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Figure S1. Performance comparison of different MIL algorithms in terms of ROC curves computed 
on 20 randomly generated test sets. Version A: the MI-SVM algorithm proposed in the work 1 where a 
randomly selected isoform pair from gene pair bag is used as “witness” in its first iteration. Version B: a 
test version of MIL developed in our study whose initialization step is the same as that in Version A. From 
the second iteration, a subset of isoform pairs from negative gene pair bags were selected so as to keep the 
ratio of negative to positive isoform pairs the same as that in the first iteration.  Version C: This method.   
 
 

 
Figure S2. Performance (in AUCs) on the simulated data, with 9 settings of MD and MGR values.    

 



 
Figure S3. Performance (in AUPRCs) on the simulated data, with 9 settings of MD and MGR values.    

 

    
Figure S4. Performance (in precision-recall curves) on the simulated data, with 9 settings of MD and MGR 
values.    



 
Figure S5. The prediction accuracy of each type of based on single-isoform gene pairs. 
 
 
 

 
Figure S6. 20% of the gold standard was randomly chosen to select a subset of feature datasets. The 
remaining 80% were hold out and used to evaluate the predictive performance of the SIB-MIL algorithm 
on the mouse data.  

 

 
Figure S7. The distribution of the number of shared interactors (out of the top 25 interactors) between any 
two isoforms of the multi-isoform genes. 
 

Text  S1. Isoform-level genomic data processing and gold standard construction of the mouse 

    Initially, we had in total 164 isoform-level features: 41 from RNA-seq data, 121 from exon array, 1 from 
pseudo-amino acid composition and 1 from protein-docking score data. Details for processing these four 
types of data are described below. Protein domain data was excluded due to direct Gene Ontology 
annotation transfer from domain information in mouse. 



RNA-seq. We downloaded 117 mouse RNA-seq datasets (corresponding to 811 experiments) from the 
NCBI sequence read archive (SRA) 2 on May 1, 2012, which cover a wide range of experimental 
conditions and different tissues. For each RNA-seq experiment, we used the TopHat (v2.0.051) 3,4 to align 
the reads against the Mus Musculus reference genome from the NCBI gene build (version 37.2). Then, the 
resulting mapped read files together with the corresponding transcript annotation files were processed by 
Cufflinks (v2.0.0) 4 to calculate the relative abundance of the transcripts in terms of FPKM (Fragments Per 
Kilobase of exon per Million fragments). We removed those experiments with less than 10 million reads or 
covering less than 50% of the genes. In addition, to calculate correlations, those datasets with fewer than 4 
experiments were also removed. In doing so, we finally obtained 41 datasets including 386 experiments. 
Within each dataset, we further removed those transcripts with more than 50% missing values to ensure the 
accuracy of expression correlation estimation. FPKM values were log-2 transformed as they were treated in 
Cuffdiff 2. We calculated Pearson correlation coefficients, denoted by ρ, between all possible transcript 
pairs for each dataset, followed by normalization using Fisher’s z-transformation 5 to allow comparison 
between different datasets:  
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This z-transformed correlation will be used as isoform-level features when building the Bayesian classifiers 
through the multiple instance learning approach. 

Exon array data. 121 mouse exon array (Affymetrix Exon 1.0 ST array) datasets of the mouse were 
downloaded from the NCBI GEO (Gene Expression Omnibus) database. Each dataset includes at least 4 
experiments.  We calculated the expression of transcripts by utilizing the R package MEAP (version 2.0.1) 
6. Then, The Pearson correlation coefficient between each pair of transcripts was computed and normalized 
using the Formula (3). These correlations will be used as the feature inputs. 

Pseudo-amino acid composition.  Pseudo-amino acid composition (pseAAC) is a descriptor that 
characterizes the standard amino acid composition (AAC) as well as the pseudo-AAC by taking the 
sequence information of a protein into account 7. Here, we calculated pseudo-amino acid composition 
(pseAAC) data for the protein-coding isoforms.  The number of pseudo components was set to be 20. So 
each protein sequence was characterized by a 40 dimensional vector (composition of 20 natural amino 
acids plus 20 pseudo AACs). Then we calculated Fisher’s z-transformed Pearson correlation between 
isoform pairs as the feature data.  

Protein docking score. We computed and derived a quantitative physical interaction score for each isoform 
pair using the SPRING algorithm 8. Briefly, SPRING is a template-based algorithm for protein-protein 
structure prediction. It first threads one chain of the protein complex through the PDB (Protein Data Bank) 
library with the binding partners retrieved from the original oligomer entries. The complex models 
associated with another chain are deduced from a pre-calculated look-up table, with the best orientation 
selected by the SPRING-score, which is a combination of threading Z-score, interface contacts, and TM-
align match between monomer-to-dimer templates. 

These four types of feature datasets together provide a largely comprehensive characterization of 
isoform pairs. They cover information from sequence, expression, physical interaction as well as amino 
acid composition. To remove potential uninformative feature datasets, we evaluated each of these 169 
datasets against a gold standard, , and removed those datasets with AUC lower than 0.51. Finally, 65 
feature datasets were retained for building the final isoform-level network (Supplementary Table S1). The 
predictive values of these feature datasets are very weak with MD values ranging from 0.1 to 0.2. We also 
randomly partitioned the gold standard into two subsets. The subset containing 20% gold standards were 
used for screening feature data and the remaining 80% were held out for evaluation of our model. Results 
were shown Figure S6. 

 Gene-level gold standard functionally related pairs of the mouse. We constructed a gene-level gold 
standard of functionally related pairs using the Gene Ontology (GO) 9, KEGG 10, and BioCyc 11 databases.  
Gene Ontology is organized into a hierarchy where broader terms have more genes annotated to each but 
represent non-specific biological functions, while specific terms have few genes annotated to each. Some of 
the GO terms are too broad to be experimentally tested, such as ‘metabolic process’, and gene pairs co-



annotated to such terms cannot be considered as truly functionally related. We therefore used a list of Gene 
Ontology terms voted by the biologists, which represent a wide spectrum of experimentally testable 
biological processes 12, and excluded the terms with more than 300 annotated genes.  A pair of genes is 
considered to be functionally related if they are co-annotated to the same specific biological process or 
involved in the same biological pathway as defined by KEGG or BioCyc.  Such a gene pair is defined as 
positive. The numbers of gold standard gene pairs in GO, KEGG and BioCyc are 641044, 26637 and 11909, 
respectively. After combining them and removing redundant ones, we obtained 675,124 positive gene pairs 
in total.   
Unlike positive pairs, there is no database that defines two genes as functionally not related. Consistent 
with previous works in this field 13,14, we used random pairs as negatives and fixed a ratio of negatives to 
positives as 19:1. This ratio serves as the initial prior, and is fixed throughout the iterative process to ensure 
a consistent prior for Bayesian network modeling. 
 
 
Text S2. Methods for simulating data 

We simulated a series of scenarios to examine the ability of our algorithm to predict functional 
relationships at the isoform level.  In this simulation study, we set the number of genes to 5000 and as in 
the real NCBI database, a gene may contain one or several isoforms. The number of positives (functionally 
related gene pairs) was set to 10, 000. The number of negatives (functionally unrelated gene pairs) was set 
to 19 times that of positives based on our previous study 14. The number of isoform-pair level features was 
set to 50.  

We focused on examining the effects of two factors on the performance of our algorithm. 1, the 
discriminativeness of the feature data and 2, the fraction of the multi-isoform genes among all genes. For 
each feature, we simulated that the distributions of the positive examples and the negative examples both 
follow normal distributions with a standard deviation of 1. Then, the discriminativeness of features is 
controlled by the Mean Difference (MD) between the population of functionally related isoform pairs and 
the population of functionally unrelated isoform pairs (Figure 2). In our study, three MD values, i.e. 0.1, 
0.2 and 0.3, were tested. For the second factor, based on the RefSeq, which is a validated database of genes 
and isoform annotation, a gene may contain a single or multiple isoforms. So, the ratio of multi-isoform 
genes to the total number of genes (MGR) should be considered. For this ratio, we tested three values: 0.2, 
0.3 and 0.5. For example, MGR=0.5 means that half of the genes are multi-isoform genes.  
 
Text S3. Significant test on real data 
 
We compared the accuracy of our predictions in terms of area under the precision-recall curve (AUPRC) to 
the random baseline for significance test.  Based on the experimentally identified protein-interaction  data 
(Supplementary Data 3 in ref 15), we obtained a total number of between-gene isoform pairs (two isoforms 
are from two different genes) is 1304. Each of these 1304 pairs has a prediction score, and 614 out of them 
are positives (validated) with the remaining being negatives. The AUPRC of our prediction is 0.501. By 
shuffling the score of all the isoform pairs while keeping their label unchanged, we calculated the AUPRC 
of the shuffled data which serves as null distribution. Repeating the shuffling 500 times, the null AUPRC, 
denoted as AUPRCnull, has a mean = 0.469 with standard deviation=0.012. With the null distribution, we 
calculated the p-value of our prediction (AUPRC =0.501) using 

p = n(AUPRC < AUPRCnull )
N

, where n(AUPRC<AUPRCnull) 

represents the times that AUPRC is observed to be smaller than AUPRCnull and N is the total number of 
shuffling, i.e. N=500 in our case. P is calculated to be 0.006, showing that our prediction is significant. 
 
In addition, we also tested our prediction in the whole space of all possible isoform pairs (not only the gene 
pair in in supplementary data 3 in reference 15). We obtained 2,804 docking pairs calculated by using the 
protein sequence translated from the DNA sequences of the isoforms provided. Then we randomly 
generated 2804 isoform pairs and counted the overlap between random and the validated PPI data, giving 
overlap numbers with 6.6±2.6 as null distribution.  The overlap between our data and the validated PPI data 
is 31, which is significantly higher compared to the null distribution, giving a p-value<1.5×10-12.  
 
 



Supplementary Table S1. Description of isoform-level genomic data integrated in our work for 
building mouse isoform networks (SRA: Short Read Archive in NCBI, GEO: Gene Expression 
Omnibus in NCBI). 
 
Dataset ID Type Database Description 
SRP012040 RNA-seq SRA GSE36025: Long RNA-seq from ENCODE/Cold Spring Harbor Lab of multiple tissues including 

ovary, gland, lung, liver etc. 
SRP006003 RNA-seq SRA GSE27843: Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate 

pluripotent from terminally differentiated cells (RNA-seq) 
SRP006832 RNA-seq SRA GSE29446: Transcriptome Complexity in Normal and Failing Murine Hearts Revealed by High-

Throughput RNA Sequencing 
SRP007832 RNA-seq SRA GSE31271: Control of Embryonic Stem Cell Lineage Commitment by Core Promoter Factor, TAF3 

(RNA-Seq data) 
SRP002811 RNA-seq SRA GSE22131: High resolution analysis of genomic imprinting in the embryonic and adult mouse brain 

AND Sex-specific imprinting in the mouse brain 
SRP010262 RNA-seq SRA GSE35005: Epigenetic dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. 
SRP007956 RNA-seq SRA GSE31223: Gene expression of polyoma middle T antigen induced mammary tumors [RNA_Seq : 

MOLF x PyMT] 
SRP009464 RNA-seq SRA GSE33979: Novel roles for Klf1 in regulating the erythroid transcriptome revealed by mRNA-seq 
SRP007827 RNA-seq SRA GSE31385: Chromatin based modeling of transcription rates identifies the contribution of different 

regulatory layers to steady-state mRNA levels. 
SRP006165 RNA-seq SRA Sequencing of newly synthesized, preexisting and bulk mRNA 
SRP007412 Exon array GEO GSE30352: Comparative transcriptome analyses reveal the evolution of gene expression levels in 

mammalian organs 
GSE43951 Exon array GEO  Conditional knockdown of DNA methyltransferase-1 (Dnmt1) reveals a key role of retinal pigment 

epithelium integrity in photoreceptor outer segment morphogenesis 
GSE33009 Exon array GEO  Molecular characterization of transport mechanisms at the developing mouse blood-CSF interface: a 

transcriptome approach 
GSE40416 Exon array GEO  Acute and long-term effects of mutant p53 in vivo [MEF] 
GSE40415 Exon array GEO  Acute and long-term effects of mutant p53 in vivo [B cells] 
GSE40414 Exon array GEO  Acute and long-term effects of mutant p53 in vivo [Thymus] 
GSE39529 Exon array GEO  Foxp3 expression is required for the induction of therapeutic tissue tolerance 
GSE37246 Exon array GEO  SBRI_AB Host response in primary mouse tracheal epitelial cells (mTEC) to influenza infection with 

PR8, VN or X31 at MOI of 0.015 at 12 hours 
GSE37052 Exon array GEO  Identification of a FOXO3/IRF7 circuit that limits inflammatory sequelae of antiviral responses 
GSE37051 Exon array GEO  Identification of a FOXO3/IRF7 circuit that limits inflammatory sequelae of antiviral responses 

(expression) 
GSE40737 Exon array GEO  Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness 
GSE40527 Exon array GEO  Expression Analysis of Whole Thymus and Thymic Tumors on the Sdl Mouse Model 
GSE40022 Exon array GEO  Expression and function of PML-RARA in the multipotent hematopoietic progenitor cells of Ctsg-

PML-RARA mice 
GSE31957 Exon array GEO  Effect of miR-144/miR451 expression on TC-1 lung epithelial cell responses to influenza infection for 

24 hours 
GSE31955 Exon array GEO  Effect of miR-144/miR451 expression on TC-1 lung epithelial cell responses to influenza infection for 

24 hours [Expression] 
GSE30411 Exon array GEO  Clock rescue in the brain restores 12- and 24- hour rhythms in the liver 
GSE36435 Exon array GEO  Expression data from Flt3L-derived bone marrow dendritic cells from WT or Clec9agfp/gfp mice 

treated or not with dead cells 
GSE34793 Exon array GEO  The General Transcription Factor TAF7 is Essential for Embryonic Development but Not Essential for 

the Survival or Differentiation of Mature T Cells (MEF data) 
GSE36348 Exon array GEO  The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells 
GSE36347 Exon array GEO  The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells 

(expression data) 
GSE32359 Exon array GEO  Transcriptional study of the response of murine bone marrow-derived macrophages to TLR4 

stimulation with LPS 
GSE32358 Exon array GEO  Transcriptional study of oxLDL-induced foam cell formation in WT and Atf3-/- murine bone marrow 

macrophages 
GSE36594 Exon array GEO  Transcriptome analysis of medulloblastoma tumors in mice 
GSE36017 Exon array GEO  Whole genome sequencing of murine induced Pluripotent Stem (iPS) cell clones 
GSE35482 Exon array GEO  Comparison of gene expression profiles in NOD and Idd9 CD4+ T cells 
GSE33088 Exon array GEO  Developmental time-course of adult cell-type-specific retina genes of amacrine cells 
GSE33674 Exon array GEO  Preservation of cone photoreceptors after a rapid yet transient degeneration and remodeling in cone-

only Nrl-/- mouse retina 
GSE26766 Exon array GEO  Interleukin 1b triggers catabolism via a central nervous system-mediated pathway in mice and rat 
GSE29891 Exon array GEO  Systems analysis identifies an essential role for SHARPIN in macrophage TLR2 responses 

(Affymetrix) 
GSE29947 Exon array GEO  Systems analysis identifies an essential role for SHARPIN in macrophage TLR2 responses 
GSE29849 Exon array GEO  Cell of origin strongly influences genetic selection in a mouse model of T-ALL. 
GSE23375 Exon array GEO  Gene-expression profiles of liver and hepatocellular carcinoma induced by diethylnitrosamine (DEN) 

in KLF6 +/- and wild type KLF6 mice. 
GSE24794 Exon array GEO  MLL Fusion Proteins Preferentially Regulate a Small Set of Wild Type MLL Target Genes in the 

Leukemic Genome 
GSE28889 Exon array GEO  Differentially expressed genes and transcript isoforms in mouse NSCs expressing miR-128 
GSE26131 Exon array GEO  Conserved progression mutations revealed by sequencing a mouse acute promyelocytic leukemia 

genome 



GSE26128 Exon array GEO  Exon array data from mouse APL tumors 
GSE26189 Exon array GEO  Comparison of exon profiles before and after hormone induction 
GSE24728 Exon array GEO  mCG-PML-RARA alters multipotent hematopoiesis. 
GSE14387 Exon array GEO  RNA degradation in proliferating and differentiated C2C12 muscle precursor cells analyzed on 

Affymetrix exon arrays 
GSE23291 Exon array GEO  RARA haploinsufficiency modestly influences the phenotype of APL. 
GSE21757 Exon array GEO  Expression data throughout reprogramming of MEF to iPS using a Dox-inducible promoter 
GSE16967 Exon array GEO  Expression data from ERK1/2 null endothelial cells 
GSE21971 Exon array GEO  Alternative splicing is frequent during early embryonic development in mouse 
GSE20403 Exon array GEO  Timecourse of interferon-beta stimulation of mouse bone marrow derived macrophages 
GSE12766 Exon array GEO  Molecular variability of FLT3/ITD mutants and their impact on the differentiation program of 32D 

cells 
GSE14534 Exon array GEO  Combined genome-wide expression profiling and targeted RNA interference in primary mouse 

macrophages 
GSE15998 Exon array GEO  Mouse Exon Atlas 
GSE12185 Exon array GEO  HCV tumor promoting effect is dependent on host genetic background 
GSE12184 Exon array GEO  Exon analysis of HCV tumor promoting effect 
GSE12183 Exon array GEO  Transcript analysis of HCV tumor promoting effect 
GSE13416 Exon array GEO  Memory T cell RNA rearrangement by hn RNP LL 
GSE10599 Exon array GEO  SMA mouse tissue exon array analysis 
GSE11344 Exon array GEO  MADS: a New and Improved Method for Analysis of Differential Alternative Splicing by Exon-tiling 

Microarrays 
 
 
 
 
Supplementary Table S2. GO terms significantly enriched in the local isoform network of 
NM_001110211.1 and NM_013472.4 of Anxa6 *. 
 
Isoform GO term ID GO term Name  p-value 
NM_001110211.1 GO:0006944 cellular membrane fusion 2.75E-03 

GO:0061025 membrane fusion 3.59E-03 
GO:0031340 positive regulation of vesicle fusion 1.65E-02 
GO:0007599 hemostasis 2.69E-02 
GO:0006906 vesicle fusion 9.66E-03 
GO:0006418 tRNA aminoacylation for protein translation 2.11E-02 
GO:0043039 tRNA aminoacylation 2.62E-02 
GO:0043038 amino acid activation 2.62E-02 
GO:0048284 organelle fusion 4.39E-02 
GO:0031338 regulation of vesicle fusion 4.61E-02 

NM_013472.4 GO:0006944 cellular membrane fusion 4.11E-03 
GO:0061025 membrane fusion 5.38E-03 
GO:0031340 positive regulation of vesicle fusion 2.09E-02 
GO:0007599 hemostasis 4.01E-02 
GO:0008360 regulation of cell shape 1.35E-02 
GO:0044699 single-organism process 4.20E-02 

*, the uniquely enriched GO terms are in Bold. 
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