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The advent of high-throughput experiments to
measure protein–protein interactions has cre-
ated a flood of proteomic information parallel
to the influx of data caused by the advent of
next-generation sequencing technologies. The cre-
ation of whole organism protein interaction maps
has opened new avenues of predicting genetic
disease. Advances in network science now allow
the association of genes with disease directly from
the characteristics of the protein map without
reference to the characteristics of the gene itself.
However, none of these techniques has reached the
‘black box’ level and require careful consideration
of the systematic errors in both the underlying
experimental data and the computational meth-
ods to give reliable results. Here, we review the
main methods to characterise protein interactions
in vitro and in vivo, the methods by which protein
networks are constructed and the characteristics
of the major protein interaction databases, and the
techniques used to predict the functional impact
of mutations on protein interaction networks.

Introduction

The completion of the Human Genome Project has provided a
tentative list of the estimated 25 000 genes that regulate human
biology. This landmark project has raised as many questions as
it has answered. One of the most fundamental questions in biol-
ogy is predicting the impact of an alteration of a protein on the
phenotype of an individual. This alteration can take many forms,
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from a change in expression level, the natural variation of protein
sequence due to single nucleotide polymorphisms (SNPs), to a
drug that alters enzymatic activity. Despite our increasing knowl-
edge of the mechanisms of individual proteins, this question
has remained essentially unanswered because the reductionist
approach associated with traditional mechanistic studies ignores
the context in which proteins act. Few proteins carry out their
tasks in isolation. Instead, the action of each protein is controlled
by its interactions with others. A major focus in the post-Genome
era has been the shift from the ‘who’ to the ‘how’, from cataloging
of individual genes to piecing together the networks that control
the collective activity of the cell.

Deducing the Impact
of Disease-associated SNPs
on Protein–Protein Interactions

Since nearly every process in a cell is dependent on
protein–protein interactions (PPIs), mutations hindering these
interactions have severe consequences for the associated cellular
function. A central problem in medical genetics and personalised
medicine is to predict the effect of SNPs to establish a link
between the genetic heritage of a person and their susceptibility
to disease. Functionally important residues are more likely to
be conserved than nonessential ones. SIFT (Ng and Henikoff,
2001) and PROVEAN (Choi et al., 2012) (Table 1) use this
property to estimate the tolerance of a gene to a SNP by forming
a sequence profile from a multiple sequence alignment of related
proteins. A SNP occurring below a cut-off probability in the
profile is deemed to be deleterious. This simple procedure can
detect ∼78% of disease-associated SNPs (Choi et al., 2012).
While Sequence-based methods such as SIFT and PROVEAN
are effective in identifying disease-associated SNPs, they provide
little information on how the effect manifests. In the absence
of a functional assay, evaluating the effect of a mutation on a
protein interaction pair usually involves measuring the effect of
the mutation on free energy of binding (ΔΔG). This naturally
raises the question of how changes in binding thermodynamics
correlate with changes in function. There is relatively a strong
correlation (∼0.7) between the degree of sequence conservation
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Table 1 Computational tools for the prediction of a mutation’s effect on PPI binding affinity and function

Prediction of deleterious mutations
SIFT Detects SNPs that affect protein function by sequence homology http://sift.jcvi.org/
PROVEAN Detects SNPs with functional impact by the effect of mutation on the global alignment score

http://provean.jcvi.org

Prediction of changes in binding affinity upon mutation

FoldX Predicts changes in binding affinity and stability through an empirical, physics-based force field with minimal
backbone movement http://foldxsuite.crg.eu

Rosetta Multipurpose software for docking, protein design, structure prediction and more. Allows more extensive
backbone movements than other methods
https://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/df/dc8/_interface_analyzer_doc.html

ZEMU Extends the FoldX force field to allow larger backbone movements for multiscale modelling
http://simtk.org/projects/zemu

BindProfX Predicts changes in binding affinity through the sequence profiles of structurally related interfaces
http://zhanglab.ccmb.med.umich.edu/BindProfX

at structurally similar sites in protein interfaces and ΔΔG values
(Xiong et al., 2017). This suggests that most protein–protein
interfaces are near optimal with small tolerances for changes in
binding affinity, provided we assume that there is a tight rela-
tionship between sequence conservation and protein function.
More quantitatively, comparison of ΔΔG values from the OMIM
(online Mendelian inheritance in man) data set of rare mutations
that cause hereditary disorders (Amberger et al., 2009) and
common SNPs that are presumably neutral from the HAPMAP
database suggests that a ΔΔG of 1.5 kcal or higher corresponding
to a 12-fold change in binding affinity is sufficient to disrupt
function for most proteins (Berliner et al., 2014). See also:
Protein Interaction and Genetic Disease; Impact of Missense
Variants on Protein–Protein Interactions

Experimental measurement of PPI
binding affinities

The most direct way of measuring the effect of a mutation on
binding thermodynamics is to compare the heat evolved dur-
ing binding of the mutant protein using titration of the binding
partner to the heat using isothermal binding calorimetry (ITC)
(Velazquez-Campoy et al., 2015). ITC provides information not
readily available by other means, such as decomposition of the
binding energetics into enthalpic and entropic terms. ITC is a
technically demanding technique that is prone to errors if the
procedure is not followed correctly. However, it is not actually
necessary to directly detect the binding event to measure bind-
ing. Any signal that changes linearly in response to a change
in the bound fraction can serve as a proxy for protein binding.
Surface-based technologies such as those used in the Biacore and
Octet Red platforms are particularly useful due to their relative
sensitivity and ease at which they are scaled up to immobilised
protein arrays. Although the physics of some of these methods
is fairly complicated, most are based on a change in the optical
properties of light when a protein establishes an interaction with
another protein immobilised on a surface. The surface plasmon
resonance (SPR) technique uses the change in the refractive index
that occurs upon a protein binding to the sensor surface. The SPR

effect only manifests when the incident angle of light is close
to the resonance angle for coupling between the incident beam
and the surface plasmons in the conducting surface of the sen-
sor. This angle is dependent on the thickness of the film, which
allows the measurement of binding indirectly by monitoring of
the resonant angle. In biolayer interferometry, an optical interfer-
ence pattern is created whose maximum wavelength shifts as the
optical path length changes due to binding to sensor surface. In
general, surface-based methods have the advantage of determin-
ing the kinetic rates koff and kon by monitoring the disappearance
of the signal as the protein dissociates from the surface during a
wash cycle after the injection stops (Nikolovska-Coleska, 2015).
Knowledge of association rates is helpful when studying interac-
tions that are under kinetic control rather than thermodynamic
control, such as when several proteins compete for the same
receptor binding site (Zhao and Beckett, 2008). See also: A Bio-
physical Toolkit for Molecular Interactions

Computational prediction of PPI binding
affinities

Regardless of the method of detection,ΔΔG is measured by com-
paring the binding of a recombinantly expressed and purified
WT protein against a mutant prepared by site-directed muta-
genesis. The need for expression, purification and site-directed
mutagenesis can be time-consuming in many cases and difficult
to scale up to the proteome level. Considerable effort has there-
fore been devoted towards developing computational methods for
this task. Most of these approaches rely on physics-based meth-
ods that attempt to faithfully model the interactions determining
protein–protein binding affinity on the atomic level. FoldX, one of
the most successful methods, models the system using an empir-
ical force field built from the measurements of the transfer ener-
gies of amino acids from water to hydrophobic solvents and from
protein engineering double-mutant cycles (Schymkowitz et al.,
2005). Because many of the terms are dependent on the precise
distances between atoms, FoldX and other physics-based meth-
ods need the model of both wild type (WT) and mutant complexes
to be accurate on the atomic scale to be effective. The need for an
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accurate structure in these methods poses a problem for many pro-
teins, as the crystal structure of the mutant protein is available for
relatively few proteins and in many cases the crystal structure of
the WT complex is absent as well. FoldX also uses a fixed back-
bone approximation with minimal relaxation of the backbone
after mutation, making the assumption that the mutation has only
a minor impact on the structure. In many cases, this assumption
is valid, but in other instances, particularly for the substitution of
large amino acids for small ones, the complex undergoes a sub-
stantial change in conformation. To accommodate these types of
changes, protein design programs such as Rosetta can be used to
relax the complex (Kortemme et al., 2004). However, this global
relaxation can cause the protein structure to drift away from the
experimentally verified conformation. Multiscale modelling with
local flexibility only around a small region near the mutation can
be used to compensate for this drift (Dourado and Flores, 2014).

A major obstacle of such approaches is the need for the recon-
struction of the full atomic model for every mutant complex,
which both limits the accuracy of the approach (since the position
of the side chains is difficult to model) and reduces the compu-
tational speed and the range of applications (since rebuilding the
full atomic model is generally the most time-consuming step).
In addition, using a more exact physical representation of the
molecular structure and interactions has proved to be less accu-
rate in many cases than using simpler models due to inherent
inaccuracy of each term in the force field. As such, alternative
methods have been proposed that use reduced representations of
the protein structure that do not require the creation of full atomic
models. Structurally similar interfaces are expected to serve sim-
ilar roles regardless of their evolutionary relationship. The like-
lihood that the mutated residue is found in a structural profile
formed from interfaces that are structurally similar to the target
can serve as a surrogate for the effect of mutations on binding
affinity (Brender and Zhang, 2015). The structural profile method
gives results comparable to, and in many cases superior to, more
involved physics-based calculations (Xiong et al., 2017; Brender
and Zhang, 2015). An additional advantage is that the structural
profile method works at the residue level and is not reliant on the
detailed atomic structure of the complex. The ability to ignore
atomic details is a powerful feature since the structure of only
∼6% of protein complexes has been determined experimentally
(Szilagyi and Zhang, 2014).

Building a Protein–Protein
Interaction Network

All the methods mentioned above measure the biophysical effect
that a mutation or potential drug has on an individual PPI. The
feedback and redundancy built into the PPI network can reroute
the flux through the network around defective areas. To fully
understand the mutational effects or the targeted silencing of a
protein by a drug, it is necessary to understand the interaction
network that it is embedded in.

If some of the interaction partners of the protein are known,
the techniques in the previous section can be used to build a local
map of the network around the target protein. If none of the part-
ners are known, the search must start with a wide net to capture

as many potential interactions as possible. This type of search
immediately runs into a problem. There have been estimated to
be as many as ∼650 000 PPIs in the cell (Stumpf et al., 2008).
It is impossible to screen such a large number of possible inter-
actions in vitro by recombinantly expressing each protein and
then testing every individual protein against each other. Rather
than expressing and test each protein individually, researchers
have turned to high-throughput in vivo experiments that allow
the simultaneous detection of all interactions on a genomic scale.

The workhorse of protein–protein
interaction studies: the yeast two-hybrid
assay

The most common method for high-throughput mapping of pro-
tein interactions is the yeast two-hybrid (Y2H) assay. The Y2H
method detects the physical interaction of two proteins indirectly
through the downstream activation of a separate reporter gene
(Van Criekinge and Beyaert, 1999). The Y2H screen is based
on the observation that the activating and the DNA (deoxyri-
bonucleic acid) binding functions of eukaryotic transcription
factors are localised into two spatially distinct protein domains
(Figure 1). Because the two domains fold independently and
associate with each other by noncovalent interactions, the tran-
scription factor can be split into two fragments and still activate
transcription when the fragments are brought into physical prox-
imity by binding. See also: Two-Hybrid and Related Systems

This modularity allows two proteins of interest to be tagged
with different domains of a fragmented transcription factor. Bind-
ing of the two domains forms a functional transcription unit. Once
assembled, the transcription factor can then bind a promoter ele-
ment upstream of the reporter genes to activate their transcription.
The exact nature of the detection depends on the reporter gene
selected. Regardless of the detection method, the yeast is modi-
fied to be deficient in at least two distinct pathways, one for the
‘bait’ plasmid containing the DNA binding domain of the tran-
scription factor and one of the binding partners and the other for
the ‘prey’ plasmid containing the activation domain and the other
binding partner. The prey plasmid is constructed from a cDNA
library of ORFs (open reading frame), allowing the screening of
thousands of potential interactions of tagged prey proteins against
a single bait. Yeast colonies are then grown sequentially on three
separate media: a complete growth media experiment that allows
yeast deficient in both pathways to grow to ensure the yeast is
viable, a selection media experiment lacking leucine and trypto-
phan that serves as a positive control to ensure both bait and prey
plasmids have been successfully incorporated, and a final reporter
media experiment that serves as the readout for the experiment. In
an auxotrophic selection experiment, the reporter gene encodes
a gene essential for growth under specific conditions. Usually,
this gene is the transcription factor for HIS3, which encodes
the enzyme catalysing the sixth step in biosynthetic pathway of
histidine and allows selection in histidine-deficient media. Alter-
natively, a reporter gene can be used that causes a physical change
in the cell that allows colonies with active transcription factors to
be clearly identified, such as LacZ (blue colonies in the presence
of X-gal) or green fluorescence protein (glowing colonies, useful
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Figure 1 The yeast two-hybrid assay. (a) The yeast two-hybrid assay
begins with the construction of a prey plasmid library. Each prey plasmid
encodes a protein fused to the transcription factor activation domain along
with a selection marker to detect the successful incorporation of the plasmid
into the cell. A bait plasmid is also constructed encoding the protein of
interest fused to the DNA (deoxyribonucleic acid) binding domain of the
transcription factor along with a second orthogonal selection marker. (b)
The yeast cells are then permeabilised to allow entry of the plasmid and
transformation of the yeast genome. (c) Once transformed, the yeasts are
grown in media-deficient pathway. (d) Binding of the prey protein to the
bait protein brings the activation domain into proximity of the reporter gene
and activates transcription. (e) Colonies showing transcription of the reporter
gene are selected. (f) The plasmids from the active colonies are extracted and
(g) the DNA corresponding to the prey protein sequenced.

for fluorescence-activated cell sorting). In either case, the plas-
mids of the selected colonies are isolated and sequenced to give
the interaction partners of the ‘bait’ protein.

Limitations of the yeast two-hybrid assay
The Y2H system is found to be widely used because it is fast
and requires little hands on time, does not require elaborate
instrumentation and is relatively inexpensive in terms of reagents
compared with other techniques. The Y2H system also excels
at detecting low-abundance protein complexes, as the transcrip-
tional control is under the exogenous reporter gene. For this
reason, the coverage of the Y2H assay is higher than most other

methods that rely on native protein transcription. Offsetting these
advantages are a number of limitations. The Y2H assay is par-
ticularly prone to false positives, which some estimates put as
high as 40% of the total number of hits (Vidalain et al., 2004).
False positives in the PPI assays can be divided into ‘technical’
and ‘biological’ false positives (Vidalain et al., 2004). A biolog-
ical false positive is a PPI pair that interacts in vitro but is not
expressed biologically at the same time or place. For transcription
to occur, both the prey and bait proteins must be in the nucleus,
which is accomplished by the addition of a nuclear localisation
signal to the bait and prey protein sequences. Proteins that are
in different subcellular compartments and do not interact under
normal conditions may find themselves in close proximity due to
their artificial localisation in the nucleus.

Technical false positives often arise due to auto-activation of
the transcription complex by the bait protein in the absence
of the prey protein. About 5% of protein sequences will have
sufficiently high transcriptional activity to give a false positive
in the absence of prey binding (Walhout and Vidal, 1999). This
is not so much a problem when a single protein is used as
bait to map out all its interaction partners; however, when the
procedure is iterated over a bait library to generate a complete
interaction map, the frequency of self-activators can overwhelm
the number of true interactions unless precautions are taken to
eliminate self-activated bait proteins from the pool (Walhout
and Vidal, 1999). Incorrect folding of the bait or prey protein
may generate a hydrophobic, sticky interface that attracts many
proteins to its surface nonspecifically, generating enough of a
transient interaction to activate transcription.

The Y2H assay also generates false negatives. For some pro-
teins, particularly extracellular proteins and membrane proteins
(Stynen et al., 2012), the protein does not translocate to the
nucleus even when a nuclear localisation signal is artificially
attached. These proteins will not be detected since the Y2H assay
requires nuclear localisation for a functional transcription factor
to be made. Finally, the Y2H assay detects binary interactions
where the two proteins interact physically through a binding inter-
face. Indirect interactions where the two proteins are part of the
same protein complex but are not in physical contact are not
detected by the Y2H assay.

Co-affinity purification to capture intact
protein complexes
Affinity purification was developed in part to overcome these dis-
advantages (Gingras et al., 2007). In the most common approach,
tandem affinity purification (TAP), the target protein is tagged
with protein A, which has strong affinity for IgG antibodies.
When the IgG antibodies are immobilised on a bead, the high
affinity of protein A for the antibody results in the target protein
being immobilised as well. All proteins that form complexes with
the target protein will also be attracted to the bead and immo-
bilised whereas nonbound proteins are washed away. Cleavage at
the protein A site exposes a second tag that is used for a second
round of purification to eliminate proteins that nonspecifically
bind to the column. The associated proteins are then digested into
peptides by proteases that can then be sequenced by mass spec-
troscopy.
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Affinity purification is complementary in many respects to the
Y2H assay. Although the Y2H assay only detects binary protein
interactions in which each partner is in physical contact, affinity
purification also detects proteins indirectly associated with the
target through membership in a common protein complex. Affin-
ity purification has a number of disadvantages that balance these
advantages (Gingras et al., 2007). Affinity purification is an in
vitro technique using cellular lysates. All cellular localisation is
lost during the lysing process, which can give rise to false biolog-
ical positives, as proteins that are normally segregated in different
cellular compartments are artificially brought together. TAP is
normally done with an endogenous promoter (there is a TAP vari-
ant, high-throughput mass spectrometric protein complex identi-
fication (HMS-PCI), that uses recombinant overexpression) (Ho
et al., 2002). Using an endogenous promoter has the advantage
that expression levels are close to the physiological range but
has the disadvantage that complexes from low-abundance pro-
teins will tend to be systematically missed (Ivanic et al., 2009).
Finally, the considerable time involved in purification means that
many transient complexes with high koff rates are not detected
as the complex dissociates and is lost in the washing procedure
(Gingras et al., 2007). See also: Tandem Affinity Purification
(TAP) Tags

Increasing accuracy by combining
multiple lines of evidence

The complementary nature of affinity purification and Y2H sug-
gests that the results from each assay can be combined to form
a more accurate PPI network with potentially wider coverage
(Figure 2). Using the strict intersection of Y2H and TAP posi-
tives significantly reduces the false-positive rate at the expense of
a larger percentage of false negatives. This concept of increasing
accuracy by combining the predictions of orthogonal techniques
can be expanded beyond combining experimental measurements
of physical interaction to other indirect measures pointing to the
existence of two interacting proteins. Most of these methods are
relatively of high accuracy but low coverage: they find few posi-
tives in comparison with the high-throughput experimental meth-
ods, but the ones that they do find are usually of high confidence.

See also: Interaction Networks of Proteins; Primer on Pro-
tein – Protein Interaction Maps

• Literature curation. The easiest way to find additional interac-
tions is to comb the literature for previously published results.
Literature curation can take either of two forms. One method
uses expert human curators to search the literature for PPIs,
typically looking for high accuracy, low-throughput exper-
iments such as ITC. The other method uses automatic text
mining algorithms to infer associations based on statistically
significant co-occurrences of gene names from natural lan-
guage processing of PUBMED abstracts (Papanikolaou et al.,
2015). Human curation is generally of high accuracy/low cov-
erage, whereas text mining gives many hits of low confidence.

• Coevolution. Random mutations in the protein–protein inter-
face are expected to decrease binding affinity. In many cases,
the gradual loss of affinity due to random mutations can be
overcome by a compensating mutation at the other side of
the interface. The evolution of the two interacting proteins
will then be tied together, each protein evolving in response
to the other. The Mirrortree method constructs phylogenetic
trees from the multiple sequence alignment of each protein
and calculates the distance between protein sequences within
each tree. A high correlation between the distance matrices
is a sign of coevolution and marks a likely PPI (Pazos and
Valencia, 2001). The method has low coverage but high accu-
racy. The results are almost completely orthogonal to Y2H
and TAP predictions due to its fundamentally different basis
(Juan et al., 2008).

• Phylogenetic profiling. A PPI cannot be established if one
of the partners does not exist. One of the earliest methods
for bioinformatic detection of PPIs used the simultaneous
appearance and disappearance of protein pairs during evo-
lution as a probe for PPIs (Pellegrini et al., 1999). A high
correlation across genomes is indicative of a PPI.

• Orthologous transfer. Highly related sequences derived from
a common ancestor (orthologs) are likely to participate in the
same set of interactions. If a PPI has been identified in the
PPI network of one species, it can be transferred to another
species with high accuracy if the sequence identity is 80% or
higher (Yu et al., 2004).

Data set A Data set B Intersection Union Weighted

Figure 2 Integration of different data sets into a protein–protein network. Accuracy can be increased by considering only the strict intersection
of the data sets where a positive PPI (protein–protein interaction) exists in each data set. Alternatively, the coverage can be extended by considering the
union of the data sets where a PPI is considered to exist if it is found in either data set. Weighted integration counts only the PPIs in each data set considered
to be the most reliable through the consultation of an outside gold standard database.
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• Gene coexpression. Proteins that participate in a PPI are likely
to be needed simultaneously by the cell, which will lead
to a correlation in expression levels if the dominant factor
for expression is cellular demand for that specific complex
(Fraser et al., 2004).

• Synthetic lethality. An interaction can sometimes be inferred
when two genes, which when mutated separately have min-
imal impact on the phenotype, are lethal when mutated
together. Mutations of this type infer a functional relationship
between the two genes, although not necessarily a physi-
cal interaction. The two genes can be either on alternate but
redundant biochemical pathways or are redundant interaction
partners in a protein complex with a third protein (Talavera
et al., 2013).

• Inverse docking. The surfaces of interacting proteins are usu-
ally complementary in both shape and composition. If the
structure of each protein is known individually, the surface
complementarity of interacting partners can be used to detect
PPIs through molecular docking (Wass et al., 2011; Zhang
et al., 2012). In a benchmark test, 34% of complexes could be
distinguished at the 95% confidence level by rigid body dock-
ing and 64% at the 80% confidence level (Wass et al., 2011).
Rigid body docking has the drawback that the structure of the
monomers making up the complex must be known before-
hand, which is only true in about 30% of cases (Szilagyi and
Zhang, 2014). Rigid body docking is also less efficient for
flexible proteins that undergo conformational changes upon
binding. As an alternative, it is possible to search through the
structural library of known complexes for related sequences,
based on the well-tested assumption that similar sequences
will usually generate similar structures because the number of
likely conformations is limited. PrePPI, PRISM and SPRING
check each monomer for a match to one of the subunits in
structural library of complexes (Table 2). If a hit is obtained,
there is a high likelihood that a PPI exists between the two
proteins.

Constructing a PPI network using multiple sources of evidence
requires some method of integrating the different data types. The
method of integration can have a significant impact on the final
model (Figure 2). Accuracy can be maximized by requiring the
same interaction to be detected in all data sets for the PPI to be

considered to exist. Alternatively, coverage can be increased by
considering a PPI to exist if it is present in any of the data sets.
Neither method considers the difference in accuracy among dif-
ferent experiments or the bias each experiment has towards some
types of proteins. Accounting for these differences requires an
additional source of information. Intuitively, another PPI map
where all the interactions within the network are known with
high reliability (a gold standard training set) can give us infor-
mation about the relative reliability of a technique for a specific
interaction. Formally, we seek the conditional probability that an
interaction exists given a set of experimental observations (x1, x2,
… , xn), p(TRUE| x1, x2, … , xn), where the observations can be
either categorical or numeric variables. This conditional probabil-
ity cannot be inferred directly from the training data. Indirectly,
it can be calculated easily by Bayes theorem using the fraction
of positive interactions among all those tested in the training
set, p(TRUE), and the fraction of experiments with the experi-
mental value xi among the proteins known to interact within the
training set, p(xi| TRUE) and those reliably known to not interact
p(xi| FALSE) (Jansen et al., 2003):

p(TRUE x1, x2, … , xn)
p(FALSE x1, x2, … , xn)

=
p(TRUE)

n∏
i=1

p(xi |TRUE)

p(FALSE)
n∏

i=1
p(xi |FALSE)

(1)

The naïve Bayes method is reliable when the data from each
experiment is statistically independent from each other and
high-quality positive and negative interaction training sets exists.
If some of the data from different experiments share the same
systematic errors, the redundancy leads to an inappropriately
high weighting of the correlated data sets relative to others since
they are effectively counted twice. The naïve Bayes method also
requires a reliable source of true positives and true negatives for
each technique being integrated. Obtaining the negative set of
protein pairs reliably known to not interact p(xi| FALSE) poses
a problem (Jansen and Gerstein, 2004), as negative examples
are rarely recorded in the literature. One method is to use pro-
teins with different subcellular localisation, as proteins in differ-
ent cellular compartments cannot interact (Jansen et al., 2003;
Jansen and Gerstein, 2004). This method has the drawback that
it introduces biases into the integration process since different

Table 2 Computational tools for the prediction of PPIs by sequence or structure

SPRING Detects PPIs by the similarity of the target sequence to one of the monomers in library of protein complexes. The
sequence similarity is calculated by threading, which besides sequence identity, also takes into account the
site-specific structural and chemical environment http://zhanglab.ccmb.med.umich.edu/spring

COTH Similar to SPRING, except the sequence of both monomers is threaded simultaneously through a structural library.
Useful when the target protein undergoes a large conformational change upon binding
http://zhanglab.ccmb.med.umich.edu/COTH

PRISM Detects PPIs through interface similarity. Requires the structure of the monomers to be known or predicted beforehand
http://cosbi.ku.edu.tr/prism

PrePPI Similar to SPRING, except sequence similarity is used instead of threading. The inverse docking score is combined with
five other data sources through a Bayesian classifier to give a consensus score. Also contains a queryable database
similar to STRING http://honig.c2b2.columbia.edu/preppi

6 eLS © 2017, John Wiley & Sons, Ltd. www.els.net



Protein–Protein Interactions and Genetic Disease

Table 3 Popular protein–protein interaction databases (statistics are as of May 2017)

Database Feature Proteins Interactions Species

HPRDa Physical interactions between human proteins 30 047 41 327 1
IntActb Database of experimental evidence for physical interactions

between proteins
98 289 720 711 7

HINTc Database of high-confidence results for physical interactions
between proteins

NA 387 615 12

MIPSd Manually curated database of high accuracy, manually performed
experiments

982 1859 3

BIOGRIDe Database of experimental evidence of both physical and functional
associations among proteins

65 958 1 137 230 62

STRINGf BIOGRID and IntAct entries along with computational predictions
and orthologous transfer from other organisms. Confidence
scores are based on a Bayesian network

9 643 763 1 380 838 440 2031

aHPRD: http://www.hprd.org/
bIntAct: http://www.ebi.ac.uk/intact/
cHINT: http://hint.yulab.org
dMIPS: http://mips.helmholtz-muenchen.de/proj/ppi/
eBIOGRID: https://thebiogrid.org/
f STRING: https://string-db.org/

experimental techniques have different sensitivities to proteins in
different cellular compartments.

Protein–protein interaction databases
There are several databases that aim to collect the results of PPI
screening from the literature (Table 3). The databases mainly
differ in the lines of evidence used to construct the database,
with the main division between those that define an ‘interac-
tion’ strictly as physical binding between proteins and others
that define a PPI more loosely as being any functional associ-
ation between proteins, for example proteins that share a com-
mon substrate. Among the former, the IntAcT (Hermjakob et al.,
2004) and Human Protein Reference Databases (HPRD) (Peri
et al., 2003) consider only binding interactions of proteins veri-
fied either through direct detection of a binary interaction or veri-
fied comembership in a protein complex. The HINT (high-quality
interactomes) database is even more strict in only considering
interactions that have been verified by two orthogonal assays
(for high-throughput assays) or two separate publications for
manually performed experiments (Das and Yu, 2012). Finally,
the Mammalian Protein–Protein Interaction Database (MIPS)
focuses exclusively on high accuracy, manually performed exper-
iments (Pagel et al., 2005). Because these databases are consid-
ered to have fewer false positives than those that consider genetic
information as inference for a physical interaction, they often
serve as the ‘gold standard’ for accuracy for testing new PPI pre-
diction methods.

The second set of databases is more inclusive in the defini-
tion of a PPI. In addition to physical interactions, the BIOGRID
database also includes genetic evidence in the form of synthetic
lethality experiments as evidence for a PPI (Chatr-aryamontri
et al., 2017). Because mutations of different proteins in congruent
pathways give a positive result in this experiment, synthetic
lethality experiments are evidence for a functional association but

not necessarily a physical interaction. The STRING database is
the most inclusive of all the above. In addition to all the inter-
actions in the BIOGRID and IntAcT databases, STRING also
includes predictions from the orthologous transfer of interactions
across species as well as predictions of functional association
from coexpression, text mining of PUBMED abstracts and phy-
logenetic profiling (Szklarczyk et al., 2017). STRING combines
these data sources to give a confidence score based on a Bayesian
network (Figure 3). Regardless of the database, successful inter-
pretation of a PPI map requires careful attention to data sources
and a solid understanding of the underlying methodology.

Predicting Disease-associated
Genes through Network Topology

Since the condition of the cell is ultimately regulated by the
state of the cellular interaction network and not by the action
of any single protein, identifying key control points has been an
important goal in drug discovery. Identifying the network of PPI
partners is not enough to predict the effect of disrupting one of the
nodes of the network. Evolution has evolved multiple levels of
redundancy and feedback mechanisms that divert the flux along
alternate pathways in case of loss of one of the network nodes.
In principle, the effect of a removal of node can be determined
by solving all the relevant differential equations that describe the
biochemical flux through that node. In practice, uncertainties in
the measurements place limitations on the reliability of the con-
structed model. This is especially true for protein interaction net-
works constructed from the Y2H assay, which yields qualitative
rather than quantitative information. See also: Protein-Protein
Interactions: The Structural Foundation of Life Complexity

An alternative approach is to avoid considerations of the
detailed flux between proteins and instead concentrate on the
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Figure 3 Modified screenshot of an example query from the STRING database. Example of a protein network from the STRING database using
the KRas protein, an oncogene implicated in the development of many cancers. The colour of the lines connecting the protein nodes indicates the particular
lines of evidence used in establishing a functional association whereas the distance between the nodes is a measure of the confidence of the interaction as
established by the Bayesian scoring system. Predicted GO pathways are also available (not shown).

manner in which the proteins are connected with another; focus-
ing on the overall topology of the network instead of the details
of the interactions between individual nodes. To quantitatively
define a network topology, we must first define some basic vocab-
ulary from the abstract theory of networks and graphs. Following
the conventions of mathematical graph theory, proteins in a net-
work are called nodes and the interactions between protein are
called edges. The most fundamental property of an individual
node in a graph is its connectivity or degree, which is simply
defined as the number of direct connections (or edges) it makes to
other nodes in the network. The degree distribution of a network
is the probability distribution of finding a node with a degree of
exactly k.

Consideration of the path length between nodes gives us
another set of higher order measurements. The typical separation
between two nodes in the network can be measured by consider-
ing the average number of steps along the shortest paths for all
possible pairs of network nodes. This gives us the characteristic
or average path length of the network. The distance between the
two nodes with the longest minimum path distance is the network
diameter. All the above are measures of the global network topol-
ogy. To measure local network properties, two more measures of
centrality and cliquishness, or the tendency of linked nodes in
a network to group together and share similar links with other
nodes, can be defined. Cliquishness can be defined by the num-
ber of connections or edges between node neighbours divided by
the theoretical maximum of these connections: k(k− 1)/2. The

clustering coefficient is the average of this number over all nodes
in the network. The final metric measures the centrality or impor-
tance of nodes, following the assumption that an important node
will lie on a high proportion of paths between other nodes in the
network. A centrality measure, betweenness, can be defined as
BC(n) =

∑
s≠t≠n

𝜎(s,tn)
𝜎(s,t)

, where 𝜎(s, t) is the number of shortest paths

from node s to node t to measure the traffic through a particu-
lar PPI.

One of the goals of constructing a PPI network is to enable
predictions that cannot be performed by looking at individual
interactions alone. Morbidity prediction or the identification of
genes associated with a specific, usually hereditary, disease is
one of the most basic tasks in bioinformatics. It is also where
the network-based approach has shown the greatest success.
Although approximately 10% of known genes have some level
of association with any disease (Amberger et al., 2009), the
probability of a given gene being associated with a specific dis-
ease is much lower. The most conceptually simple method for
network-based morbidity prediction relies on the transfer of gene
function annotations to nearby nodes in the network. If a dys-
function in a specific gene is known to cause a defect, there is a
high probability that a defect in genes within the same pathway
will produce a similar dysfunction. This simple direct neighbour
approach is capable of enriching the chances of successful morbid
gene prediction 10-fold compared with positional genetic link-
age analysis alone (Oti et al., 2006). The 10-fold enrichment
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factor can be increased to ∼25-fold by replacing direct neighbour
linkage by a proximity metric based on the diffusion time from a
random walk to all genes known to be associated with that disease
(Kohler et al., 2008).

Measures of the local network topology can provide additional
complementary information on the prediction of morbid genes,
although this is currently controversial. Disease-associated genes
are possibly slightly more likely to be network hubs (have a
high node degree k) than other genes (Tu et al., 2006), although
this effect is skewed towards cancer genes, which tend to affect
the highly regulated growth and survival networks. The higher
node degree of morbid genes is most evident when literature
sources are used to construct the network, which suggests that a
publication bias towards disease-associated genes may be partly
responsible for the effect and some studies find that no significant
difference in node degree exists between morbid and non-morbid
genes.

Drug Discovery Targeting
Protein–Protein Interactions

One of the ultimate goals of researching PPIs is to use the knowl-
edge of the PPI network to improve drug discovery. Modern
drug design follows the ‘magic bullet’ hypothesis: a disease can
be controlled by the alteration of the activity of a single protein
(Nolan, 2007). The success of this theory depends on the degree
to which the cell compensates for the loss or alteration of any
single node or edge within the network. A robust network or func-
tional module is tolerant to such changes whereas a fragile one
is sensitive to small perturbations. The robustness of the network
is dependent on the underlying architecture. Due to the influence
of mutation, biological networks have evolved to be tolerant to
the removal of random nodes. This tolerance is manifested in
the degree distribution of the network. The node degree k in PPI
networks follow, at least approximately, a power law distribution
known as scale free: P(k)∝ k− 𝛾 where the scaling constant 𝛾 is
between 2 and 3. While the power law distribution means that
many proteins within the network have few connections to other

proteins and are therefore less likely to be fatal if mutated, it also
means that the loss of any of the few hub proteins with high node
degree will be catastrophic for the cell (Albert et al., 2000). The
existence of such hub proteins has implications for drug design.
For drugs meant for infectious diseases (Raman et al., 2008) and
cancer (Mitsopoulos et al., 2015) where the goal is to destroy
the cell, hub proteins with high betweenness measures are an
obvious choice, provided that such sites can be differentially
targeted from normal human cells. In particular, network articu-
lation points where removal of the node severs the PPI network
into separate graphs are ∼twofold overrepresented in cancer drug
targets (p-value= 0.0003) (Mitsopoulos et al., 2015).

Targeting a PPI assumes a drug can be created that blocks the
PPI. This assumption is often not valid with current drug design
techniques. Most protein–protein interfaces are large, flat and
relatively featureless compared with the binding pockets of the
receptors and ion channels that comprise the majority of most
drug targets today (Figure 4). The size of the PPI surface is an
obstacle for the development of small-molecule drugs against
PPIs, as small-molecule drugs by definition can cover only a
limited area of the interaction surface. This is compounded by the
fact that PPI surfaces are sometimes disjoint with the interaction
occurring in two spatially distinct regions.

For a long time, PPIs have been considered essentially undrug-
gable by small molecules. PPI have only been targeted indirectly,
for example by down-regulating the expression of the interaction
partners. This concept of PPIs being undruggable by small
molecules is slowly changing with the recognition that, although
PPI surfaces appear to be large and featureless, the actual interac-
tion is dominated by a few hot spot residues that contribute most
of the binding energy (Zerbe et al., 2012; Wells and McClendon,
2007). In some favourable cases, a small molecule can be found
that targets these hot spots on the PPI surface and disrupts
the protein–protein interface (Wells and McClendon, 2007).
Although only one drug specifically targeting PPI interfaces has
currently reached approval status (the blood thinner Tirofiban),
there are several dozen others in development (Scott et al., 2016).

The other option is to simply use larger molecules. Small
molecules have been preferred in drug development because

(a) (b)

Figure 4 Comparison of PPI interfaces and small molecule binding pockets. (a) A large and shallow PPI with three potential hot spots for small
molecule binding. (b) Enzyme binding pocket. Note the smaller size and greater depth of the enzyme binding pocket in comparison with the PPI interface.
Adapted from Zerbe (2012) © American Chemical Society.
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of their ability to cross the cell membranes, their ease of man-
ufacture and the possibility of oral delivery, but protein-based
biologics have steadily gained ground in recent years as the
low-lying fruit is exhausted and drug makers reach for more diffi-
cult target. Although proteins such as antibodies cannot cross the
cell membrane and will generally not reach intracellular targets,
peptides large enough to disrupt PPIs can be tagged to penetrate
the cell membrane (Johnson et al., 2011). Ordinary peptides
have the disadvantage that they are easily cleaved in plasma, but
techniques exist to extend this half-life. Macrocycles are another
potential avenue for exploration (Driggers et al., 2008).
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Glossary

Degree The number of links from a node in a network.
Degree distribution The probability distribution of node

degrees within a network.
Druggable A protein that has an active site or interface for

which a molecule with high affinity can be designed. If the
characteristics of the interface or active site are such that it is
not currently possible to create such a molecule, the protein is
considered undruggable.

Functional association A relationship involving a mutual
influence among two proteins that may or may not involve a
physical interaction, for example two proteins that share a
common substrate or a common membership in a biological
pathway.

Morbid gene A gene known to have some functional
association with a disease.

Network node A connection point within a network. For
protein–protein interaction networks, proteins serve as
network nodes.

Network topology How the nodes are connected within a
network.

Scale-free network A network in which the number of links
from a node follows a power law distribution. Scale-free
networks are robust to random mutations but are more prone
to catastrophic failures than networks with a random
distribution of the number of links from a node.
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