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Abstract

Motivation: There is a long-term interest in the challenging task of finding translocated and mislo-

cated cancer biomarker proteins. Bioimages of subcellular protein distribution are new data

sources which have attracted much attention in recent years because of their intuitive and detailed

descriptions of protein distribution. However, automated methods in large-scale biomarker screen-

ing suffer significantly from the lack of subcellular location annotations for bioimages from cancer

tissues. The transfer prediction idea of applying models trained on normal tissue proteins to predict

the subcellular locations of cancerous ones is arbitrary because the protein distribution patterns

may differ in normal and cancerous states.

Results: We developed a new semi-supervised protocol that can use unlabeled cancer protein data

in model construction by an iterative and incremental training strategy. Our approach enables us

to selectively use the low-quality images in normal states to expand the training sample space

and provides a general way for dealing with the small size of annotated images used together

with large unannotated ones. Experiments demonstrate that the new semi-supervised protocol can

result in improved accuracy and sensitivity of subcellular location difference detection.

Availability and implementation: The data and code are available at: www.csbio.sjtu.edu.cn/bioinf/

SemiBiomarker/.

Contact: hbshen@sjtu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowing the subcellular locations of proteins in human cancer

tissues can improve the understanding of protein functions and can-

cer pathogenesis (Chou and Shen, 2008; Pierleoni et al., 2006).

It has been demonstrated that the translocation of protein might

be a signal of cancer (Hanash et al., 2008; Hung and Link, 2011).

The cyclin D1 protein is an example: it shuttles between the nucleus

and cytoplasm in a healthy cell and the reduction of exportation

from the nucleus can lead to overexpression in the nucleus and

the inactivation of the tumor-suppressing protein retinoblastoma

(Benzeno et al., 2006; Gladden and Diehl, 2005). Accurately

detecting protein translocations in human cancer tissues can thus

be of important help for clinical diagnosis and treatment. Because

traditional wet lab experiments are expensive in time and costs

(Eliceiri et al., 2012; Winski et al., 2002), automated methods

are highly desired for handling the increasing amounts of biomedical

data.

Despite its importance, only a few studies have reported auto-

mated methods to detect translocation details in cancerous tissues

until now. One reason is that sequence-based analysis by itself is not
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sensitive enough for detection of protein translocation as transloca-

tion can be strongly effected by mutations outside the target se-

quence. For example, mutations in nucleoporin complexes can

have dramatic effects on the nuclear localization of multiple other

proteins (Hung and Link, 2011). Due to recent advances in micro-

scopic imaging, image-based pattern analysis methods have gained

popularity due to the intuitive and detailed information the images

contain. For example, the Murphy group discussed the potential ap-

plications of their models based on automated analysis of fluores-

cence microscopy images to the analysis and classification of skin

cancers (Glory and Murphy, 2007; Murphy, 2004). Rizzardi et al.

(2012) compared the abilities of automated image analysis and path-

ologist visual examination in quantifying protein expression in ovar-

ian cancer. Recently, our group developed a multilabel subcellular

location predictor, iLocator, and identified several translocated pro-

teins as potential cancer biomarkers (Xu et al., 2013).

To compare the localization difference of a protein in normal

and cancerous tissues, we have to know its subcellular locations in

both normal and cancerous states first. This can be achieved either

through wet-lab experiments or computational predictions. Since

image data with experimentally annotated subcellular locations in

cancerous states are rare, prediction models have been used instead,

especially in the large-scale screening. Due to the lack of location

labels for proteins in cancerous states, however, most of the existing

methods employed an approach named transfer learning, where

models are first trained on proteins in normal tissues and then used

to predict the localization of proteins in cancerous tissues (Eliceiri

et al., 2012; Xu et al., 2013). The performance of these approaches

is poor, where one reason is the subtle differences in subcellular

location patterns between cancer and normal states, which are influ-

enced by cell mutations and morphological changes.

In fact, there are a large number of images of proteins with can-

cerous tissues. The Human Protein Atlas (HPA, version 11, http://

www.proteinatlas.org/) (Uhlen et al., 2010) database, for example,

currently contains more than 1 million immunohistochemistry

(IHC) microscopy images of proteins in cancerous tissues. But due

to the lack of explicit subcellular annotations, no attempt has been

made in using these images from cancerous tissues for constructing

supervised models for cancer localization prediction.

To address the issues, we present a heuristic semi-supervised

learning framework for subcellular location prediction by taking ad-

vantage of the unannotated cancer samples in developing predictors.

The key advantage of the proposed semi-supervised method, in com-

parison to the traditional supervised learning algorithms, is that

it can train prediction models with only a few labeled image sam-

ples and a large pool of unlabeled samples (Hady and Schwenker,

2013). An iterative and incremental strategy was designed to select

unlabeled samples into the training set. To choose the most dis-

criminative samples, we developed three different training modes:

a single-training model consisting of only one classifier (McLachlan,

1975), a co-training model consisting of two classifiers (Cohen,

2002) and a tri-training model consisting of three classifiers (Zhou

and Li, 2005). Also, as the incorporation of prior knowledge can

improve the performance of semi-supervised methods (Liston and

Stone, 2008), we took the location information from the corres-

ponding normal tissues as prior knowledge to guide the selection

process.

Another advantage of the proposed semi-supervised framework

is that the training samples become typically much more enriched

compared with the traditional supervised learning. First, it selected

useful lower-quality images from normal tissues for training.

In general, researchers prefer using well-stained images in the

training set (Newberg and Murphy, 2008; Xu et al., 2013). But

selecting only high-quality images may introduce bias into

modeling because the number of high expression level images in

the HPA is relatively small (Fig. 1A). Therefore, instead of being

discarded, some images of normal tissues with weak expression lev-

els were selected for use in training by the semi-supervised strategy

used in this study. Then, also the large cancer dataset was used

for model construction by using the semi-supervised strategy of this

study, which results in a much larger dataset useable for model

construction. The final predictor by the semi-supervised training

can be used for images from both normal and cancer tissues.

We have tested the method on an independent cancer biomarker

dataset composed of translocated or mislocated proteins, which

have been confirmed by biological experiments. Comparing the pre-

diction results from models trained with and without data from

cancerous tissues shows that using the cancer data improves the

sensitivity of detecting protein translocations or mislocations in

human cancer tissues.

Fig. 1. Data collection. (A) Process of collecting normal datasets. The pie chart

(left) shows the percentages of normal protein images with different levels of

expression reliability in HPA version 11. Protein images with high and me-

dium reliability corresponding to six subcellular locations in 11 tissues

were collected (Supplementary Table S1). The overlapping part of two circles

represents overlap on the protein level because some proteins have different

reliability levels in different tissues. For example, ornithine carbamoyltrans-

ferase is one such protein because its reliability of expression in liver is high

while in the colon it is medium. The IDN is randomly selected from the non-

overlapping proteins and avoids protein overlap with the training set. The

ADN and BDN are composed of the remaining images with high and medium

reliability levels, respectively. Note that IDN has intersection with neither

ADN nor BDN at the protein level. (B) Some examples of protein images with

different reliability levels and subcellular locations. (C) Summary of all the

datasets used in this study. The CDC is built by images of 348 proteins in can-

cerous tissues, where the 348 proteins are proteins whose images in corres-

ponding normal tissues are of high reliability of protein expression. The IBD

contains 10 proteins that were reported being translocated in human cancers

by the literatures (Supplementary Table S2). In the column of expression reli-

ability, H means high and M means medium
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2 Methods

2.1 Datasets
Our image data were extracted from the HPA database, where the

reliability of the annotated protein expression data is scored as high,

medium, low and very low quality, depending on the consistency of

the expression profile with the available literature (Uhlen et al.,

2010). To compromise between image quality and model generality,

we used the top two categories of IHC images, i.e. high and medium

reliability levels (Fig. 1). Three normal datasets with high and me-

dium reliability levels were used, where the datasets ADN and BDN

are for training and the independent dataset (IDN) is for testing.

In the experiments, we evaluated different supervised and semi-

supervised algorithms on the IDN, which is not contained in the

training set for all the training stages. It should be noted that not

all of the medium quality images in the BDN dataset were used.

Only those that are capable of improving model performance were

selected according to our semi-supervised strategy.

The cancer dataset (CDC) contains 21 920 images, which

were selectively added into the training set to improve prediction

performance for proteins in cancerous tissues. One hundred and

forty-seven images corresponding to 10 biomarker proteins in nor-

mal and cancerous tissues were retrieved from the HPA database

and composed the independent biomarker dataset (IBD) dataset.

This dataset was used to validate whether the sensitivity of detecting

the subcellular location difference between normal and cancer

statuses is improved by incorporating the cancer data into training.

All these datasets are from 11 human tissues, i.e. breast, colon,

liver, lung, lymph node, ovary, pancreas, prostate, kidney, thyroid

gland and urinary bladder. They involve six major cellular organ-

elles: cytoplasm, endoplasmic reticulum, Golgi apparatus, mito-

chondria, nucleus and vesicles. Among all the proteins in our

datasets, 26% are multilabel proteins that belong to two or three

organelles simultaneously. It should be noted that the label of each

protein was obtained from the annotation of its immunofluores-

cence (IF) images with the same antibodies.

2.2 Image preprocessing and feature extraction
Because each original HPA image is the fusion of DNA and protein,

the linear spectral separation method was used to separate DNA

and protein channels (Xu et al., 2013). Then we extracted the

Haralick texture features, DNA distribution features and local bin-

ary patterns (LBP) features from these two channels (Nanni et al.,

2010; Tahir et al., 2012; Xu et al., 2013). Each of 10 Daubechies

filters can generate 836 Haralick features. They are used to create

separate feature sets referred to as db1 through db10. The dimen-

sions of DNA distribution and LBP features are 4 and 256, respect-

ively. A feature vector of 1096 components is used to represent the

image in each Daubechies filter space. Many previous studies

have demonstrated that feature selection from the high-dimensional

vector is useful, so we used stepwise discriminant analysis as it has

been demonstrated to work well in this field (Newberg and Murphy,

2008; Xu et al., 2013).

2.3 Incremental semi-supervised learning
We prepared three datasets, i.e. ADN, BDN and CDC, to construct

classifiers. Among them, ADN and BDN are normal datasets with

different levels of reliability of protein expression, and CDC is a

cancer dataset. All of the ADN dataset were used in our experiments

because this dataset has the best quality. Then the samples in

BDN and CDC datasets were selectively added to the training set

by semi-supervised learning. A flow chart of the proposed method

is shown in Figure 2A.

2.3.1 Incorporating new samples

The requirement for a sample to be added to the training set is that

its predicted label set is the same as the annotation in HPA and the

other classifier(s). This is because such images have more obvious

discriminative features for a certain class and they can therefore help

to enhance the classification boundary of the current model. Since

there is no subcellular location annotation of proteins in cancerous

tissues in the HPA, we compare the prediction output to the annota-

tion of corresponding proteins in normal tissues to judge whether a

sample in the CDC dataset should be selected or not. This is reliable

when considering more than 95% proteins are actually not cancer

biomarkers (Glory et al., 2008). Note that when adding the

samples from the CDC set, the initial classifier(s) are the resulting

classifier(s) after adding the BDN set. This ensures the generality of

final predictor for both normal and cancer proteins. To test different

strategies, we have implemented three training modes, i.e. single-

classifier mode, two-classifier mode and three-classifier mode.

Details of their screening criteria to judge which samples need to be

added are presented as follows.

The single-classifier mode just constructs one classifier, which

will be iteratively updated until the stop condition is reached. Before

the iteration process, an initial classier is trained using the entire

ADN dataset. In each iteration round, the classifier is used to predict

Fig. 2. Incremental process of iteratively adding candidate samples into the

training set. (A) Flow chart of the iterative process. The initial training set is ei-

ther the entire ADN dataset or the entire ADN dataset plus a selected subset

of the BDN dataset, while the candidate samples to be included are images in

either the BDN or CDC datasets, respectively. As the iterations proceed, the

training set grows and the number of candidate samples decreases.

(B–D) Results of iteratively adding BDN into the training set (initially ADN)

using the proposed protocol with db7 features. (E–G) Results of iteratively

adding CDC into the training set (initially ADN and a selected subset of BDN)

using the proposed protocol with db7 features. (D, G) Shows effects caused

by updating the training set in each round. The effect (effj) defined by

Equation (1) is used for determining the stop condition of iterations. The

model is considered stable when effj smaller than a threshold value (<0.01 in

this study)

Bioimaging-based detection of mislocalized proteins in human cancers 1113
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the subcellular locations of the images in the candidate sample set

and those images whose predicted subcellular locations are the same

as the annotations in HPA are selected and put into the training set.

The classifier is then updated based on the new training set, which is

ready for the next iteration.

According to the two-classifier mode, a predictor is composed of

two classifiers, i.e. C1 and C2, where their initial models are trained

on A1 and A2, which are generated from the ADN dataset via the

bootstrap sampling method (Efron and Tibshirani, 1994). This sam-

pling method randomly draws n independent samples with replace-

ment from the original pooled set, where n is the number of samples

in the pooled set. In this study, we sampled 4224 times with replace-

ment from the ADN space and obtained approximately 63.2% of

ADN images after discarding repeated images. This step can ensure

A1 � ADN; A2 � ADN and A1 6¼ A2, which guarantee the diver-

sity of the initial models of C1 and C2. The candidate sample set was

duplicated to two sets, B1 and B2, which were used for updating C1

and C2, respectively. In each iterative round of training, C1 is firstly

employed to predict the subcellular locations of the images in B2,

then those images whose predicted subcellular locations are exactly

the same as the annotations in HPA were removed from B2

and added to A2 for updating the C2 model. Analogously, A1, the

training set of C1, was extended by predicting B1 with C2. As the

iterations proceed, the size of B1 and B2 decreases while that of A1

and A2 increases.

The three-classifier mode trains three classifiers, i.e. C1, C2 and

C3, by three different training sets, i.e. A1, A2 and A3, which are also

initially constructed by using bootstrap sampling. Then the candi-

date sample set was duplicated to three sets, B1, B2 and B3, for

updating the three classifiers, respectively. In each round, C1 and C2

are used to predict the subcellular locations of the images in B3.

Those images whose label sets outputted from C1 and C2 are both

the same as the HPA annotation were removed from B3 and added

to A3 for updating C3. A1 and A2 were updated in an analogous way

based on the output from the other two classifiers.

2.3.2 Stopping condition

All the three modes are based on the iteration processes shown in

Figure 2A. A critical question is when the iteration should terminate.

The stopping condition of the iterations is determined by the effect

of newly added samples to the classifier model. In this article, this

effect is measured by the number of newly added samples and the

change of the predicted scores for overlapping images in the current

and previous rounds. To measure the change quantitatively, the

t-test was used to compare the scores of two adjacent rounds and

the average of the P-values was calculated. We thus define the

effect as

effj ¼
nj

N
� 1

pj
; (1)

where nj is the number of samples newly added in the jth round,

N is the total number of initial candidate samples, pj is the average

P-values between round j and (j�1). The iteration stops when

effj<0.01, which is determined according to our experimental re-

sults. Details by varying effj are shown in Supplementary Figure S1.

2.4 Dynamic threshold criterion
Here, we used the support vector machine (SVM) as the classifica-

tion model, and the LIBSVM-3.17 package is employed (http://

www.csie.ntu.edu.tw/�cjlin/libsvm/). The radial basis function was

used as the kernel and its optimal width parameter was calculated

by the data-driven calculator GFO (Lei et al., 2012). To deal with

multilabel proteins that can coexist in multiple subcellular locations,

the binary relevance (BR) multilabel algorithm was used to deal

with our datasets (Boutell et al., 2004). According to BR, one binary

SVM model was trained for predicting the relevance of test images

to one class, so each BR classifier contains six SVM models

(Xu et al., 2013). A six-dimensional (6D) score vector [s1, s2,. . ., s6]

will be obtained per test image, where each score component repre-

sents the confidence of the input belonging to the corresponding

class (six subcellular locations). Based on the outputted real-value

confidence score vector, it is important to decide which class or

classes should be assigned to a sample.

In a previous work, we investigated the top criterion (T-criterion)

and the threshold criterion (S-criterion) to decide the label sets in

multilabel classifications (Xu et al., 2013). The T-criterion considers

that the label set consists of the labels with positive scores, and if

all the scores are negative, the label with the maximum score is con-

sidered as the unique label. The assumption of the S-criterion is that

the score values corresponding to the real labels are the largest, and,

in the case of a multiplex sample, its multiple labels will have similar

scores. So in the S-criterion, a threshold is determined to measure

whether a score is close enough to the largest one. However, it is

a static threshold that is applied to all the images to be classified.

A static unified threshold may not fit for all images because the

scales of score vectors for different images can be variable, especially

for the images in different classes.

To solve this problem, we proposed a dynamic threshold criter-

ion (D-criterion) in this study, which can determine a specific

threshold for each sample according to the scale and distribution of

its score vector. For one image whose score vector is [s1, s2,. . ., s6],

the D-criterion can be presented as: if all the six scores are negative,

then the label with the maximum score is considered as the unique

label; if the maximum score is positive, then

yi ¼
1; if

smax � si

smax
� t or si > h

�1; otherwise

;

8><
>:

where smax ¼ maxfs1; s2;. . .; s6g; smax > 0;

(2)

where yi is the prediction of the sample’s relevance to the ith class,

and t and h are two constant parameters that need to be determined.

To derive these two parameters, the maximum a posteriori (MAP)

principle is employed.

First, the degree of closeness between si and smax is defined as

tdif ¼ smax � si

smax
(3)

Here, we define H1 to denote ‘yes’ and H2 to denote ‘no’ when

deciding whether the ith class should be assigned to the predicted

label set according to the tdif value. Supposing Hb is the final deci-

sion, the objective function with respect to tdif is

b ¼ arg max
e¼1;2

PðHejtdifÞ ¼ arg max
e¼1;2

PðtdifjHeÞ � PðHeÞ
PðtdifÞ ;

¼ arg max
e¼1;2

PðtdifjHeÞ � PðHeÞ
(4)

where PðtdifjH1Þ � PðH1Þ is the probability distribution of tdif for

the positive samples in the ith class, and PðtdifjH2Þ � PðH2Þ is for

negative samples not belonging to the ith class. So to distinguish H1

and H2 with a minimum error, the tdif value in the intersection of

PðtdifjH1Þ � PðH1Þ and PðtdifjH2Þ � PðH2Þ is taken as the parameter t

according to the MAP principle (Fig. 3).
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As for the other parameter h, it is set to ensure all the high scores

are not missed, and the confidence of the decision according to h is

a ¼ PðH1jsi > hÞ ¼ PðH1Þ � Pðsi > hjH1Þ
Pðsi > hÞ

¼

ðþ1
h

PðH1Þ � PðsijH1Þdsi

ðþ1
h

PðsiÞdsi

(5)

Therefore, given a confidence score a, h can then be calculated

according to Equation (5). In this article, we set a¼0.95, and

its effects to h and classification performance are shown in

Supplementary Figure S2.

The statistics of PðtdifjH1Þ,PðtdifjH2Þ, PðsijH1Þ, PðH1Þ, PðH2Þ
and PðsiÞ are based on the score vectors obtained by using 5-fold

cross validation on the training set. The calculation process is given

in Figure 3.

2.5 Evaluation metrics
Due to the fact that we are facing multilabel proteins, five multilabel

classification metrics, i.e. subset accuracy, accuracy, recall, precision

and average label accuracy were employed to evaluate the perform-

ance of the predictors (see Supplementary text for details). Among

them, we mainly use the subset accuracy, which is the most stringent

one since it requires the predicted label set to be exactly the same as

the true label set. In addition, we also measured the sensitivity and

AUC of each binary classifier in the models (see Supplementary text

for detail).

3 Results

3.1 Baseline supervised model results
As a baseline, the most straightforward supervised method was used

to train classifiers for comparison. We took the entire ADN, entire

BDN and a combination of them (ADNþBDN), respectively, as

training sets to construct classifiers. Then these classifiers were

tested on the independent IDN dataset, and generated the results

of simple supervised learning for comparison using the T-criterion

(Fig. 4A) and the D-criterion (Fig. 4B), respectively.

It can be seen from Figure 4A and B that: (1) D-criterion outper-

forms T-criterion, demonstrating the effectiveness of the D-criterion;

(2) Overall, the subset accuracies of classifiers trained on ADN are

better than those on BDN, indicating that the image quality can af-

fect the model performance; (3) Interestingly, in some cases, the re-

sults of ADNþBDN are not better than those only using ADN,

indicating that not all of the medium quality images in BDN have a

positive effect on performance.

The first observation suggests that a dynamic threshold is bet-

ter due to the specificity for testing samples, thus we will use the

D-criterion in the following experiments. The second and third

observations suggest that if we add all the BDN samples into ADN

to train a supervised model, the performance does not improve

sometimes. The reason could be that not all of the samples in the

Fig. 3. Illustration of the process of determining parameters for D-criterion.

Two constant parameters, t and h, are needed in this criterion (Equation 2).

Suppose the ith score of a sample outputted from classifier is si. When decid-

ing whether the label i should be assigned to the predicted label set, we

defined H1 to denote yes and H2 to denote no. t is set to distinguish H1 and

H2, while h is set to ensure that the labels with high scores are not missed.

Both parameters are determined by maximizing posteriori principle, as well

as score vectors of training set by 5-fold cross validation. (A) The histogram

of tdif1. (B) The histogram of tdif2. tdif1 and tdif2 are tdif values correspond-

ing to H1 and H2, respectively (Equation 3). (C) The fitting curves. The param-

eter t is obtained as the intersection point. (D) The histogram of si when H1

happens. (E) The histogram of si. (F) The fitting curves. h is set to ensure the

ratio between the two regions of integration is 0.95. This figure is based on

the model trained by ADN with db7 features

Fig. 4. Results of supervised learning and semi-supervised learning tested on

the independent IDN dataset. (A) Results of baseline supervised classifiers

trained on ADN, BDN and ADNþBDN datasets, respectively, using the

T-criterion. (B) Results of supervised classifiers using the D-criterion.

(C) Comparison results of our classifiers trained by adding BDN to ADN using

semi-supervised strategy on three modes, with two other semi-supervised

classifiers in literature. (D) Ensemble by fusing the classifiers after adding

BDN. (E) Results of classifiers trained by subsequently adding CDC to the

training set using the semi-supervised strategy on three modes. AsemiB1 and

AsemiBC1 mean using one-classifier mode, AsemiB2 and AsemiBC2 mean

using two-classifier co-training mode, and AsemiB3 and AsemiBC3 mean

using three-classifier tri-training mode. (F) Ensemble by fusing the classi-

fiers after adding CDC. AsemiBE
1 , AsemiBE

2 , AsemiBE
3 , AsemiBCE

1 , AsemiBCE
2

and AsemiBCE
3 are ensemble classifiers, and each of them is constructed

by fusing 10 single classifiers of db1–db10. AsemiBE is the ensemble of

AsemiBE
1 , AsemiBE

2 and AsemiBE
3 . AsemiBCE is the ensemble of AsemiBCE

1 ,

AsemiBCE
2 and AsemiBCE

3 . (G) Comparison of subset accuracies between

ensemble classifiers and single classifiers

Bioimaging-based detection of mislocalized proteins in human cancers 1115
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BDN are complementary to the ADN; furthermore, some low-

quality samples in the BDN will degenerate the model. This moti-

vated us to explore a better way to take advantage of the candidate

image samples rather than simply employing all of them.

3.2 Improvements by selectively adding

medium-reliability data
The entire ADN was used as the initial training set, and then accord-

ing to the semi-supervised iteration framework, not all of the BDN

images, but only those which improve model performance were

iteratively selected into the training set. The final results are

three semi-supervised predictors, which are denoted as AsemiB1

(one-classifier mode), AsemiB2 (two-classifier mode) and AsemiB3

(three-classifier mode), corresponding to the three training modes,

respectively.

The classifier of each round is tested on IDN, and the changes of

subset accuracies are shown in Figure 2B. The changes of number

of added images, and effects on each iterative round are illustrated

in Figure 2C and D. It can be seen that as the round increases, the

subset accuracy tends to increase in all modes. All the final subset

accuracies when these iterations terminate, i.e. 51, 49 and 51%,

are higher than the result of directly adding the entire BDN,

which is 46% as shown in Figure 4B. Besides, both the number

of added images and effect value in the iteration decrease sharply.

This indicates that the influence of the added images on classifica-

tion decreases as the round increases. At the end of iterations of

the db7 model, 56.75, 61.37 and 52.86% images in BDN were

chosen and added to the training sets of AsemiB1, AsemiB2 and

AsemiB3, respectively. Compare Figure 4C and B, we can see that all

the subset accuracies of three semi-supervised modes are higher than

those of supervised learning. Adding medium-reliability data into

training set not only expands the training sample space, but also

validates the effectiveness of the proposed semi-supervised idea.

Considering that different semi-supervised learning methods

have been widely used these years (Lee and Madabhushi, 2010;

Luo et al., 2013), we also compared our methods with two state-

of-the-art semi-supervised algorithms, i.e. low-density separation

(LDS) and cost-sensitive semi-supervised SVM (CS4VM). LDS is a

graph-based method, which represents each labeled and unlabeled

sample as a node and tries to place decision boundaries in regions

where there are few data nodes (Chapelle and Zien, 2005). CS4VM

incorporates the unlabeled data into the SVM by estimating their

label means of misclassification costs (Li et al., 2010). Figure 4C

shows the results of LDS and CS4VM when taking ADN as labeled

data, BDN as unlabeled data and IDN as testing set. The perform-

ances of our proposed methods are better than LDS and CS4VM on

the multilabel dataset of this article. One reason can be the multila-

bel sample classification is much more comprehensive than the sin-

gle-label case used by the two algorithms. For instance, the LDS

might be unable to accurately find the boundaries in a graph built

by multilabel data, because some multilabel samples are near the

low-density areas and confuse the decisions.

3.3 Incorporating images from cancer tissues to the

model
To enhance the performance of predicting subcellular locations

of proteins in cancerous tissues, we consider adding some images

from cancerous tissues into the training set to eliminate the transfer

prediction error caused by the difference between the normal and

cancer data. Actually, we conducted an experiment to quantify the

differences of patterns between the two states. Based on the proteins

in CDC set, we used the correlation coefficient (CC) to measure dif-

ference between normal and cancer images, where we assumed that

proteins in the CDC set did not change their locations in cancer

states. This is reasonable when considering that more than 95% pro-

tein images in current HPA database are actually not cancer bio-

markers (Glory et al., 2008). Each image was represented by its

feature vector, and three CC matrixes were calculated: the first is

the intra-CC in the normal images group, the second is the intra-CC

in the cancer images group and the third is the inter-CC between

normal and cancer sets. Figure 5 shows the averaged CC values

based on six subcellular locations. It can be seen that the inter-CC

values between normal and cancer images are lower than the intra-

CC values in all cases. In addition, we also calculated the P-values

with the student t test between normal and cancer dataset, and

P-values of all the subcellular locations are <0.05. These results

demonstrate that even for the same organelle, there is a difference

between the normal and cancer data. This suggests that the trans-

fer method of using normal data as the training set to predict the

cancer data may miss some specific features of proteins in the

cancer state.

After adding BDN in above section, we obtained three classifiers,

i.e. AsemiB1, AsemiB2 and AsemiB3, by semi-supervised learning.

Following the incremental selective learning protocol, images

from CDC were subsequently added to these classifiers, and we got

AsemiBC1, AsemiBC2 and AsemiBC3 (Figs. 2E–G and 4E). It can be

seen that the subset accuracies of classifiers on the independent

IDN set fluctuate and decline slightly, which is because the added

cancer data affected the prediction performance of normal data.

This also highlights the difference between normal and cancer data.

Nevertheless, the decline in performance is not significant, and

the subset accuracies still outperform the baseline results from

supervised models.

3.4 Performance of ensemble classifiers
Since an ensemble of multiple classifiers generally achieves better

performance, we constructed ensemble classifiers by combining the

10 classifiers with db1–db10 features. The fusion method averages

all the score vectors from the 10 single classifiers to get a final six-

dimensional (6D) vector for each query image. These ensemble

classifiers are tested on IDN to show their effectiveness on the nor-

mal dataset (Fig. 4D and F). By comparing the results between the

ensemble classifier and the single classifiers, we find that the ensem-

ble classifier outperforms the single classifier on IDN dataset. For

example, a 2% improvement of the subset accuracy was observed

for the AsemiBCE
2 compared with the single classifier AsemiBC2

on db7. The other merit of the ensemble strategy is that it can

Fig. 5. Comparison of intranormal CC, intracancer CC and inter normal and

cancer CC values. In the statistics, the high expression level dataset and CDC

dataset are used as normal and cancer dataset, respectively. The db7 features

are used and the feature dimension is 80
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significantly reduce the negative bias by adding the cancer data to

the training set. For instance, the subset accuracy of single

AsemiBC1 classifier on IDN with db7 feature is 47.5% (Fig. 4D),

which is 4.25% lower than the AsemiBCE
1.

One final ensemble predictor without-adding CDC and one final

ensemble predictor adding CDC were created. All the classifiers

without-adding CDC were fused to create AsemiBE, and all the

classifiers of adding CDC were fused to create AsemiBCE. Both of

them could achieve good performance on IDN testing set (Fig. 4G).

It is worth pointing out that besides the most stringent metric in

multilabel classification, subset accuracy (Fig. 4), we also used other

indices to evaluate the AsemiBE and AsemiBCE and their results

can be seen in Supplementary Tables S3 and S4. For example, the

average label accuracy, which indicates the reliability of prediction

for single locations, can achieve 87.04% for the final system

(Supplementary Table S3), which implies the reliable detection of

translocation from or to a specific location.

3.5 Detecting protein translocations of cancer

biomarkers
The IBD set containing 10 reported biomarker proteins was used

for validating whether the sensitivity of translocation detection can

be enhanced by utilizing cancer data in the training phase. We com-

pared the prediction results on the IBD set before and after adding

the CDC dataset to see the effects of adding CDC data. The results

from AsemiBE and AsemiBCE were compared, where the former did

not incorporate the cancer data into training, whereas the latter did.

To quantify the sensitivity of detecting the subcellular location

changes, in addition to the predicted and reported location labels in

the normal and cancer conditions, we also conducted independent

sample t tests on the predicted score vectors to evaluate the

significance of the location changes (Supplementary Fig. S3).

The comparison results and P-values of the changes are shown in

Table 1, from where we can see that:

1. The protein Bax and cyclin D1 prove that adding CDC dataset

makes the classifiers more sensitive to detect the location changes

occurring during cancer. In detail, protein Bax will partly translo-

cate from the cytoplasm to the mitochondrion when lymphoma

occurs (Nechushtan et al., 1999). This translocation cannot be

found by the predictors trained only on normal data, but can be

picked out by AsemiBCE, which was trained on both normal and

cancer data. The protein cyclin D1 normally shuttles between

cytoplasm and nucleus locations. However, in ovarian cancer cyc-

lin D1 is found only in the nucleus (Gladden and Diehl, 2005).

AsemiBE predicts cyclin D1 its locations in cancer as both the nu-

cleus and mitochondria, while AsemiBCE correctly predicts its

cancer location as the nucleus only.

2. The loss of nuclear localization of PTEN in pancreatic cancer

is correctly predicted by both AsemiBE and AsemiBCE (Perren

et al., 2000), demonstrating that the machine-learning systems

are effective for the detection of protein mislocalization.

3. AsemiBCE is able to perform prediction better than AsemiBE for

the IBD proteins in their normal states. For example, the protein

BAG-1 is reported to reside in the nucleus in normal conditions

and translocate to the mitochondria during colorectal cancer

(Takayama et al., 1998). AsemiBE predicted BAG-1 would local-

ize in both the cytoplasm and nucleus in the normal state,

whereas AsemiBCE predicted only a nucleus location, which

is experimentally correct. Other examples include NQO1 and

GOLGA5.

4. The P-values also reveal the improved sensitivity for detecting

protein translocations by the predictor of AsemiBCE. The lower

Table 1. Comparison between literature descriptions and the results of predicting IBD by ensemble classifiers

Protein Tissue Protein translocations from normal to cancer condition

Reported by literature

(normal! cancer)

Prediction by AsemiBE

(normal! cancer

P-values of changed locations)a,b

Prediction by AsemiBCE

(normal! cancer

P-values of changed locations)a,b

Bax Lymph node Cyto.! Cyto.& Mito. Cyto.! Cyto.

Mito.0.6336

Cyto.! Cyto.& Mito.

Mito.0.4402

cyclin D1 Ovary Cyto.& Nucl.! Nucl. Cyto.!Nucl.& Mito.

Cyto.0.0430

Cyto.! Nucl.

Cyto.0.0319

PTEN Pancreas Cyto.& Nucl.! Cyto. Cyto.& Nucl.! Cyto.

Nucl.0.3853

Cyto.& Nucl.! Cyto.

Nucl.0.5570

BAG-1 Colon Nucl.!Mito. Nucl.& Cyto.!Nucl.& Cyto.

Nucl.0.5001, Mito.0.6513

Nucl.!Nucl.& Cyto.

Nucl.0.5944, Mito.0.3463

GOLGA5 Thyroid gland Gol.!Mito. Gol.& Mito.& Nucl.! Gol.

Gol.0.8560, Nucl.0.0403

Gol.! Cyto.

Gol.0.2699, Nucl.0.5522

NQO1 Lung Cyto.! Nucl. Nucl.! Cyto.

Cyto.0.0010, Nucl.0.0798

Cyto.! Cyto.

Cyto.0.0003, Nucl.0.0441

SOX9 Breast Nucl.! Cyto. Nucl.! Nucl.

Cyto.0.2628, Nucl.0.5170

Nucl.!Nucl.

Cyto.0.0741, Nucl.0.1143

p53 Breast Nucl.!Nucl.& Cyto. Nucl.! Nucl.

Cyto.0.1315

Nucl.!Nucl.

Cyto.0.0741

TOP2A Lung Nucl.! Cyto. Nucl.! Nucl.

Cyto.0.2130, Nucl.0.7945

Nucl.!Nucl.

Cyto.0.1286, Nucl.0.5853

IGFBP Breast Nucl.! Cyto. Cyto.! Cyto.

Cyto.0.4517, Nucl.0.7419

Cyto.! Cyto.

Cyto.0.6124, Nucl.0.6167

aThe results have two lines: the first line is the predicted subcellular location labels in normal and cancer conditions, respectively, by the classifier; the second

line is the P-values measuring the subcellular location changes when cancer occurs (column 3), which are calculated by the independent sample t test on the

predicted scores for normal and cancer images.
bThose translocations that have lower P-values are bold.
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the P-value, the more significant the change. There are a total of

16 experimentally known changed locations for the 10 proteins.

Twelve of them have lower P-values in AsemiBCE with a P-value

0.0003–0.6167 compared with 0.001–0.8560 in AsemiBE. These

results suggest that the sensitivity of detecting protein subcellular

location changes is enhanced by incorporating the cancer data

into the model construction.

5. Although some improvements can be observed (with lower

P-values) by incorporating the cancer images into the classifica-

tion system construction, there are still considerable room for

improvement. For instance, there are still some cases where

none of the two predictors can get completely correct prediction.

This suggests that tremendous future efforts are needed for

further improvement.

4 Discussion and conclusions

In this article, we present a new automated bioimage analysis system

for sensitively detecting translocated or mislocated proteins in

human cancers. The new system is featured with a semi-supervised

learning engine, which can help to enlarge the training space by

incorporating lower-quality or unlabeled data key to the perform-

ance of a statistic model. The other merit of the new system is the

capability of predicting proteins that shuttle among multiple subcel-

lular locations, and a new dynamic D-criterion is proposed to deal

with the multilabel set determination problem by considering the

specificity of each protein. The new developed system has opened a

new avenue for bioimage-based automated biomarker detection

work, which suits large-scale data analysis and complement research

from biological experiments.

We have shown that the strategy of selectively incorporating me-

dium staining normal images with the developed semi-supervised

framework is helpful for improving the classification accuracy on

the normal images as demonstrated in the independent test dataset.

On the other hand, some improvements were also observed when

applying the semi-supervised algorithm for adding selected cancer

images into training, but they have still considerable space for fur-

ther improvement. For instance, some translocated or mislocated

cancer biomarkers cannot be completely predicted, especially for

those multi-label proteins.

To further improve the performance of our system, some efforts

will be made in future studies. First, we will aim to improve the mul-

tilabel classification algorithm by taking the label correlations into

account. Multiplex proteins that may shuttle among more than one

subcellular location indicate a complex subcellular protein organiza-

tion in the cell. The benchmark dataset of this study contains

26% multilabel proteins. This ratio is even much higher to reach

approximately 60% according to a recent study of applying IF and

fluorescent-protein tagging techniques on mammalian cells (Stadler,

2013). In this article, we transformed the multilabel problem into

six binary classification problems, ignoring the correlation among

different subcellular locations. It is expected that incorporating

correlations, such as proteins coexisting at different locations due

to spatial proximity or functional reasons, will be useful for further

improving the performance.

Second, our imaging-based studies can be integrated with analysis of

non-imaging data, such as proteomics and genomics analyses (Murphy,

2014). Amino acid sequence has been used for predicting protein subcel-

lular locations for many years, and we have developed an efficient se-

quence-based subcellular location predictor called Cell-PLoc in previous

studies (Chou and Shen, 2008; Shen and Chou, 2009). The Cell-PLoc

can also deal with multilabel proteins and have wide coverage of subcel-

lular components. Merging prediction results from different resources is

a potential effective way for further enhancing the sensitivity for translo-

cated proteins detection. The multiclassifier mode of this study also pro-

vides a feasible combination solution, which enables us to cotrain our

image-based and sequence-based software to generate a better protein

subcellular location prediction system.
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