci-
fically recognize other molecules for carrying out certain bio-
logical functions.

Thus, the holy grail of protein science is to understand the
interplay between amino acid sequences with their

corresponding spatial structures, which in return, determines
their functions. The first protein sequencing was done in 1949
by Sanger [5], while the first protein structure elucidation by
X-ray crystallography was made in the late 1950s by Kendrew
and Perutz [6,7]; both leading to the rise of the question of
protein folding as famously addressed by Levinthal in 1969 [8].
Since then, there have been an enormous number of protein
sequence-structure studies done from a physics, chemistry, biol-
ogy, and informatics point of view – a quest that still continues to
the present day. After 50 years of studies, our understanding is
still far from complete. Nevertheless, the knowledge accumu-
lated from these studies has given rise to interesting questions:
(1) Is it possible to infer protein structure and functions solely
from the amino acid sequence? (2) Is it possible to build a protein
with a novel (de novo) sequence, while still having control toward
the outcome of the structural topology, stability and function?

The first question gave rise to the field of protein structure
prediction [9,10], while the second gave rise to the field of
protein design, both of which emerged concurrently (Figure 1).
In protein structure prediction, the aim is to deduce the three-
dimensional structure of an amino acid sequence; while, in
protein design, having a specific, known function or protein
structure as a target, the aim is to figure out which amino acid
sequences will lead to successful, correct folding, and biologi-
cal activity. One may think of the protein design problem as
the inverse of the protein structure prediction problem [11], or
as an inverted-folding problem [12].
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The possibility of predictive control in refining or even rede-
fining protein functions has become the main driving force for
the field of protein design. The vast possibilities of amino acid
sequence combinations opened up by substantial sequence
rewrites poses a problem. Protein design is a combinatorial
problem in the order of 20L, where L is the number of amino
acids in a target protein. Even a small protein with L = 30 will
possess 1.07 × 1039 different possible combinations to be
checked. By comparison, the age of the universe is estimated
to be 4.32 × 1017 s, assuming 13.7 billion years since the Big
Bang. To complicate the problem more, the gigantic ‘sequence

space’ search must be solved concurrently with the ‘spatial
space’ search problem, i.e. the protein’s fold and shape in
three-dimensional space are determined by the L-amino acids’
backbone and side-chain conformations, which are governed
by numerous weak chemical interactions between themselves
or with the environment. In light of this, the search for the most
energetically favorable de novo protein also requires a good
approximation toward a true free energy surface potential, after
which protein design turns into an optimization problem.
Considering the search space dimensions, all of these aims
will require the implementation of an efficient computational
algorithm combined with robust and elegant statistical and
mathematical tricks and techniques.

The term protein design is, on many occasion, used inter-
changeably with the term protein engineering. Most protein
engineering is achieved either through rational design, the
evaluation of a few human selected mutations guided by com-
prehensive structural and biochemical knowledge, or by direc-
ted evolution by display technologies which evaluate very large
mutant libraries generated by random mutagenesis at specific
positions within the protein chains [11]. The success of this
strategy is long and varied; nearly all protein therapeutics
have been developed using some combination of the two
strategies. The methods work in most cases because protein–
protein interactions and enzymatic active sites are often rela-
tively localized; evaluating one mutation site often only requires
consideration of a few other sites in the immediate vicinity of
the mutation – a mutation on one side of the protein surface
usually does not impact the effect of a mutation on the other
side. As long as the effect of the mutations is relatively loca-
lized, directed evolution by random mutagenesis can be an
efficient way for searching for optimal protein sequences as a
large area can be covered by independent screens.

However, there are applications in which direct application
of the traditional methods of display technology and rational
engineering are challenging and computer-aided or automatic
protein design is required. One of the primary examples is
when the number of mutations that must be considered
exceeds the size of even the largest display libraries. While
the library sizes of 1015 mutations that are achieved by tech-
niques like ribosome display [13] may seem large, in reality
1015 mutants only corresponds to ~12 designated positions
and can quickly be exceeded if the mutations cannot be
considered to act independently of each other. Such a situa-
tion often occurs in the redesign of the hydrophobic core of
the protein for increased stability [14,15], where tight packing
requires the consideration of how each mutation affects the
other and subtle steric clashes can be difficult for humans to
evaluate.

Another interesting application in this vein is the creation of
water soluble versions of membrane proteins [16,17]. Membrane
proteins are an essential component of the cellular signaling
network. Because of their central role in cell signaling and reg-
ulation, they are highly overrepresented in both current drug
targets and in estimates of future ones [18]. While this obviously
stimulates a great interest in the structural biology and biophy-
sical characterization of these proteins for structure based
rational drug design [19], the intrinsic properties of membrane
proteins make such studies difficult. Membrane proteins are

Article highlights

● The idea of having control over protein function and stability has
become the main driving force for the field of automated protein
design.

● Automated protein design is particularly useful in protein engineering
where a large number of interdependent mutations must be con-
sidered or screening by directed evolution is difficult.

● Challenges in automated protein design include the enormously large
dimensional spaces for searching the optimal sequence and confor-
mation within a defined structure or function and the development
of a fast yet accurate scoring functions along with an efficient
optimization algorithm.

● One of the remaining challenges is to be able to evaluate the stability
of a proposed design model quickly through computational or
experimental means to iteratively improve scoring functions.

● Solubility and immunogenicity issues continue to be a particular
concern of proteins engineered by automated protein design and
currently limit clinical development.

● The future development of accurate scoring function for protein
design will involve a collaborative effort between different disci-
plines, including informatics and data science.

● In turn, this may give useful feedback to the studies of protein
stability, protein folding, and protein structure and function prediction,
and may open up the possibilities beyond backbone-based protein
design, e.g. the design of intrinsically disordered proteins.

This box summarizes key points contained in the article.

Figure 1. Number of publications (bar graphs) and cumulative number of
citations from the previous years (dots) related to the topics of protein design
and computational protein design. The term ‘computational protein design’
here also including similar terms such as ‘automated,’ ‘computer-aided,’ ‘ab
initio’ and ‘first principle’ protein design while the term ‘de novo’ protein design
is excluded, as it is not necessarily referring to ‘automated protein design.’ Data
is taken from web of science.
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notoriously difficult to express and purify in an active state. Even
if expressed properly in sufficient amounts, the requirement of a
membrane system for stability poses unique challenges for most
biophysical techniques [20,21]. Removal of the protein into a
detergent system amenable to crystallization or NMR studies
often results in either aggregation of the protein or creation of
an inactive state and requires careful consideration of experi-
mental conditions. As an alternate approach, the exterior of the
protein can be redesigned to switch the hydrophobic, mem-
brane-favorable residues with more polar ones, increasing the
solubility of the protein and therefore allowing the use of well-
established methods developed for soluble proteins. Slovic et al.
created a water-soluble version of the KcsA potassium ion chan-
nel by redesigning the surface using a statistical potential to
replace hydrophobic residues with those expected to be present
on the surface of a water-soluble protein. The resulting design
mutates 29 out of 104 amino acids on the surface of the protein
to create a soluble protein that could be expressed in high yield
[22]. The resulting structure closely resembles that of the original
membrane protein and retains its potassium ion selectivity [23].
Water soluble analogs of other membrane proteins have been
developed by this method including themu opioid receptor [24].
The need for computational design is clear here: a large number
of mutations are needed to achieve solubility and optimization is
difficult to achieve through iterative rounds of direct evolution.

Simultaneous multiparameter optimization can also cause
difficulty for display based screening. A prominent example
occurs in the engineering of bispecific antibodies. Antibodies
are normally symmetric homodimers where each of the two
chains binds the same target. This poses a problem in some
contexts where simultaneous binding to two separate targets is
desired. In cancer immunotherapy, for example, the activation
of cytotoxic T cells against the tumor requires binding to both a
tumor-associated antigen on the tumor cell and binding to the
CD3 antigen on the T-cell [25,26]. Since both proteins bind to
the same loops in the complementarity determining region,

engineering such simultaneous engagement is difficult using
normal monoclonal antibodies. Bispecific antibodies solve this
problem by using a chimeric protein to create a heterodimer
where each chain binds a different target [27]. Bispecific anti-
bodies can be created by random recombination of individual
antibody chains but the process is inefficient and requires an
affinity purification process for production that is difficult to
scale up to manufacturing scale [28].

Redesigning the interface between the two CH3 domains
of the bispecificantibody to enforce complementarity can
greatly increase the yield of functional antibodies [29]. The
dual functional nature of bispecific antibodies does not lend
itself well to traditional protein engineering high-throughput
approaches using directed evolution without modification to
enforce a logical AND gate [30]. Computational approaches
can create a small set of mutations (typically several hundred)
[31] which have a high probability of success that can there-
fore be screened by lower throughput methods. This technol-
ogy was used by Xencor to create two bispecific antibodies,
XmAb14045 and XmAb13676, that have entered Phase 1 clin-
ical trials for acute myeloid leukemia and non-Hodgkin’s lym-
phoma, respectively, in 2016 and 2017. The previous examples
are some of the applications of protein design to pharmaceu-
tical research and are not meant as an exhaustive list. The field
is developing at a rapid pace and further applications can be
found in recent reviews [32–34]. It is important to note here
that computational design is not exclusive of other protein
engineering techniques and a protein typically go through
several rounds of protein design followed by experimental
optimization [35].

2. The scope of automated protein design

Protein design problems can be classified into two major
design types (Figure 2): (1) structural design, pertaining to
either the design of new structural topologies as a proof of

Figure 2. General classification of protein design.
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concept with no specific biological function considered parti-
cularly or, more relevant to drug development, optimizing the
biophysical properties such as solubility and thermodynamic
stability, and (2) functional design, which involves considera-
tion of tuning and optimizing a certain biological function
without radically altering the protein structure. Each class
can be divided into two different design subclasses: (1) mono-
mer design, where a monomer protein can function by itself or
(2) complex/interface design, where a protein needs to form a
complex with other proteins (as homomers or heteromers), or
form a protein–protein interacting assembly for exerting a
function. Due to space limitation, we will only briefly describe
each of the subclass as they are relevant to our next discussion
about the challenges in automated design. For in-depth
review articles and books discussing most recent progress in
computational protein design projects in general, readers are
encouraged to check the referred publications [36–39].

2.1. Structural protein design – the creation of novel
protein scaffolds

The main objective of protein design for this subclass is both
as a ‘proof of concept,’ i.e. to show a proposed design meth-
odology works well, and to create a scaffold with favorable
pharmacokinetic and biophysical properties onto which a
binding loop can be grafted. Earlier we have mentioned
some examples from Richardson [40] and from Mayo [41],
while another recent prominent examples was made by
Baker and coworkers with the design of the Top7 protein
[42]. Top7 is an exceptionally stable 93-residue globular pro-
tein (ΔGfolding = −13.2 kcal mol−1 at 25°C), in which a novel α/β
fold either is not naturally present in nature or at least has not
yet been discovered experimentally. The Top7 protein was a
landmark in theoretical protein design research as it showed it
was no longer necessary to keep to the templates provided by
nature for protein engineering.

Further work along this vein aimed at defining the rules
that defined designable structures with the goal of eventually
expanding the repertoire of protein therapeutics beyond the
scaffolds in current use. Almost all protein therapeutics cur-
rently used are antibodies constructed from the immunoglo-
bulin (Ig) scaffold. Antibodies possess a unique advantage
over other protein scaffolds in that polyclonal antibodies
against a wide range of targets can be generated by immuni-
zation of animals, from which highly specific monoclonal anti-
bodies can be made by hybridoma screening. The long history
of antibodies in the pharmaceutical industry has generated a
vast knowledge bank of the pharmacokinetics, immunogeni-
city, and clinical safety profiles of monoclonal antibodies [43].
The Ig scaffold is modular with a conserved Fc domain linked
to the variable Fad domain that binds the target. This multi-
domain structure allows the antibody to be screened at the
cellular level and then purified on an industrial scale using
proteins that recognize the conserved Fc domain [44]. The
large size of the multi-domain structure limits glomerular
and renal clearance giving rise to long half-lives, which is
favorable in many clinical situations [45,46]. The conserved
Fc domain of the antibody can also bind the FcγR receptor
to activate the cellular component of the immune response.

By contrast, most other naturally occurring potential scaffolds
have a single binding site, limiting their mode of action to
sequestration unless fused to another protein or a second
effector site is engineered onto the scaffold.

Antibodies also have a number of disadvantages for certain
applications. The classic Ig scaffold is dependent on disulfide
bonds, which limits the use of bacterial expression for manufac-
turing. Their large size and consequent slow diffusivity may limit
penetration into solid tumors, which reduces their potential
effectiveness in cancer immunotherapy [45]. In imaging applica-
tions, a long half-life is often problematic and a smaller scaffold
with more rapid renal clearance may be desired [46]. These
limitations have led to the search for alternative scaffolds for
protein engineering. The most radical option is to move away
from proteins entirely and build on a non-protein scaffold
[47,48]. Aptamers, oligonucleotide polymers, can be produced
rapidly and, in the case of DNA aptamers, at a cost far below that
of antibodies. The reversible nature of oligonucleotide denatura-
tion means DNA and RNA can be stored at room temperature
indefinitely, in contrast to protein-based therapeutics which are
sensitive to heat induced denaturation and have a limited shelf-
life [49]. However, the oligonucleotide backbone is vulnerable to
degradation from nucleases in vivo [49]. The very short in vivo
half-life of oligonucleotide aptamers (sometimes less than
10 min)[50] has led to the search for new protein scaffolds
which possess the compactness and thermal stability of apta-
mers but with higher in vivo stability [46,51]. Computational
design has played a prominent role in this search [52–54]. A
particular focus has been on miniproteins, which at the 30–50
amino acid range, lie at the edge between proteins and pep-
tides [55,56]. The interest in miniproteins has been sparked by
the possibility of limited oral bioavailability for some folded
peptides, as exemplified by modified formulations of the 39-
amino acid helical peptide drug Exenatide [57], and even the
possibility for intracellular targeting, which is not possible for
antibody and aptamer based designs [55,58]. A miniprotein
drug would likely require remodeling the protein surface to
accommodate a binding site for the target protein.
Unfortunately, the number of naturally occurring miniprotein
scaffolds is limited and unlikely to meet the needs of the phar-
maceutical industry. With the aim of expanding this repertoire,
Baker et al. constructed a new set of disulfide stabilized, cyclic
miniproteins by de novo computational design that may serve as
new scaffolds for protein therapeutics. Computationally
designed peptide scaffolds based on this concept are beginning
to enter the clinic. PG-200, an orally available interleukin-23
receptor antagonist [59] from Protagonist Therapeutics created
from the computational selection of disulfide stabilized peptide
scaffolds [60–62], is entering Phase I clinical trials for Crohn’s
disease.

2.2. Design of novel and improved protein functions –
novel enzymes and biosensors

2.2.1. Monomer design
Included into this subclass are enzymes, metalloproteins, and
other proteins that bind small molecules. Enzymes are an
interesting design target from either a scientific and economic
perspective. The first computationally designed enzyme was
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pioneered by Bolon and Mayo in 2001 [63], with the design of
hydrolase over a largely catalytically inert thioredoxin scaffold.
The breakthrough with de novo enzyme design showing sig-
nificant catalytic activities was made by Baker and coworkers
between 2008 and 2010, through the design of a Kemp-elim-
ination reaction [64], retro-aldol reaction [65], and Diels-Alder
reaction [66], for which active site designs were also done on
top of catalytically inert scaffolds. In the context of drug dis-
covery, these designs are particularly interesting as no natural
analog exists for the Kemp eliminase and Diels-Alderase
enzymes, opening up the possibility of enzymes being used
for more diverse roles in drug synthesis [67]. A computation-
ally designed α-gliadin peptidase that survives gastric condi-
tions for the treatment of celiac disease is under preclinical
development by PvP Biologics [68,69].

The main challenge is dealing with the (many) transition
states and intermediates involved in a catalytic cycle, which
require a hybrid quantum mechanics and molecular
mechanics approach using (QM/MM) modeling [70] and mole-
cular dynamics (MD) simulations [71]. In 2012, Mayo and cow-
orkers demonstrated an iterative design guided by MD
simulations and experiments, giving a major improvement in
the design of Kemp-elimination enzyme [72].

Similar in concept to enzyme design is the design of biosen-
sors [12,73], includingmetalloproteins [37], and single chain anti-
bodies called nanobodies [74]. For these classes, specificity and
regulation of affinity by external cues, e.g. environmental pH or
substrate concentrations, need to be considered carefully [75,76].
In order to design specificity, there are two general paradigms to
be used: positive design (i.e. by stabilizing the protein–substrate
binding complex) and negative design (i.e. by destabilizing com-
peting protein–substrate binding complexes) [32].

2.2.2. Complex/interface design
Many diseases are either related to inappropriate protein–pro-
tein interactions or the absence of correct ones [77–80]. Many
cell surface receptors and their effector proteins are involved
in signaling pathways, where activity is regulated by a small
molecular stimulus. In cancer, protein–protein interactions
either promote proliferation or inhibit the apoptotic pathway
[78]. From a protein design point of view, it is then desirable
to design protein inhibitors which will disrupt such interac-
tions [79,81]. The main challenge of designing a protein inhi-
bitor of a protein–protein interaction is optimizing the
interface [82], which is confounded by potential conforma-
tional changes within the protein upon binding [83], the
need to simultaneously balance affinity and specificity [84],
positioning bridging waters at the interface [85], and possibly
allosteric effects of the non-binding surface [86,87].

Membrane proteins, which encompass a large class of pro-
teins, interact directly with both non-polar lipids bilayer and
polar intra/extra-cellular matrix environment. Due to this,
design and experimental validations (i.e. expressions, crystal-
lizations) are usually difficult and the scoring functions, which
are designed for soluble environments, must be reparameter-
ized to reflect the environment of the membrane [88].
Recently, Barth and coworkers demonstrated a successful
transmembrane design (i.e. engineering) of a G-protein-
coupled receptor (GPCR) protein, which shows how a protein

design algorithm may guide the alteration of transmembrane
proteins affinity toward a certain ligand [89]. However, due to
the complexity of transmembrane proteins as mentioned
before, the design procedure was limited to rely mostly on
homology modeling and ligand docking [90].

3. Challenges in automated protein design

Challenges in automated protein design include: (i) the enormous
search spaces for the optimal sequence and conformation given
a defined structure or function, (ii) the development of fast,
approximate yet accurate scoring functions that mimic ‘true’
folding and/or molecular interaction potentials, and (iii) the
choice and improvement of an efficient optimization algorithm.

3.1. Challenge I: sequence and spatial search space

The full-optimization of protein’s geometry with respect to
every sequence possibility is an combinatorial NP-hard (Non-
deterministic Polynomial problem in the language of computa-
tional complexity theory) [91] which means there are, so far,
no known polynomial-time and polynomial-space algorithms
are available to solve the problem which require at most,
time- and memory-wise, a factor equal to polynomial of the
input data size. As a result, approximations and simplifications
need to be made.

3.1.1. Use of amino acid sequences evolutionary
information
A major simplification can be made by either considering
the conformational search separately from the sequence
search or ruling out certain mutations without a calcula-
tion intensive conformational check. Although sequence
and spatial conformations are intertwined, early protein
designs tried to simplify the search problem by consider-
ing only the amino acid sequence [11], as shown in the
successful design of a collagen-based, fibrous protein
based on the highly conserved Gly-Pro-X motif [40].
Previous work in protein structure prediction has shown
that evolutionary information can be used to infer the
importance of certain interactions. Since structure follows
sequence, a high degree of sequence conservation at a site
relative to the rest of the sequence usually implies an
important structural or functional roles for that residue in
catalysis, folding, or interaction with other proteins [92,93].
Amino acids that evolve together are likely to be either
contact with each other or have a catalytic role in the
active site [94].

Mutations at conserved positions are generally destabiliz-
ing and a non-homologous mutation may abrogate function
[95]. This asserts the idea of limiting the sequence search to
those readily explored by natural evolution. The sequence
search can be limited strictly by only considering the amino
acids observed at that position in homologs of the template
sequence [96], or by excluding conserved residues entirely and
focus on optimization of the areas of the protein that are less
conserved. Structural motifs that have been found to be stable
[97] in wide variety of contexts may also be used.
Alternatively, co-evolving residue pairs outside the main
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interacting surface may be an indication that long-range elec-
trostatics are important and the scope of the design should be
expanded [98].

However, the major weakness of only considering evolu-
tionary information is that the search space is confined to
known, evolved proteins [99], lowering the chance of design-
ing novel protein folds that have not been sampled through
evolution or incorporating novel binding activities. Recently,
the reverse idea has also been shown to be successful: Instead
of using evolutionary information of evolved proteins, the
design of a novel beta-propeller protein was accomplished
based on a predicted ancestor protein sequence, which aims
to recover protein functions lost during the evolutionary pro-
cess [100]. Reliance on evolutionary information also restricts
the use of non-natural amino acids, such as with D-amino acids
[101] Non-natural amino acids can convey many advantages
over natural ones. In peptide drug designs, for example, the
use of D- instead of L-amino acids increases peptide stability
toward degradations by proteases [78].

3.1.2. Restriction of the backbone
To fully optimize a protein geometry, a total of (3N-6) para-
meters including interatomic-bond lengths, angles, and dihe-
dral angles but excluding the translational and rotational
degree of freedom of the proteins need to be considered
where N is the total number of atoms in a protein. In compu-
tational protein design, however, instead of optimizing pro-
tein’s geometry fully each of the bond lengths and angles is
usually fixed into a predetermined, idealized value obtained
either from averaged experimental values or from high-level
QM calculations. The problem can be reduced into the lan-
guage of two molecular building blocks: a protein residue’s
backbone and side-chain, each of which can be treated
separately.

Each residue’s backbone and side-chain conformation will
govern the total conformation of the protein in three-dimen-
sional space, which will in turn determine its functions.
Although searching for the optimal sequence and spatial con-
figuration restricts the exploration to (1) the amino acid residue
types, (2) residue backbone torsional bond angles, and (3) side-
chain torsional bond angles, the combinatorial space problem
is still too difficult to solve without additional approaches.

3.1.2.1. Fixed backbone design. One popular approach to
reduce the geometric search space is done by fixing the
protein backbone, administered by restraining backbone tor-
sional angles ψ (N(i-1)-Ci-Cαi-Ni), ϕ (Ci-Cαi-Ni-C(i+1)), and ω (Cαi-
Ni-C(i+1)-Cα(i+1), the rotational (dihedral) angles for the amide
bonds, which is either ~0° (cis-conformation, e.g. prolines) or
~180° (trans-conformation, e.g. all other natural amino acids)).
This allows the side-chains to adopt only a discrete set of
conformations (i.e. rotamers), while fixing all interatomic-
bond distances and angles to idealized values. Termed as
fixed-backbone protein design [102], it finds most of its uses
and successes in re-designing native proteins with resolved
structures. The aim is to make are-designed protein with
superior properties, e.g. stronger binding affinity, or better
enzymatic activity, with respect to the wild type. Placing

different (mutant) amino acids on a native protein backbone
may put additional steric tension among the atoms, as the
available enclave space is not optimized for the mutated
amino acids, e.g. due to rotamer optimization problems
(Section 3.1.3). Even if continuous side-chain optimization is
considered, one still need to be concerned with the fact that
the native backbone is identified as an ideal conformation in a
non-native environment (e.g. the crystalline structure of a
protein is an averaged ensemble over many confined confor-
mations that possesses crystal contacts that may not exist in
vivo).

Most scoring functions in protein design algorithms at least
implicitly take into consideration the dynamic motions of the
protein to get a realistic model of the protein in living cells
(Section 3.2). Thus, allowing some flexibility to the backbone
become one critical step in ‘fixed’ backbone protein design.
Flexibility provides a mechanism to relieve minor steric
clashes, which in turn may stabilize the designed protein
[103]. Backbone flexibility is especially important for enzyme
design, or for any functions that require high adaptability with
regard to the environment or receptors. With this approach,
the relaxed backbone should not differ significantly from the
initial backbone framework and the torsional backbone angles
should still be acceptable within the Ramachandran set [104].

Backbone flexibility, including loop flexibility, is modeled
based on statistical observations of alternative conformations
in protein crystal structures [105]. Some models may utilize
either small, discrete search around the target backbone topol-
ogy, using predetermined backbone libraries, or a heuristic
search with continuous global backbone movements [106].

3.1.2.2. ‘De novo’ backbone design. Relaxing the backbone
in fixed backbone design usually refers to insubstantial back-
bone relaxation, which will not extensively change the protein
fold or topology. It will be interesting however to have the
ability to design novel protein folds whose topologies have
not been seen in nature (de novo backbone) [99]. Having this
capability may allow the introduction of new structure and
functions never seen before.

Different approaches have been made. Kim and coworkers
pioneered the design of trimers and tetramers of right-handed
super-coiled α-helical proteins through hydrophobic-polar
residues patterning, which were guided by scrutinizing the
unfolding free energies for each residue candidate [107].
Meanwhile, Baker and coworkers designed the Top7 protein
as mentioned earlier, by iterating consecutively between
sequence design and the corresponding structure prediction
[42]. More recently, but still based on similar principles, Baker
and coworkers tried to formulate basic rules that may govern
the folding of a protein into their native state, bridging the
intuition between secondary to tertiary protein structure [108].
These rules, which make use of a discrete model of protein
local geometry and restriction within the Ramachandran
space, significantly reduce the geometric space search for
the backbone and were later used to design completely
novel protein folds [109]. Similar to fixed-backbone design,
the de novo backbone optimization also may include in its
process, the refinement step utilizing the relaxed backbone
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design scheme to obtain best ‘aqueous conformation’ of the
protein.

3.1.3. Search for optimal side-chain conformations
Taking (N-1) idealized values of inter-atomic bond lengths and
(N-2) idealized angles leaves us with (N-3) rotational degree of
freedom (torsional bond angles, Section 3.1). Depending on the
type of amino acid i, each may have different number t of
torsional bond angles, χit, t ≤ 5: χi1 (Ci-Cαi-Cβi-Cγi), χi2 (Cαi-Cβi-
Cγi-Cδi), χi3 (Cβi-Cγi-Rδi-Cεi), χi4 (Cγi-Cδi-Cεi-Cζi); n = 5 for i = Arg,
Lys; n = 4 for i = Met; n = 3 for i = Glu, Gln.

To search for the best torsional conformations, it is imprac-
tical to implement a continuous geometric search. The alter-
native is doing a discrete, instead of continuous, search [105]
which still increases the number of parameters to search from
(N-3) to [(N-3) × (360°/a°)], where a is the angular step size for
the torsional angles.

3.1.3.1. Rotamers. Another approach is to use rotamers, by
taking idealized values of torsional angles instead of ‘continu-
ously’ optimizing them. In this approach, a set of rotamers
(rotamer library) is used in an iterative search for the best
idealized, torsional conformation of amino acid i at one posi-
tion in the backbone.

A rotamer is obtained by screening a protein structural
library (e.g. crystal PDB database), and represents frequently
observed torsion angle conformations for each individual
amino acid. The rotamers correspond to low-energy conforma-
tions in the protein crystal structure, supported by the fact
that residue side-chain torsional angles tend to cluster into
particular χit values centered on a probabilistic density distri-
bution [110,111]. Dunbrack and Karplus later noticed that
there are significant dependencies of rotamers with respect
to its local [ϕ,ψ] backbone conformations [112], from which
the backbone-dependent rotamer libraries were built. One pos-
sible advantage of using this approach is to have the possibi-
lity of modeling a water bridge, i.e. a water molecule chelated
between two residues via hydrogen bond interactions, which
is important in protein–protein interactions [113,114].

3.1.3.2. Non-rotameric rotamers. Rotamers however may
not be the best representation to describe conformational
space in general. Residues that possess tautomeric, partial
double bonds or aromatic characteristics, such as in Asn,
Asp, Gln, Glu, Phe, Tyr, His, and Trp (termed as non-rotameric),
yield asymmetric probability density distributions. The latest
version of Dunbrack’s rotamer libraries tries to tackle this issue
by using better statistical estimate models for estimating these
non-rotameric cases [115].

3.1.3.3. Dynamical rotamers. Yet another drawback with
the rotamer based approach is with the sampling database:
the PDB crystal database may largely omit dynamic, floppy
conformations which yield low electronic densities and thus
low accuracy or missing atomic positions. The crystal structure
itself is not always a good representative of the actual protein
conformations in its native biological environment. In this
case, rotamers with important functional conformations may
not be correctly sampled. In this respect it will be interesting

to see rotamer libraries built from protein structures eluci-
dated from NMR, which sample low-lying conformational
states absent in crystal structures that may be useful in impart-
ing a degree of flexibility to the design [116,117]. However,
NMR may suffer still from the difficulties in resonance assign-
ment within highly flexible regions. In the future, cryo-EM
based structures which can give atomic resolutions may be
used for this purpose [118,119]. Currently, to sample dynamic
rotamer conformations one may resort to MD simulations to
sample over a set of representative proteins [120,121].

For design involving protein–protein interactions, one
needs to take into consideration the effect of binding induced
conformational changes. Rotamers obtained from a database
of protein monomeric structures may not serve this purpose.
Also, the high representation of monomeric structures and
non-interacting regions within the PDB make rotamers asso-
ciated with functional conformations underrepresented in the
rotamer library.

Thus, the challenge is to accurately model protein confor-
mational changes upon binding or close contact with other
molecules, which is important for estimating how a mutant in
the designed protein will affect intra- or intermolecular inter-
actions [122], or how the designed protein responds to the
environment. One approach is to relax and do ‘continuous’
optimization of the rotamers, so that the final result may
correspond to low-energy conformations in its native environ-
ment [123].Sampling from MD simulations, using a reliable
force field, e.g. using a reaction force field for the case invol-
ving chemical reactions, may give rise to a set of rotamers fit
for this purpose. In addition, backbone conformations asso-
ciated with loop motions and large domain (secondary or
tertiary structures) movement [124], might also be modeled
in this way, and complemented using mode vibrations simula-
tions from QM, hybrid QM/MM, or semi-empirical QM meth-
ods [125].

3.1.3.4. Reduced representation approach. Further reduc-
tion in search space can be obtained by implicit atomic repre-
sentations, e.g. molecular framework poses or functional groups
of atoms might be converted into centroid, coarse-grained or
pseudo-atomistic models [126,127]. For example, in terms of
rotamers, each rotamer pose and type can be represented as a
one coarse-grained bead. Loss of inter-atomic interactions
details might be compensated with some empirical approxi-
mations [128,129]. This approach is ideally implemented in a
recursive, two-step optimization process in flexible backbone
design with iterations between backbone optimization and
side-chain optimization, see Figure 3).

3.2. Challenge II: scoring function development

In protein design, one of the important goals is to develop a
‘realistic’ scoring (or free energy) function, which can accu-
rately describe the physical and chemical interactions among
atoms in proteins and its surrounding environment. The scor-
ing function will form a potential which can guide protein
conformational change in a design simulation in response to
a mutation (Challenge I). The scoring function approximates
the true free energy G, which accounts for the electronic
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energy E, molecular enthalpy H, and entropy S. The protein
‘energy scores,’ either EP or GP, will be used to estimate the
protein stability (ΔGfolding) and/or protein interaction
(ΔΔGinteraction) with the surroundings or other molecules.

Protein Stability : ΔGfolding ¼ Gfolded
P " Gunfolded

P (1)

Protein Interaction : ΔGinteraction ¼ Gbound
folding " Gunbound

folding (2)

Unlike in full-scale MD simulations, the approaches generally
used in protein design consider only protein conformations
singly (i.e. a snapshot of folded/unfolded, bound/unbound).
This is a particular problem for free energy calculations of
protein stability which requires an energy of the unfolded
state. Since there are currently no available structures for the
corresponding unfolded chain of amino acids (although it is
theoretically possible through NMR studies [130,131]), a
hypothetical model of unfolded chain must be constructed
and used as a reference [122,129].

Analogous to natural protein evolution, the scoring func-
tion, along with the optimization algorithm (Challenge III), act
as a guide for selecting the best sequence for a target feature
(i.e. ‘natural selection,’ Figure 3). Getting a good scoring func-
tion, which can discriminate the lowest energy scoring
sequence from other competing low-energy scoring states, is
thus essential and extremely critical. Due to the size of pro-
teins, a good scoring function for protein design implies the
use of approximations to achieve a reasonable balance
between speed and accuracy [132,133], which may satisfy
the need for huge number of iterations or samplings in the
optimization algorithm.

3.2.1. Physics-based scoring functions
3.2.1.1. Molecular mechanics-based force-fields. QM-
based simulation methods, including QM/MM and semi-
empirical QM methods are still too expensive for protein

design simulations, even with current progress in computa-
tional technologies. For protein simulations, MM-based meth-
ods pioneered by Levitt, Warshel, and Karplus have then
become a clear alternative [134], which are parametrized
from either thermodynamics, crystallographic, spectroscopic
data or high-level QM calculations. The MM force field in its
general form introduces covalent bond energy potentials (har-
monic oscillator model of bond strain, bend, and torsional
vibrations) and non-covalent bond potentials (van der Waals
and electrostatic forces). Thus, within the force field, the inter-
nal energy of a molecular protein or protein–ligand complex
in a single conformational state is represented as:

EP ¼ ECovalent þ Enon-Covalent (3)

3.2.1.2. Physics-based energy functions for protein
design. incorporate the non-covalent part of the MM force
field while dropping the covalent part. This is done due to the
fact that the design simulation samples only an idealized
protein geometry constructed from backbone and side-chain
rotamers for a particular state (i.e. a snapshot), instead of
sampling the dynamics, as in MD simulations. An advantage
of physics-based methods is that the energy terms are intui-
tive and give a direct translation to real physical energy quan-
tities. The terms are usually designed to be pairwise
decomposable, which assumes that the total energy of a pro-
tein conformation EP (van der Waals, electrostatic, and hydro-
gen bond) is additive across atomic pairs. A pairwise
decomposable scoring function is a requirement for the
dead-end elimination (DEE) rotamer searching algorithm.
Since the DEE is essential to prevent combinatorial explosion,
in practice protein design scoring functions are required to be
pairwise decomposable, ruling out polarizable and other non-
local force-fields.

Physics-based scoring functions often take the form:

Figure 3. General scheme for an automated protein design. AA refers to amino acids; BB refer to protein’s backbone; opt. refer to optimization processes or
algorithm; seqs. refer to amino acid sequences.
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GP¼EP þ GPþS ¼ EvdW þ Eelectrostatic þ EHBond þ Gsolvation (4)

The van der Waals (vdW) term reflects both the weak attractive
force from the correlated transient motion of electrons and
induced dipoles and the strong, but short ranged, repulsive
force from the Pauli Exclusion Principle. In standard MM force-
fields it is modeled with a Lennard–Jones potential with a 6th-
degree polynomial modeling the attractive potential and a
12th-degree polynomial modeling the repulsive part:

EvdW ¼ 4!
r
d

! "12
" r

d

! "6
(5)

where d is the separation between the two atoms and r is the
distance at which the potential is at a minimum (the atomic
radii). While the Lennard–Jones approximates the true poten-
tial reasonably well, the discrete rotamer and limited back-
bone flexibility approximations required to make the
conformational search computationally tractable means that
some steric clashes will inevitably exist. If unadjusted, this can
lead to an inappropriately high weighting of the repulsive part
of the potential and poor packing of the sidechains. To
address this problem, a softened repulsive term is often used
which replaces the 12th degree polynomial with another term
that is more tolerant of small overlaps. The repulsive part of
the Lennard–Jones potential can be replaced with either a
linear term (EGAD) [135], or a term that becomes linear after
a specified cut-off value (ROSETTA) [136]. Alternatively, the
functional form can be kept the same and the effective atomic
radii r shrunk. Softening the repulsion term in either manner
assumes that the structure can relax sufficiently to eliminate
small clashes, for example by backbone rub motions or small
deviations from ideal rotamer geometry for the side-chains.
The reduced repulsion also allows closer approach then is
normally possible for polar atoms which can bring about
inappropriately large hydrogen bonding values which must
be reparameterized to appropriate values [137].

As the parametrization of MM force-fields is based on gas
phase properties, a solvation free energy term ΔGsolvation also
needs to be included to model the electrostatic and entropic
changes that occur when the protein interacts with water.
Because consideration of the effects of explicit water mole-
cules is difficult, protein design scoring functions usually rely
upon an implicit solvation model such as the Lazaridis–Karplus
(EEF1) [138], Generalized Born [139], or Poisson-Boltzmann
methods [140,141]. Implicit models treat water molecules as
a continuum, approximating the energy of solvation as a linear
function of the accessible surface area. Since solvation is pri-
marily an entropic effect, the ‘energy’ function actually refers
to a free energy calculation. All the models approximate the
largely entropic hydrophobic effect as being directly propor-
tional to the solvent accessible surface area (SASA). The calcu-
lation of the SASA can be made pairwise decomposable [142],
allowing it to be used with DEE and other algorithms that
require precomputation of energies.

The models differ in their treatment of electrostatic interac-
tions. The electrostatic energy of a protein system properly con-
tains terms from the interactions of charges and dipoles within
the protein itself, the interaction of solvent dipoles with protein
charges and dipoles, and the screening effect of the solvent

dipoles on the protein internal electrostatics. The Poisson-
Boltzmann method attempts to calculate the electrostatic poten-
tial of a protein of arbitrary shape exactly within a mean field
approximation, using a single dielectric constant for the protein
and ignoring ion volume effects [143,144]. The equation must be
solved numerically and gridding errors have been suggested to
be a major source of error [35]. If the protein is modeled as a set
of spheres, the resulting equation can be solved analytically to
generate the Generalized Born model. The radii of the spheres in
the model (Born radii) are not true distances but are adjusted to
approximate the results of the Poisson-Boltzmann equation as
closely as possible [145]. The Generalized Born method used in
EGAD [146] and PROTEUS [147] is faster, immune to gridding
numerical artifacts, but is sensitive to the choice of the Born radii.
The Lazaridis–Karplus method takes abstraction a step further
and calculates the solvation energy as the simply the sum of
coulombic contributions from functional groups parameterized
from small molecules with a distance dependent dielectric [148].
This is the electrostatic term used in ORBIT [149], FoldX [122], and
Evodesign [150].

An additional HBond term is added to account for the spe-
cific characteristic of hydrogen bonds [151], as each has partial
covalent and electrostatic characteristic. A purely electrostatic
term misses the orientational dependence that arises from the
partly covalent nature of the hydrogen bond, which can be
captured by a MM approach with the terms parameterized by
high level QM calculations on small molecules [152]. A purely
covalent term misses the long-range polarizing effects of
hydrogen bonds and improve the formation of hydrogen
bond networks [153]. An additional electrostatic term can be
added to reflect these contributions. Since hydrogen bonds are
also calculated in the electrostatic term, one must also be care-
ful of not over-counting its contributions [153,154].

Finally, it is important to note that the free energy of
stability is a free energy change that is defined with respect
to the unfolded state. A loss of stability upon mutation can
result from either an increase in the free energy of the native
state or a decrease in the free energy of the unfolded state.
The free energy of the unfolded state is difficult to calculate as
there is no single conformation to base the calculation on.
One method is to simply ignore it, which amounts to assum-
ing the energy of the denatured state is independent of
sequence. Another method assumes the energy of the dena-
tured state is dependent on local interactions only and the
energy of the unfolded state depends on the overall amino
acid composition but not the sequence itself. This latter
assumption drastically simplifies the calculation of the
unfolded state as a chosen single reference energy can be
associated with an amino acid type (or amino acid triplet),
reducing the intractable conformational search problem to a
simple lookup table. This is the approach used in most protein
design programs [106,155]. However, the structure of the
denatured state is known to be not entirely random and
persistent structure in the unfolded state in the form of local
hydrophobic clusters and residual secondary structure (SS) will
reduce the accuracy of the technique [156,157]. Alternatively,
the ‘unfolded’ state can be considered to be not a true ran-
dom coil but rather a statistical average of the structures
found in folded proteins, which can be obtained by surveying
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fragments from the PDB. An unfolded reference state energy
for a specific amino acid taking into account local persistent
structure can then be obtained by threading random
sequences unto this fragment database and averaging over
both sequence and fragments [135].

3.2.2. Knowledge-based scoring functions
Knowledge-based energy (scoring) function, or statistical poten-
tials, or potentials of mean force, are based on defining, asso-
ciating, and deriving the scoring (‘energy’) values as a function
of the frequency distribution of a feature in a structural or
sequence database. This frequency, when defined with respect
to a random distribution, is assumed to be a measure of its
contribution to an ‘energy’ or ‘free energy’ feature. Again, the
term ‘energy’ calculated from this approach has no direct
physical meaning, and its relation to the true definition of
physical energy may not always clear.

Knowledge-based scoring functions are generally
expressed as a pairwise sum of statistical potentials between
protein atoms or moieties:

G ¼
X

i

cxωi þ
X

i

X

j

cyωij (6)

ωi ¼ e"g ið Þ=kBT ; ωij ¼ e"g i;jð Þ=kBT (7)

The statistical ‘energy’ function G is expressed as a linear
combination of singlet (ωi) and pairwise (ωij) decomposable
statistical ‘energy’ potentials in terms of a Boltzmann prob-
ability density distribution (kB is Boltzmann constant, T is
‘temperature,’ a parameter associated with the state of an
ensemble not directly corresponding to a physical tempera-
ture). Singlet ‘energy’ terms are related to protein character-
istics independent of other moieties, such as hydrophobicity
and hydrophilicity, while pairwise terms are related to interac-
tion-dependent features, such as inter-moiety clashes and
electrostatic interactions. In the equation, the indices i, j may
represent moieties such as atoms, rotamers, amino acid types,
or coarse-grained beads.

The inverse (log-odds) of the Boltzmann probability distribu-
tion might also be used with the aim to make it resemble the
potentials of mean force, which then may give a ‘physical
flavor’ to the scoring function:

ωi ¼ "kBT logng ið Þ (8)

Another alternative is describing the potential using Bayesian
statistics, which usually is expressed in its log-odds form:

ωi ¼" lognP rijeið Þ (9)

ωij ¼" logn
P ri; rjjeij
# $

P rijeið ÞP rjjej
# $ (10)

Here, the potential ‘energy’ term ω is determined by the
probability distribution P of rotamer ri or pair of rotamers ri
and rj, when located in a certain molecular environment e in
the protein. Worthy to be mentioned that in connection to the
rotamer library, the selection of rotamers is also done using
this type of statistical potential [115].

Statistical potentials contain mostly arithmetic operations
and thus have the advantage of being fast in comparison to

time-consuming physics-based potentials, which may involve
solving linear algebraic equations. Within this approach how-
ever, a good selection of a training set database (which
becomes the ‘knowledge base’) is critical before one can get
a reliable statistical potential.

3.2.3. Machine-learning-based scoring functions
Machine-learning-based scoring functions uses a variety of
mostly supervised machine-learning algorithms [158,159],
such as artificial neural networks [160], random forests [161–
163], and support vector machines [164], to learn about specific
energetic or other structural or biological properties using a
training set of protein structures. The resulting, trained,
machine-learning-based function can then be used to produce
a scoring value associated with a predicted property:

Input : Descriptors ! Trained Scoring Function ! Output
: Scoring Value

Used as an input are features or descriptors, or also known
as fingerprints. Each descriptor is a one-dimensional vector,
where each element is a mathematical quantification of a
certain structural or interaction feature. In this approach,
each structural or interacting moiety is represented by a
unique descriptor. For example, the EvoDesign program
[165], which is a fixed-backbone protein design approach,
uses amino acid counts within a seven residue window and
the BLOSUM62 substitution matrix as features to quickly pre-
dict the SS, solvent accessibility (SA), and torsional backbone
framework of an amino acid sequence through a back-propa-
gated-neural-network-trained function. The propensity score is
then used to judge whether or not a sequence will have
similar SS as the template.

Similar to knowledge-based scoring, machine-learning-
based scoring can be computationally cheap and quick. The
SS/SA prediction in EvoDesign gives ~70% accuracy with a
runtime on the order of microseconds, while the traditional,
sequence-alignment-based SS/SA prediction may take min-
utes with only a slightly higher accuracy of ~80% [150].

In computational drug design, interaction fingerprints or
signatures [166–168], which have emerged only recently,
have been used to estimate the binding energy between
protein and ligand. The same principle might also be
extended for estimating the protein–protein interaction ener-
gies; and with some training via machine-learning methods,
this can be used as a basis for scoring the protein intermole-
cular interactions efficiently.

3.2.4. Empirical (hybrid) scoring function
An empirical scoring function computes the ‘energy’ or ‘free
energy’ by summing up the weighted contributions of many
individual ‘energy’ representation terms, most of which try to
mimic as close as possible the physical interpretation of their
counterparts in a physics-based method [169]. The energy
terms lean toward chemical intuition and interpretation
instead of physics, e.g. the hydrophobicity, hydrophilicity,
polarity, and inter-atomic clash penalty. To calculate binding
affinity, a ‘free energy’ term derived from the association con-
stant (Ka) or dissociation constant (Kd) might also be added
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[170]. The empirical scoring rewards term contributing to
stability/binding and penalize those reducing stability/bind-
ing. The contributions are scaled or weighted according to
regression analyses benchmarked against certain experimental
observables:

GP¼w1EvdW þ w2Eelectrostatic þ w3EHBond þ w4EWater-Bridges
þ 1ptw5EMetal-Bond þ w6ECationPi-Bond þ w7ESS-Dipole
þ w8EpolarSurface-solvation " w9EnonpolarSurface-solvation
" w10Eclashes þ & & &

(12)

Here, each ‘energy’ term might employ any of the above-
mentioned scoring type: machine-learning-, physics-, or
knowledge-based statistical functions. Thus, this type of scor-
ing function is termed a hybrid scoring function. Almost every
scoring function used in popular protein design algorithms,
such as those used in RosettaDesign [128,153,171], FoldX
[122], or OSPREY [106], falls into this category. Evodesign
uses a combination of knowledge-based scores based in
amino acid frequency at the corresponding location within
structural related protein, machine-learning-based prediction
of secondary and tertiary structure, and the physics-based
FoldX force field [97,150].

The main challenge for this type of scoring function is
parameter tuning to balance the terms contributing to the
free energy to obtain values that are well correlated with the
physically realistic energy values. While this type of scoring is
easily extendable, one must consider carefully the problem of
over-counting of an ‘energetic’ feature (e.g. polarity vs. elec-
trostatic, atomic clashes vs. van der Waals), and to ensure the
extension function does make sense.

3.3. Challenge III: choice of optimization algorithm

Protein design requires accurate scoring functions to score
and rank sequences by how well they fold into the target
structure. Considering the vast search space mentioned earlier,
the challenge is to develop an efficient optimization algorithm
that can handle this task in a reasonable computational time
with available computational resources. Also, considering the
search space dimensions, even with some approximations, the
problem of optimizing the design scoring function is still
categorized as an NP-hard problem [91], which can only be
approximated with an exponential algorithm. Several types of
algorithms have been developed, following either a determi-
nistic or stochastic approach.

3.3.1. Deterministic algorithms
Algorithms included into this class commonly implemented
into protein design programs are the Dead-End Elimination
(DEE) [172,173], (integer) linear programming [174,175],
branch-and-bound, or divide-and-conquer [132,176], and self-
consistent mean field approaches [133,177].

Notably is the DEE technique, which iteratively seeks to
eliminate early rotamers and/or combinations of rotamers asso-
ciated with high energy configurations by pruning
[105,106,123,132,178]. The iterations continue until it con-
verges into a single solution, which is proven to always be the
Global Minimum Energy Conformation (GMEC) [172,173]. Thus,

DEE when converged gives a mathematical assurance that the
quality of the design is the best solution within the scope of the
scoring function and/or the protein model. Therefore, in the
case that the design fails when it is experimentally validated (i.e.
the protein is not stable or is not showing expected activities),
one can be sure that it is solely caused by the inaccuracy of the
scoring function, giving clear feedback for the iterative
improvement of the scoring function [132].

However, the problem with DEE is that there is no guaran-
tee it will always converge. As a solution, searching methods
employing DEE always provide a back-up algorithm in the
case DEE search fails, such as using integer linear programming
or branch-and-bound based methods (i.e. A* algorithm [179]),
as implemented in OSPREY [106]. Other algorithms, such as
FASTER [178,180], uses stochastic criteria to continue with the
optimization in the case of DEE failure. However, this means
that in the case of DEE non-convergence the GMEC guarantee
is lost, although approaching the near-GMEC limit may still be
possible [133,181].

3.3.2. Stochastic algorithms
Monte Carlo and Genetic Algorithms have also been imple-
mented in automated protein design. Optimization utilizing
Monte Carlo methods (Metropolis, Simulated Annealing, Replica
Exchange/Parallel Tempering) are the most widely used for
protein design [36,133]. Within the Monte Carlo scheme,
sequential optimization is done by always accepting lower
scoring sequences, while higher scoring sequences will be
accepted with a probability equivalent to the Boltzmann prob-
ability, exp(–ΔE/kBT); where kB is Boltzman’s constant and T is
temperature factor. The temperature factor allows the
(Metropolis) Monte Carlo simulations to visit different local
minima. To explore more local/global minima, a higher T
value can be chosen and annealed in a stepwise manner
(Simulated Annealing), or in a parallel manner (Replica
Exchange) [182,183]. With the latter, several trajectories, each
runs at a different T value, are generated so that the simula-
tion trajectory can jump to an adjacent trajectory with a
higher/lower T according to Boltzman’s probability, thus
allowing it to explore the global energy scoring surface in a
more efficient way. Besides the memory and CPU advantages
compared to deterministic techniques, replica exchange and
Monte Carlo techniques have the advantage of providing
Boltzmann like sampling of the conformation/sequence
space near the GMEC [184]. Boltzmann sampling of rotamers
for a given sequence may provide a measure of the conforma-
tional entropy of a design, a factor which has largely been
neglected in energy functions to this date. Probabilistic sam-
pling of sequence space may be a better way of identifying
specific sites for experimental directed evolution by identify-
ing residues in the sequence likely to have low-energy
mutants rather than attempting to identify the GMEC. Given
the known inaccuracies of protein design energy functions,
such a combinatorial approach targeting protein ‘hot spots’
may be more effective than directly targeting the GMEC [185].

Genetic Algorithms are a stochastic method based on the
natural selection principle [186], which is a selection method
done in a similar manner to Simulated Annealing. The differ-
ence lies in the description of amino acids/rotamers as a bit
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string vector, which is then randomized and mutated by
genetic operators: a mutation operator, which simply mutates
the bit string value randomly, just like in Monte Carlo, and a
crossover operator, which randomly fragments and recombines
two bit string vectors. With the latter operator there is a
possibility that one may come up with a ‘super individual,’
which is ‘genetically superior’ than the other [133].

Algorithms based on stochastic methods are significantly
cheaper than those based on deterministic ones. However,
designed sequences optimized with a stochastic approach
do not guarantee a GMEC or near-GMEC solution. Thus, in
choosing which optimization method to be used, again, one
also needs to consider the tradeoff between speed, algorithm
complexity, and the certainty/accuracy of the results.

3.4. Challenge IV: clinical translation

It is useful to establish a distinction between proteins
designed by automated protein design as a research tools to
aid the drug discovery process and the creation of therapeutic
protein biologics through automated protein design.

Research tools are meant for exploratory preclinical
research aimed at establishing the basic biology of the system
prior to clinical development. Because they are not meant for
human use and are restricted to in vitro applications or at the
most animal model studies, optimization of pharmacokinetic
and ADMET properties is not as critical as they are in clinical
applications. An example of a research tool is the water solu-
ble analog of the KcsA potassium ion channel described in
Section 2, which is meant to further rational drug design by
facilitating biophysical characterization of the drug target.

Novel designed proteins meant as therapeutics are subject
to the same toxicity and pharmacokinetic constraints as other
protein biologics [187]. In addition to affinity (or catalytic rate
enhancement in the case of enzymes) and thermodynamic
stability, a whole host of other properties must also be
tuned to acceptable ranges including in vivo half-life, ADMET,
off target effects, and others [188].

Most of these issues are not specific to computationally
designed proteins and the particulars of the optimization pro-
cess will vary by the specifics of the protein being optimized.
However, two issues deserve special attention as they are more
prominent with computationally designed proteins than those
built from conventional protein engineering. The solubility of
designed proteins is often less than the corresponding native
proteins as current force-fields have a tendency to over-repre-
sent hydrophobic interactions, particularly on the surface [188].
The inappropriate clustering of hydrophobic residues on the
surface may lead to aggregation unless properly accounted for.
Alterations to the protein core from complete protein redesign
may result in low thermodynamic stability and periodic fluctua-
tions that expose the interior of the protein to solvent, creating a
surface favorable for aggregation. Explicit consideration of solu-
bility in design, either with a scoring term that disfavors hydro-
phobic patches on the surface [189], or solubility prediction
based on sequence threading [190,191], may be effective in
increasing protein yield and in vivo efficacy.

Immunogenicity is also of special concern for designed
proteins as the introduction of non-human on a protein

surface can raise an immune response. Deimmunization pro-
grams by removal of predicted T-cell epitopes will likely a
prerequisite before any designed protein can be used in the
clinic [192–194].

4. Conclusion

Protein design offers various opportunities, not only in terms
of applications, but also a long list of challenges, due to our
poor understanding of how to represent the physiochemical
principles underlying protein stability, folding mechanism, and
interactions with the environment or other molecules in a
computationally tractable manner. In interface design in parti-
cular, current scoring functions are too biased toward hydro-
phobic interactions to the neglect of electrostatic and
hydrogen bonding interactions, leading to aggregation-
prone sequences and low affinity, non-specific binding
[85,129,195]. Nevertheless, recent progress in protein design
shows promising results, with the demonstration of the suc-
cessful expression and synthesis of proteins with novel folds,
topologies, and functions when guided by computational
design algorithms. Progress has accelerated at a high pace,
with the wake of new computational technologies, more
affordable computational resources, and most importantly,
breakthroughs in the development of more accurate scoring
functions and optimization algorithms. Protein design is an
extremely complex problem which needs to be approached
and solved in a holistic manner.

5. Expert opinion

One of the remaining challenges in protein design is to predict
with certain confidence, whether a designed sequence from a
simulation will yield a successful protein expression and exhi-
bit the desired activities. This is also important for having
quick feedback from the success/failure of the designs, in
order to make improvements to the scoring functions.

One option to overcome the challenge is through the DEE
algorithm, which, if well converged, gives mathematical assur-
ance that the quality of the design is the best solution within
the scope of the scoring function. Any errors can then be
attributed to the scoring function and not due to the optimi-
zation search. Even with the DEE algorithm, one will always
need to rely on experimental validations, which take time,
costs, and manpower. In protein structure prediction, the meth-
ods can be benchmarked and tested based on the gold stan-
dard, i.e. the known structures from the PDB; in protein
design, however, there is currently not such good standard
until a biophysical or biochemical experiment is done to vali-
date the design. Based on the fact that most mutations are
destabilizing when considered individually, native sequence
recovery has been proposed as method for benchmarking
methods, however, protein design intrinsically assumes the
wild type sequence is not unique in fitting the scaffold
structure.

The ability to evaluate, prescreen and predict successful
designs is important. The ability to predict whether a pro-
posed design will eventually fold into a stable structure (fold-
ability, stability and structure prediction), and perform the
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preferred function (function prediction) without requiring
expression and biophysical characterization is essential. The
novelty of a design sequence will pose a challenge to existing
algorithms. It will require structure or function prediction
algorithms which do not rely on sequence or structure homo-
log templates (i.e. ab initio prediction). Toward this end, in
addition to physicochemical scoring terms, protein design
algorithms may also incorporate scoring terms related with
predicted structure or SS, rewarding scores might be given to
sequences predicted to have the desired (secondary) struc-
tural feature or functions.

To facilitate the structure and function predictions, a com-
prehensive database, which includes failed (negative control)
and successful (positive control) designs, could be constructed,
and made as a basis for the predictions [72]. One of the
difficulties in building the database is due to the tendency of
researchers to publish only good/successful design results. It is
until only recently (i.e. after 2010s), when researchers started to
also include the details of failed designs as well, at least in the
Supplementary/Supporting Information section. However, this
is done in a scattered manner and there has not been to our
knowledge a systematic effort to build a comprehensive data-
base of successes and failures. Protein design will benefit more
from the publications of both positive and negative results.

Recently Baker and coworkers demonstrated the use of an
‘on-the-fly’ successful/failed database in refining the scoring
function to gain a higher success rate in protein design [95],
which has been made possible by recent innovations in mole-
cular biology. The combined cycle between computational
protein design, next-generation gene synthesis, and high-
throughput protease susceptibility assays, provides a

framework for systematic measurements of protein stability,
creating a feedback loop between computation and experi-
ment in a short time span and low-cost manner [196].

We think that the future development of accurate scoring
functions for protein design will involve a collaborative effort
between Protein Design, Experimental Validations, Protein
Structure & Function Prediction, and Informatics/Data
Science (Figure 4). This in turn will improve our understanding
regarding protein folding, structure and function prediction. In
other words, the field of protein design should in the future be
interwoven with these other fields for a meaningful progress
to be made. Less stable or unstable proteins validated by
experiments (failed design) as well as successful designs, along
with data science and MD simulations, may give useful feed-
back in studying protein stability and folding mechanism, and
possibly open up new avenues beyond backbone-based pro-
tein design, e.g. intrinsically disordered protein designs.
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