BIOLOGY

©PLOS

COMPUTATIONAL

CrossMark

click for updates

E OPEN ACCESS

Citation: Brender JR, Zhang Y (2015) Predicting the
Effect of Mutations on Protein-Protein Binding
Interactions through Structure-Based Interface
Profiles. PLoS Comput Biol 11(10): €1004494.
doi:10.1371/journal.pcbi. 1004494

Editor: Robert L Jernigan, lowa State University,
UNITED STATES

Received: March 25, 2015
Accepted: August 6, 2015
Published: October 27, 2015

Copyright: © 2015 Brender, Zhang. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The project is supported in part by the
National Institute of General Medical Sciences
(GM083107) granted to YZ. The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Predicting the Effect of Mutations on Protein-
Protein Binding Interactions through
Structure-Based Interface Profiles

Jeffrey R. Brender', Yang Zhang'?*

1 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan,
United States of America, 2 Department of Biological Chemistry, University of Michigan, Ann Arbor,
Michigan, United States of America

* zhng@umich.edu

Abstract

The formation of protein-protein complexes is essential for proteins to perform their physio-
logical functions in the cell. Mutations that prevent the proper formation of the correct com-
plexes can have serious consequences for the associated cellular processes. Since
experimental determination of protein-protein binding affinity remains difficult when per-
formed on a large scale, computational methods for predicting the consequences of muta-
tions on binding affinity are highly desirable. We show that a scoring function based on
interface structure profiles collected from analogous protein-protein interactions in the PDB
is a powerful predictor of protein binding affinity changes upon mutation. As a standalone
feature, the differences between the interface profile score of the mutant and wild-type pro-
teins has an accuracy equivalent to the best all-atom potentials, despite being two orders of
magnitude faster once the profile has been constructed. Due to its unique sensitivity in col-
lecting the evolutionary profiles of analogous binding interactions and the high speed of cal-
culation, the interface profile score has additional advantages as a complementary feature
to combine with physics-based potentials for improving the accuracy of composite scoring
approaches. By incorporating the sequence-derived and residue-level coarse-grained
potentials with the interface structure profile score, a composite model was constructed
through the random forest training, which generates a Pearson correlation coefficient >0.8
between the predicted and observed binding free-energy changes upon mutation. This
accuracy is comparable to, or outperforms in most cases, the current best methods, but
does not require high-resolution full-atomic models of the mutant structures. The binding
interface profiling approach should find useful application in human-disease mutation rec-
ognition and protein interface design studies.

Author Summary

Few proteins carry out their tasks in isolation. Instead, proteins combine with each other
in complicated ways that can be affected by either the natural genetic variation that occurs

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004494 October 27,2015

1/25


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004494&domain=pdf
http://creativecommons.org/licenses/by/4.0/

©PLOS

COMPUTATIONAL

BIOLOGY

Recognizing Mutations on Protein Binding Interactions

among people or by disease causing mutations such as those that occur in cancer or in
genetic disorders. To understand how these mutations affect our health, it is necessary to
understand how mutations can affect the strength of the interactions that bind proteins
together. This is a difficult task to do in a laboratory on a large scale and scientists are
increasingly turning to computational methods to predict these effects in advance. We
show that by looking at the multiple alignments of similar protein-protein complex struc-
tures at the interface regions, new constraints based on the evolution of the three dimen-
sional structures of proteins can be made to predict which mutations are compatible with
two proteins interacting and which are not.

This is a PLOS Computational Biology Methods paper

Introduction

The formation of protein-protein complexes plays an essential role in the regulation of various
biological processes. Mutations play fundamental roles in evolution by introducing diversity
into genomes that can either be selectively advantageous or cause a change in protein affinity
that can result in malfunction of the protein interaction network [1, 2]. The Human Genome
Project has yielded a wealth of data concerning natural human genetic variation that remains
to be fully utilized. For example, it is well known that different people with the same condition
often respond differently to the same treatment. A treatment that is effective in one population
may have no effect or even be deleterious in another population. Knowledge of how individual
subpopulations respond to drugs therefore remains a major bottleneck within the drug discov-
ery process. Understanding how this natural variation within the human genome impacts the
protein interaction network is expected to yield insight into this process, provided that the
impact of a mutation on the formation of a protein complex can be reliably predicted. The
rational design or modification of the affinity and specificity of protein-protein interactions is
another challenging issue that has stimulated considerable efforts, as it presents many promis-
ing applications, notably for both industrial and therapeutic purposes [3].

Most of these efforts involve the prediction of the effect of a mutation upon the Gibbs free
energy change of protein-protein binding (AAG) on a large scale. Quantitatively, AAG values
for protein interactions may be measured experimentally by a variety of biophysical techniques
[4, 5]. However, these methods are, with few exceptions, inherently low-throughput due to the
need to express and purify each individual mutant protein before measurement. Alternatively,
deep mutational scanning can be coupled with functional selection to analyze the effect of a
large number of mutations on protein binding at specific sites within a protein [6, 7]. Deep
sequencing is a very powerful method that has generated impressive insights into residue-spe-
cific contributions to protein binding. However, this method is still in its infancy and routine
application is still difficult.

As aresult, scientists have increasingly turned to computational methods to predict AAG
values. For a rigid protein, the AAG of folding or protein binding can be determined relatively
accurately from a full-atomic description of the protein structure or complex, using either
potentials based on molecular mechanics that attempt to quantify the interactions in physically
meaningful terms [8], statistical potentials based on the likelihood of similar interactions and
local conformations occurring in the PDB [9], or some combination of the two. However, this
approach ignores the structural changes that can occur upon mutation, which can alleviate
clashes and position residues in conformations more favorable for interaction. Accordingly,
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much research has gone into the incorporation of flexibility into energetic calculations [8, 10-
12]. However, the method is computationally expensive for large datasets to the extent that it
becomes prohibitive for genome-wide studies or even scanning mutations on a single protein.
In addition, in many cases, a more exact physical representation of the molecular structure and
interactions have proved to be less accurate than simpler models due to the inherent inaccuracy
of each term in the force-field.

As such, alternative methods have been proposed that either use reduced representations of
the protein structure or simplified interaction schemes (for example, the use of Cf and contact
potentials) [13, 14] or omit the atomic details of the structure entirely and use machine-learn-
ing to predict AAG values from sequence conservation or from gross structural features such as
solvent accessibility and secondary structure. The accuracy of a machine learning method ulti-
mately depends on the quality of the feature set and the experimental data available to train the
method. If the training set is representative, completely covering all relevant types of interac-
tions and not significantly biased towards specific interactions, it is possible to use machine
learning to accurately predict the effect of a mutation using features that are only weakly pre-
dictive on their own. If the training set is not representative, then a model formed from only
weak predictors is usually not generalizable [15]. The effect of mutations on protein stability
has been heavily studied experimentally and non-redundant datasets have been constructed
that are believed to be representative of all classes of possible interactions. By contrast, informa-
tion on the effects of mutations on protein complex formation is much more limited with the
data heavily focused on only a few interaction types [16]. For this reason, constructing a
machine learning method for the prediction of AAG values for protein complex formation is
more difficult than constructing a machine learning method for stability predictions [9]. As a
result, the resulting methods generally have a lower accuracy compared to protein stability pre-
dictions [9]. Furthermore, the models are usually less generalizable and often show large drops
in accuracy when tested on new data not in the training set.

This limitation can be overcome if new and more accurate predictors are available for AAG
prediction. Because physics based features often share the same limitations, attempts have been
made to predict AAG using alternate scoring methods. Based on their success in the prediction
of AAG values for protein stability [17, 18], sequence based features have been suggested as pre-
dictors of protein-protein interaction AAG values [19]. Protein binding affinity is under evolu-
tionary pressure and we expect residues that contribute strongly to binding energetics to be
more strongly conserved than residues which have minimal impact on binding. The conserva-
tion of binding residues plays an important role in many “hot spot” prediction programs
which seek to identify sites on the interface which strongly influence binding [20]. Taking this
approach further, it is likely that the observed distribution of amino acids at a site within the
interface reflects at some level the amino acid energetic preferences for binding. Other things
being equal, the probability of finding an amino acid which unfavorably impacts binding at an
interface site will be less than finding a more favorable amino acid—provided that affinity, and
not some other property, is the driving force for selection.

However, in many cases there are other driving forces for selection besides protein-protein
binding affinity such as binding specificity [6, 21, 22], foldability [23], or protection against
aggregation [24]. In addition, closely related sequences bear the imprint of their evolutionary
relationship independent of any functional relationship [25]. The limited time of divergence
from a common evolutionary ancestor creates a phylogenetic signal that can complicate analy-
sis as not all possible mutations are effectively sampled during the divergence time [26]. Both
effects can be reduced by considering structurally similar interfaces rather than closely evolu-
tionarily related proteins. Structurally similar interfaces are expected to serve similar roles
regardless of their evolutionary relationship; an effect that can be seen by the existence of
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highly similar interfaces in proteins that are otherwise structurally dissimilar and evolutionarily
distant [27].

Using this approach, we show an interface binding profile score, called BindProf, formed
from an aligned ensemble of structurally similar interfaces has accuracy as a standalone feature
similar to, or in most cases, better than many composite all-atom potentials. Unlike the all-
atom energies, it can be calculated very rapidly once the profile is constructed. The on-line
server of the BindProf program is freely available at http://zhanglab.ccmb.med.umich.edu/
BindProf.

Results

To predict the free-energy change of protein-protein interactions, AAG, BindProf adopts a
multi-scale approach shown in Fig 1 using a variety of features at different levels of structural
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Fig 1. Pipeline of BindProf for predicting protein-binding affinity using features derived from interface structural profiles, wild type (WT) and
mutant sequences, and physics based scoring of the structures of the WT and mutant complexes. (1) Interface profile scores and Interface profile
scores features are derived by profile scoring structural alignment of structurally similar interface using an interface similarity cutoff to define the aligned
sequences that are used to build the profile. (2) Physics based scores are formed at the residue or atomic level formed by modeling the mutant monomeric
protein and complex and evaluating the difference in energy. (3) Sequence features are formed by the difference between the WT and mutant sequences in
the number of hydrophobic (V, I, L, M, F, W, or C), aromatic (Y, F, or W), charged (R, K, D, or E), hydrogen bond acceptors (D, E, N, H, Q, S, T, or Y), and
hydrogen bond donating residues (R, K, W, N, Q, H, S, T, or Y) along with the difference in amino acid volume calculated from the sequence.

doi:10.1371/journal.pcbi.1004494.9001
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resolution using machine learning with sequence and structure based features to learn the cor-
rect weighting between terms using a regression tree classifier. A unique feature of BindProf is
the inclusion of a structural profile score reflecting the likelihood of a given sequence being
found in the ensemble of structurally similar protein-protein complexes. Since function follows
structure more closely than sequence, we expect the structural profile score to more accurately
reflect AAG changes than sequence conservation. Such an expectation has been borne out in
our protein design program EvoDesign [28, 29], where the structural profile score was found to
be the dominant factor in a multi-scale approach that resulted in the majority of tested
sequences experimentally folding to the designated structures.

Mutant Interface Profile Scores As a Predictor of AAG for Complex
Formation

Since the most distinctive feature of our approach is the use of structurally similar interfaces of
protein complexes in the PDB to score the effect of a mutation, we first consider the most accu-
rate way to predict AAG of protein binding using only this information. The amino acid distri-
bution of structurally similar complexes can be analyzed quantitatively by the use of structural
profile scores. Similar to a position specific scoring matrix, a structural profile score F(p, a)
reflects the log odds likelihood of an amino acid (A) being found at a particular position (p) in
an aligned ensemble of structurally similar proteins [30]

F(p,A) = Zg(Pva)M(A,a) (1)

where g(p, a) is the Henikoff weighted frequency of the amino acid a appearing at the pth posi-
tion in a multiple sequence alignment (MSA) with exactly redundant interface sequences
removed; M(A, a) is the BLOSUM substitution matrix with a varying for 20 amino acids,
which is used to account for missing structures in the PDB. Experimental AAG values are there-
fore hypothesized to be proportional to the mutant profile score defined as the difference
between the profile scores of the wild type (WT) and mutant (Mut) amino acids at position p
in the interface:

AAGcalc = Zg(pv a)M(AWT7 a) - Zg(pa a)M(AMuU (Il) (2)

The profile therefore depends on both the cutoff level for defining a similar complex and
the measure of similarity used. The definition of “similar” is less straightforward in regards to
interfaces than it is with overall protein structure. Similarity of protein structures can be
defined by a normalized, length independent measure of structural difference, TM-score,
which has been shown to have a close relationship with fold classification [31, 32]. For inter-
faces, a straightforward definition is to use the normal procedure for the structural comparison
of proteins but to only consider interface residues in the comparison [33]. A similar interface
in this case is defined as having a high TM-score when only residues at a given cutoff distance
(4 A) from the other chain are considered for alignment and scoring (iTM-score, see definition
in Methods) [33]. A more stringent comparison (Iscore) can be made by considering not only
backbone alignment but also contact patterns at the interface to more clearly distinguish closely
related proteins [33]. Finally, even close structural matches can result in significantly different
binding energetics if there is a mismatch of interaction types at the interface. For example, the
mutation of hydrophobic to a charged residue can result in a severe loss of affinity if the muta-
tion is located within a hydrophobic pocket. Accordingly, the alignment can be modified to
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Fig 2. Comparison of the accuracy of mutant interface profile scores formed from different structural
alignment methods in predicting AAG of complex formation. The iTM-score considers only structural
similarity at the interface, Iscore considers structural similarity at the interface and the fraction of native
contacts preserved, and PCscore considers both physicochemical and structural similarity at the interface.
TM-score considers only structural alignment of the mutated monomeric protein. Profiles are constructed
from sequences meeting each cutoff and the predicted AAG values are calculated according to Eq 2.

doi:10.1371/journal.pcbi.1004494.9002

take into account physicochemical similarity during alignment using a pharmacophore classifi-
cation of residues to identify residue similarity (PCscore) [34].

In Fig 2 we show the correlation between AAG values calculated by the mutant interface
profile scores (Eq 2) and experimental AAG values of protein-protein interactions from the
SKEMPI database [16] as a function of the alignment methods and cutoff values. Each method
shows the expected general rise and fall in the accuracy at extreme values as the cutoff is made
either too strict or too loose. Too loose cutoffs degrade the accuracy of the profile score as
structurally unrelated complexes are included in the profile and the specific information from
structurally related complexes is lost. Too strict cutoffs, on the other hand, include too few
sequences to construct an accurate profile that reflects all the actual allowable possibilities at
the interface. While all similarity measures show low accuracy asymptotically at very high and
low cutoff values, a simple unimodal distribution of accuracy with the cutoff value is only
observed for the profile score formed from structural alignment of the monomeric protein. In
this case, the accuracy of the profile score reflects the underlying bimodal distribution of the
TM-Score, which has a sharp division near TM-Score cutoff values of 0.5 separating similar
folds from unrelated structures [32]. Since TM-Scores of 0.5 and above correspond with high
probability to similar folds while a TM-Score below this value indicates essentially no relation-
ship between structures [32], the monomeric profile score is only accurate above a TM-Score
0.5. However, the actual correlation with the experimental AAG values is modest and the pro-
file scores from all interface alignment methods yield a significantly better correlation for
nearly the entire range of cutoff values.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004494 October 27,2015 6/25
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The relationship between cutoff value and AAG prediction for the interface alignment meth-
ods (iTM-score, Iscore, and PCscore) is more complex reflecting a more complex underlying
distribution. In each case, the accuracy of AAG prediction is at least bimodal with the cutoff
value. Like the monomeric structure profile, the accuracy rises at strict cutoff values. As the cut-
off is reduced it levels off as an adequate representation of closely related complexes is built.
However, unlike the monomeric structure profile, the accuracy rises again at lower cutoff val-
ues, eventually reaching a higher accuracy than can be achieved by profiles constructed from
closely related complexes. Closer inspection of the actual origin of this effect is the inclusion of
sequences at lower cutoff values that can be aligned accurately to a region within the interface
but with relatively poor overall global alignment. From the viewpoint of applications which
rely on global properties like the recognition of convergently evolved similar interfaces for
function annotation [35-38], these sequences are less useful as they reflect similarity in only a
small region of the interface. However, on a physical level, binding interactions are fundamen-
tally local properties. In the interior of a protein, amino acids are tightly packed and a mutation
at one site can cause a rearrangement of the protein core [39]. At the interface, however, pack-
ing is less tight and a considerable fraction is exposed to solvent even in the protein complex
[40]. The difference in packing gives a conformational freedom at the interface that is not pres-
ent in the interior which can retard the propagation of packing defects throughout the interface
after a mutation [41]. With this in mind, the relative inaccuracy of profiles based on PCscore
alignment at predicting AAG values can be explained, despite the fact that PCscore is the only
method that attempts to incorporate physicochemical similarity into the alignment procedure.
Because PCscore penalizes amino acid mismatches more severely, more sequences with good
local matches but poor global similarity are missed.

Taken individually, sequences with higher interface similarity should be more predictive of
AAG then sequences with lower interface similarity. However, the accuracy of the interface pro-
file score is highly dependent on the number of sequences that can be aligned at the site of the
mutation. A representative example is shown in Fig 3A. At a high interface similarity cutoff
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Fig 3. Dependency of the accuracy of AAG prediction on the number of sequences that can be aligned at the site of the mutation and the formation
of an adaptive profile mixing sequences from high and low interface similarities. Only single site mutations are considered (81% of the total number of
mutations). Nseqmut @nd Nseq, adq @re the number of sequences that can be aligned at the site of the mutation and the number of lower similarity sequences
added to the profile, respectively. (A) Pearson’s correlation ¢ between predicted and experimental AAG values as a function of the number of sequences that
can be aligned at the site of the mutation. (B) Fraction of the total number of single site mutations as a function of the number of sequences that can be
aligned at the site of the mutation. (C) Improvement in accuracy of an adaptive profile mixing sequences from high and low interface similarities over profiles
formed purely using high and low interface similarity cutoffs.

doi:10.1371/journal.pcbi.1004494.9003
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(IScore = 0.25), the accuracy of the profile score rises steeply until about 15 sequences can be
aligned at the position, mirroring a similar result for protein stability [28, 29]. At low interface
similarity (IScore = 0.2), the number of sequences is less predictive of the accuracy of the pro-
file score, likely because a sufficient number of sequences can be found for all positions except
those at the extreme edge of the interface (see below).

We therefore considered an adaptive procedure to form a more accurate profile. The
sequences are first sorted by descending interface similarity. All sequences with an interface
similarity above a strict cutoff are added to the profile and up to #n sequences are added until
the second, looser cutoff is reached. Fig 3C shows the improvement in AAG prediction from
Iscore alignment as a function of # for the optimal high and low interface similarity cutoft val-
ues (IScore = 0.25 and 0.19). n reaches a shallow maximum around 80 sequences. The adaptive
profile shows a significant improvement over the profile formed from a high similarity cutoff
and a smaller improvement over the profile formed from a high similarity cutoff.

The Interface Profile Score Has Accuracy Superior or Comparable to
Other Potentials

To assess the potential of interface profile scores for either standalone AAG prediction or as a
feature in machine learning based score combinations, we compared the accuracy of interface
profile scores formed from high, low, and adaptive profiles by Iscore alignment to a diverse set
of multi-scale potential terms. Although iTM-score profiles are slightly more accurate than
Iscore profiles at predicting AAG (Fig 1), we chose Iscore profiles for comparison because an
additional feature calculated from the profile, the fraction of conserved contacts, can be used to
predict the accuracy of the profile score for machine learning. The tested set of potentials
includes: the all-atom empirical potential FoldX [42, 43], a composite statistical and physics
based potential from Rosetta (Talaris 2013) [44], residue and all-atom docking potentials (PIE
[45] and PISA [46], respectively), all atom and Cg based statistical potentials (DCOMPLEX
[47] and RF_CB [48], respectively), a shape complementarity score [49], changes in the total,
polar, and hydrophobic solvent accessible surface area (SASA), the difference in hydrogen
bond counts across the interface in the structures of the WT and mutant complexes, the vol-
ume difference between WT and mutant residues, and pharmacophore count differences of
hydrophobic, and aromatic and hydrogen bonding forming residues between the WT and
mutant complexes [50].

The Pearson’s correlation coefficient ¢ between predicted and experimental AAG values is
shown in Fig 4 for the adaptive interface profile score and the multi-scale potentials described
above. When all mutations are considered, the adaptive interface profile score is more accurate
at predicting AAG than all the other potentials considered except for FoldX. However, the dif-
ference in c between FoldX and the adaptive interface profile score is not statistically significant
when using a two-tailed Fischer r-to-z transformation (p-value = 0.32). The difference in ¢
between the adaptive interface profile score and the all-atomic docking potential PISA is also
statistically insignificant (p-value = 0.2). The adaptive interface profile score is superior in
accuracy to all other potentials tested at high statistical significance (p-value<0.001).

From Fig 4, FoldX appears the most accurate single method in terms of Pearson correlation
coefficient ¢ although it is statistically indistinguishable with BindProf and PISA. However, this
value could be biased somewhat by the fact that the side-chains of the mutant have been recon-
structed using the FoldX force field. A mismatch between the force field used to optimize the
side-chain rotamers and the scoring potential can result in a degradation of the performance.
In our early trials, the Talaris2013 Rosetta force field generally showed similar performance to
FoldX values if the side-chains were reconstructed using the Talaris2013 forcefield.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004494 October 27,2015 8/25



©PLOS

COMPUTATIONAL

BIOLOGY

Recognizing Mutations on Protein Binding Interactions

M Profile Scores

:5\ 0.6 O Physics Potentials
© O Docking Potentials
O g4 B Other Features
o
o 0.2
=
w 0.0
o 0
<
<02
(@]
-0.4
LI FORF LT P L. PP @@L
Vo I O VY o O S & K
ST B S e e o T S e
&o‘& on NS ®,§ Q‘OO &O’ O\é & O&OQ Y$o Q@O ?SJO 3
3 <€ A Q 8 Q ) X

Fig 4. Comparison of the accuracy interface profile scores at AAG compared to other physical,
statistical, and sequence based potentials for all mutations in the SKEMPI dataset. See text for a
description of each potential.

doi:10.1371/journal.pcbi.1004494.9004

We note that although the BindProf score compares favorably with other individual poten-
tials, the Pearson correlation coefficient c is still relatively low (below 0.5). However, one of the
key features of BindProf is that it works on a fundamentally different basis then the other
methods that are currently in use. This complementarity should be of important help for
improving the overall recognition accuracy of multiscale potentials when combined with other
sources of potentials as demonstrated below.

Interface Profiles Excel at Finding Favorable Mutations Compared to
Other Methods

In many applications it is desirable to know the accuracy of AAG prediction across different
categories of experimental AAG values. For example, the accuracy of predicting destabilizing
mutations is significantly less important in protein design than the accuracy of predicting
favorable mutations, as strongly destabilizing mutants are rejected during the design process.
Any inaccuracy in prediction therefore only matters to the extent they are misclassified as
favorable or neutral mutations. On the other hand, favorable mutations should be enriched
during the design process and accurate AAG prediction is essential for these mutations. We
therefore recalculated the Pearson’s correlation coefficient ¢ between experimental and calcu-
lated AAG values restricting the dataset to the entries with experimental AAG values within the
appropriate range.

Interface profile scores show exceptional performance relative to other predictors (¢ = 0.5)
at predicting favorable mutations (AAG values <0 kcal/mol, 27% of the total, see Fig 5B). This
is an important result as finding favorable mutations is a very important target for many appli-
cations, such as protein design to build more tightly binding interfaces, which have so far
proven difficult to predict by physics based methods [12, 51]. The most predictive feature in
most categories, FoldX, performs poorly here (¢ = 0.28 compared to ¢ = 0.46 for destabilizing
mutations), similar to previous observations which also included a degree of backbone flexibil-
ity by incorporating a short relaxation before the calculation of FoldX energies [51]. Likewise,
other features like shape complementarity and the statistical potentials DCOMPLEX and
RF_CB that normally perform well also perform poorly in this category. This effect is even
more magnified when only strongly favorable mutations (AAG values < -1 kcal/mol, 8% of the
total) are considered (Fig 5D).
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Interface profiles are less accurate in predictions of unfavorable mutations (AAG values >0
kcal/mol, 75% of the total in Fig 5E), likely because the statistics of unfavorable mutations are
based on a lower number of frequency counts within the profile [17]. Full atomic physical
potentials (FoldX and the Rosetta’s Talaris2013 score function) and docking potentials (PISA
and PIE) do well in this category. Shape complementarity is also predictive of unfavorable
mutations (¢ = 0.31) while it is not predictive of favorable mutations (¢ = -0.13). All methods
were inaccurate in determining the subtle differences between neutral mutations (AAG values
between 1 and -1 kcal/mol, 46% of the total, Fig 5G). Fortunately, inaccuracies within this
range are usually of less consequence since a mutation with a AAG value between 1 and -1 is
often tolerated with little impact on a protein’s function. However, the cumulative impact can
be significant when multiple mutations are considered such as in protein design applications.
Since all the methods are inaccurate within this range and only a small fraction of mutations
are actually favorable, reverting mutations with predicted AAG values >1 kcal/mol back to WT
may be a successful strategy for loss of affinity in design proteins through the accumulation of
many small errors.

The Accuracy of Interfacial Profile Scoring for AAG Prediction Can Be
Inferred Based on the Changes in Relative Solvent Accessible Area
upon Complex Formation

We next sought to see if the accuracy of interface profile scores could be predicted from the
characteristics of the profile. Interface residues play different roles in protein-protein interac-
tions and display both different conservation patterns and different types of interactions
depending on their relative position within the interface [40]. Since the accuracy of both the
interface profile scores and the sequence and physics based scores are expected to be sensitive
to these changes, it is of interest to compare the accuracy of different methods based on the dif-
ferent types of interface residues. This requires that a standard classification of the roles that
different residues play in binding be made, which is difficult if only their geometric position
within the interface is considered. Instead, one of the most natural classification of interface
residues for binding energetics is determined by comparing the relative solvent accessible area
of the residue in the monomeric protein (rASA) to the relative solvent accessible area in the
protein complex (rASA.) (Fig 6). Following Levy [40], the “core” residues are defined as resi-
dues which are exposed in the monomeric protein (rASA>25%) but buried in the protein com-
plex (rASA. <25%). Core residues are typically hydrophobic with a composition strongly
divergent from the composition of the remainder of the protein surface [52]. Core residues
supply the bulk of the energy driving association by hydrophobic interactions [53]. The hydro-
phobic interactions within the complex cause the core region to become tightly packed upon
complex association with little room for conformational variability. For these reasons, the core
residues are strongly conserved during evolution [53, 54], and mutations in this region are usu-
ally more strongly unfavorable when compared to mutations at the periphery of the interface
(see Figs 7 and S1).

“Rim” residues surround the core residues and are also exposed in the monomeric protein.
But unlike the core residues, the rim residues become only partially (0-25% rASA.) buried
upon complex formation. The rim residues have a composition more similar to the surface of
the protein away from the interface [52]. Rim residues are frequently charged and often engage
in hydrogen bonding or salt bridges with the binding partner [53]. The rim residues help to
alleviate protein aggregation by charge repulsion and can contribute to binding specificity by
forming specific polar contacts with the binding partner. In some cases, the rim residues also
tune the strength of binding, stopping the formation of an excessively stable complex which
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Surface

Fig 6. An illustration of the interface residue types onto the surface shown from the growth hormone-
receptor complex structure (PDB ID: 1A22). The monomer structure of one of the chains is shown on top
with the complex structure on bottom. ‘Core’ residues (blue) are exposed in the monomeric structure but
buried in the complex; ‘Support’ residues (green) are partly buried in the monomeric structure and fully buried
in the complex; ‘Rim’ residues (orange) are fully exposed in the monomeric structure and partly buried in the
complex; ‘Interior’ residues (sky blue) are fully buried in the monomer, while surface residues (red) are fully
exposed in both the monomeric and complex structures.

doi:10.1371/journal.pcbi.1004494.9006
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Fig 7. Median and interquartile ranges of experimental AAG values by interface classification. Full
distributions can be found in the Supporting Information as S1 Fig.
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prevents the formation of other complexes within the interaction network. Most of the favor-
able mutations are found within this region, with the most common favorable mutation being
a charge reversal which alleviates an unfavorable electrostatic interaction within the complex.
Rim residues show much less sequence conservation than the core residues. Because of their
role in the fine tuning of protein interactions and because the rim of the interface is less tightly
packed [41] than the core residues, these residues are much less evolutionarily conserved.

“Support” residues are partially buried in the monomeric protein, and fully buried in the
complex. As such, they are usually hydrophobic and located in the center of the interface near
the core residues. However, because the change in surface area upon complex formation for
support residues is less than core residues they are less important energetically and are subject
to more sequence variation than the core residues.

The final two categories of “surface” (rASA. >25% and rASA <25%) and “interior” (rASA.
<25% and rASA <25%) consist of residues that make no contacts with the binding partner.
Mutations within these regions only influence complex formation indirectly by influencing
conformational changes, by destabilizing protein folding [23, 55], or by long-range electrostatic
interactions and alteration of the hydrogen-bonding network [56]. Consequently, they gener-
ally have a minimal impact on the energetics of complex formation (Fig 7).

Since this classification by changes in rASA upon complex formation also indirectly reports
on the position of the mutation within the interface, it is expected that the performance of the
interface profile score will vary as well. The interface profile score is most accurate for the core
residues (Fig 9) which are generally located at the center of the interface (Fig 6). The alignment
is significantly more accurate in this region compared to the rest of the interface, especially
when the cutoff is restricted to only highly similar complexes (Fig 8). The relative advantage of
the interface profile score over methods is decreased when non-core residues are considered.
The all-atom physics based potentials Talaris2013 and FoldX were also less accurate in predict-
ing the AAG of mutations outside the core residues, most likely because electrostatic and
hydrogen bonding interactions are significantly more difficult to predict by physics-based
methods than interactions primarily based on hydrophobic contacts [57]. Instead, the docking
potentials PIE and PISA are the most accurate methods for the RIM regions. PIE and PISA are
statistical potentials based on the difference in distance distributions between native and
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Fig 8. Median and interquartile ranges of the RMSD of the alignment at the mutation site at low
(Iscore = 0.19) (A) and high (Iscore = 0.25) (B) interface similarity.

doi:10.1371/journal.pcbi.1004494.9008

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004494 October 27,2015 13/25



@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY Recognizing Mutations on Protein Binding Interactions

Core Mutations (38% of Total)

W Profile Scores

C

(A) Single Site Mutations (81% of Total)

W Profile Scores —
:‘ 0.6 O Physics Potentials o 067 E Physics Potentials
S O Docking Potentials ~ '® o Docking Potentials
O 04 ] Other Features O 04 4 Other Features
e S
o 02 %
o w
0.0
g2 >
0.4 4 0.4 1
. 3 ST R ¢ eF ¥ oXeFoX ¢ > 2 2 @
P ¥ S 0‘2’0'%‘%\“' FHFESL q@é’\\o S A a&( << PN PSS SRS SIS
@ WO Pk QY N 99‘?%@069 & 6‘ 0Q c&v @ %%@Q)foo(\Q P RO
&St ES © oQ Q;Q & <2‘ £ f(}{b oo R SR v
CEE & P S SR CE A S & T
Q) Rim Mutations (23% of Total) (D) S upport Mutations (9% of Total)
W Profile Scores W Profile Scores
’; 0.6 4 O Physics Potentials : 0.6 4 O Physics Potentials
© O Docking Potentials 5 O Docking Potentials
O 04 1 B Other Features O 04 1 @ Other Features
e e
o 0.2 a 0.2
x =
u 0.0 " 0.0
R .0
3 9
<02 ] .02
o o
0.4 0.4
b‘bw-\-qu;-\- & X X b 2 @ . 2. P & & @ bfl,\-\- -\- Y el P P .. P22 & @
WENESE NSRS \6696Q© & RS ‘o \@vo%éQ@ &
O R O T 72 F X TS 0“(&<§‘§\o@'§o°°i,®‘2\i°\§ o 0@ PP a:%g ¢ 72 X ¥ %‘fép '&Qxxé’\o@"’\\oo“i&i&"@
O P Lo’ TR «°Q‘\§ L o «°‘?SQ’?S’
O < Q S Q° Q‘*b Q‘Qg? Q Q P S & Q Q&b Q\Qg?
(E) Interior Mutations (4% of Total) (F) Surface Mutations (7% of Total)
W Profile Scores m Profile Scores
3 0.6 A O Physics Potentials '; 0.6 A O Physics Potentials
© O Docking Potentials 5 O Docking Potentials
O 04 1 B other Features O 04 1 @ Other Features
L8 2
a 0.2 a 0.2
x x
u 0.0 - 0.0
S 3
< g9 ] .02 ]
(8] (6]
-0.4 -0.4
PR H® R FF I FFE LS S D S S K FFEFF T LS5 S ®
O\ VSDQ&'\%{I’QQ(S & RS 2 9‘?‘2) %“{b*@\\"o& N e ,bQ&&q’QQ‘-‘@Z & e Q>°° &\\\06‘\0&\ S
S TS o’ SR S P SRR N
Q B Q€ Q & S P

Fig 9. Breakdown of the performance of the interface profile score compared to other potentials for different types of interface residues. See Fig 6
for the definition of the interface residue types.

doi:10.1371/journal.pcbi.1004494.9g009

incorrectly docked complexes at the residue (PIE) or atomic level (PISA). By contrast, some of
the sequence-based features increased in accuracy in the Rim relative to the Core region such
as the change in the count of the number of hydrogen-bond donors and acceptors and the
number of aromatic residues. Finally, AAG within the interior and surface regions is correlated
with the change in hydrophobic and polar interfacial SASA after mutation. Although the corre-
lation is modest here (Fig 9E and 9F), this is an important result as other features performed
poorly for these regions.
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A Multiscale Approach to AAG Prediction Incorporating Machine
Learning

The results above suggest:

1. The difference in interface profile scores between WT and mutant structures is a relatively
strong predictor of experimental AAG values compared to other commonly used scoring
features (Fig 4). However, it is not sufficient by itself for quantitative accuracy in prediction.

2. Asapredictor of AAG, the accuracy of the interface profile score can be inferred from char-
acteristics of the profile such as the number of aligned residues at the mutation site (Fig 3A).

3. The interface profile is complementary to other scoring features for different types of muta-
tions (Figs 5 and 9).

These features motivated us to combine the interface profile score with other scoring func-
tions which the profile score is complementary to increase the mutation residue recognition.
One common approach of the automated feature combination is machine-learning techniques
which use features that are weakly predicting on their own but can be combined to give an opti-
mal prediction of AAG. We first examined whether a technique can be constructed using only
the information within the interface profiles. We constructed a 13 feature set by considering 3
interface profile scores using profiles made from high and low interface similarity cutoffs
(Iscore = 0.19 and Iscore = 0.25) and the adaptive interface profile along with 10 additional fea-
tures reflecting the quality of the high and low interface similarity profiles. These cutoff levels
were selected on the basis of validation on a separate testing dataset comprised of 20% of the
data not used in validating the final result.

For the high and low interface similarity profiles we calculated additional features,
including

1. The average RMSD at the mutation site.

2. The average fraction of preserved contacts after alignment relative to the number of contacts
in the native complex at the mutation site.

3. The total number of aligned residues at the mutation site within the profile.

4. The relative sequence entropy at the mutation site defined by the Jenson-Shannon diver-
gence within the profile of the amino acid distribution at the mutation site from the back-
ground amino acid distribution found in proteins.

5. The Z-score of the Jensen-Shannon Entropy relative to other interface sites.

The first two features report on the relative quality of the alignment of the structural profile;
whether the ensemble of aligned structures actually resembles the protein complex under ques-
tion or not. The last three features measure the information content within the profile and
reflect whether the profile is sufficiently diverse to fully reconstruct the mutational landscape
of the interaction. A random forest algorithm was then used to predict AAG with these features
using repeated 10 fold cross-validation (Fig 10A).

Using only the features derived from the interface profile scores, it was possible to get a cor-
relation coefficient of ¢ = 0.71+0.07 (Fig 10A) on the 10 fold cross-validated set. This level of
accuracy compares favorably to the accuracy of other state-of-the-art methods [8, 14, 50, 51],
despite being two orders of magnitude faster than the molecular dynamics based energy mini-
mization methods [8, 51] and having far fewer terms than other machine learning based mod-
els [14, 50]. A true direct comparison, however, is difficult because of the different datasets
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Fig 10. Prediction of AAG value by different combinations of the interface profile scores. (A) Interface profile only; (B) Interface profile and residue
level potentials; (C) Interface potential, residue level potentials, and atomic level potentials. In each picture, the right panel shows the overall correlation
between predicted and experimental AAG values; the right penal shows different features from random forest model as sorted by their effect on the residual
error (right) or the node purity (a measure of the efficiency of splitting on feature during the construction of the decision tree) (left). Correlation values are for
10 fold cross-validation repeated three times.

doi:10.1371/journal.pcbi.1004494.9010

used in training and different methods of cross-validation for various methods. In particular,
our dataset considers both single and multiple site mutations but is only trained on dimeric
complexes. A true test at the statistical significance level would require retraining each method
with the specific dataset used here. Furthermore, small differences in accuracy in machine
learning based methods using large amounts of features may not translate to real differences in
accuracy outside of the SKEMPI dataset [16].

Nevertheless, it is possible to conclude that the structural interface profile-based method by
itself can give an accuracy comparable to state of the art methods. Among the top performing
methods, the Beatmusic method [9] using a combination of 13 statistical potentials weighed by
solvent accessibility achieves a correlation coefficient of 0.4 on a non-redundant, single muta-
tion set of the SKEMPI database and 0.68 after the removal of outliers. The residue level con-
tact potential of Moal and Fernandez-Recio [14] achieves a similar performance of ¢ = 0.68
when tested against the SKEMPI subset used here.

The interface profile scores and profile-based features can be incorporated with the other
potentials to give an even more accurate method. We consider two additional methods, using
tenfold cross-validation to confirm the results. The first method uses all the 13 profile features
above and the Cp potentials PIE and RF_CB (Fig 10B). This method has the advantage that the
side-chains do not need to be calculated for each position which is the most time-consuming
part of the calculation. This method has even greater accuracy than the profile only method
(¢ =0.80£0.04). Although the dominant feature in terms of determining relative error is the CB
statistical potential RE_CB, the most important term in terms of node purity is the low inter-
face similarity profile score and the other profile based features are also important features in
the approach both in terms of relative error and node purity (Fig 10B right side). If all the
terms are considered, the accuracy increases only slightly (¢ = 0.83+0.05) above the residue-
level potential model (Fig 10C left side). In this model, the interface profile scores are still dom-
inant terms (Fig 10C right side).

The standard cross-validation normally used to validate the accuracy of machine learning
assumes the validation set is a non-biased subset that is representative of the actual population.
In reality, the SKEMPI database is a non-representative sample of the actual protein-protein
complexes. To test this bias, we performed an additional, stricter cross-validation by holding
out all mutants of the proteins being tested during training [50]. This leave one out approach
to cross-validation is more realistic than the standard validation process as information on
mutants for the specific protein being tested is normally not available and therefore should not
be included in the validation procedure. This procedure also has the effect of testing the influ-
ence of protein specific information on the model procedure and therefore serves as an indica-
tion of the overall generalizability of the model.

The results of this procedure performed for the potential including all terms (Fig 10C) is
shown in Fig 11 for the 24 proteins that have more than 10 mutants. The standard error of
AAG prediction is reported here rather than the correlation coefficient ¢ as the range of AAG
values varies substantially among different proteins. For example, the experimental AAG values
for three of the proteins (1GC1, 1E22, and 1A22, left side of Fig 11) are mostly near zero (mean
|AAG|<0.5), indicating neutral mutations that have little effect on protein binding. The
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Fig 11. Accuracy of AAG prediction on a per protein basis after leave-one-protein-out cross-validation for the 24 proteins with more than 10
mutants available based on the standard error of prediction. Proteins are arranged left to right in order from the low to high mean experimental AAG
value. The mean standard error across the set increases from 1.11 kcal/mol to 1.33 kcal/mol if the tested protein is left out during training.
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standard error of prediction is therefore more informative in this case as ¢ becomes less mean-
ingful when the values are distributed only within a narrow range.

As can be seen from Fig 11, the impact of leaving out the tested protein during training does
not have a substantial impact on prediction—the mean standard error across the set increases
only slightly from 1.11 kcal/mol to 1.33 kcal/mol. Such minor decrease in accuracy is smaller
than the decrease seen with many other machine learning methods. For example, the accuracy
of the mCSM method drops from an original cross validated standard error of 1.02 kcal/mol to
1.55 kcal/mol using a similar leave one protein out approach [50]. Overall, this accuracy is still
comparable to or higher than most of the much more computationally intensive molecular
dynamics based methods explicitly considering conformational flexibility [51, 58, 59].

Limitations of the Approach

Like all mutation prediction models, the final machine-learning model has limitations. Many
of the limitations are general and apply to any method that attempts to predict AAG values for
affinity changes by a structure-based approach. First, the model is trained only to predict AAG
values for dimeric complexes where mutations occur only on the side of the interface for indi-
vidual complexes. While the method can be extended relatively easily to predict mutations for
trimers and other types of oligomeric complexes, removing the restriction to search for linked
mutations on both sides of the interface simultaneously is more difficult. Many of the terms
such as the profile scores, the associated confidence measures of the profile scores, and the
pharmacophore counts are strictly linearly additive with respect to the number of mutations.
This assumption, which is generally not true for mutations affecting protein stability, is backed
by large-scale binding selection mutagenesis experiments showing that the enrichment ratio of
double mutants is strongly predicted by the enrichment ratios of the respective single muta-
tions [60]. In these experiments, only one protein is mutated at a time corresponding to muta-
tions on one side of the interface only. When both sides of the interface are mutated, specific
interactions such as the formation of a salt-bridge across the interface can cause strong non-
linearity when double mutations are compared to the sum of the respective single mutations
[61]. However, for most applications one-sided mutations are of the most interest since the
binding partner can be assumed to have the WT sequence since mutations are generally rare.
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Finally, training and testing was performed on the SKEMPI database [16]. This database
includes entries for all complexes for which a AAG value and structure are available. The data-
base does not evenly represent the universe of actual protein complexes and some protein com-
plexes and mutation types are heavily represented while others are underrepresented.
Exploring other more comprehensive datasets should help further improve BindProf.

Discussion

Protein-protein interactions are critical for nearly every process in the cell and deleterious
mutations hindering these interactions can have severe consequences for the associated cellular
function. A variety of efforts from personalized medicine to understand viral evolution require
knowing how specific mutations effect the protein-protein interactions. Conversely, designing
proteins with improved binding or altered specificity requires that the impact of mutations on
the native interface be understood. Currently this information is not available experimentally
on the proteome-wide scale necessary for these tasks. Towards this end, considerable effort has
been devoted towards developing methods to predict the impact of mutations on binding affin-
ity. Most of these approaches rely on physics based methods that attempt to faithfully model
on the atomic level the interactions determining protein-protein binding affinity. However, a
major obstacle of such approaches is the need for the reconstruction of the full-atomic model
for every mutant complex, which limits the accuracy of the approach (since the position of the
side-chains is difficult to model) and reduces the computational speed and the range of applica-
tions (since rebuilding the full-atomic model is generally the most time-consuming step). In
this work, we developed a novel approach, BindProf, aiming to overcome some of these limita-
tions by introducing an interface structure profile based scoring function built on the multiple
sequence alignments of analogous protein-protein interactions collected from the PDB.

Interface profile scores constructed in this manner can be used as either as a predictor of the
Gibbs free energy change of protein-protein binding (AAG) in their own right or combined
with other features in a machine learning approach. Considered as a standalone feature, the
adaptive interface profile score created by BindProf has an accuracy similar to the best all-atom
potentials (Fig 4). However, unlike physics based potentials, the profile scores can be used to
score thousands of mutations across a protein-protein interface very quickly (approximately 20
msec per mutation as opposed to an average of 115 seconds, for instance, for building and scor-
ing a full atom complex by FoldX) as once the profiles are constructed the scoring of individual
mutants is reduced to a very fast table lookup. In addition, the accuracy of the interface profile
score can be inferred from the location of the mutation within the interface and from the char-
acteristics of the structures used to create the profile (Fig 9). This is an advantage over current
physics-based methods in which the accuracy is difficult to infer ahead of time. As such, profile
scores play prominent roles in composite scoring approaches where they are combined with
other features predictive of their accuracy such as the average RMSD for the aligned residues
and the sequence entropy within the profile at the mutation position (Fig 10). We therefore
expect that interface profiles may play important roles in future composite scoring approaches.

The effectiveness of interface profile scoring in predicting binding affinity changes has
implications beyond the prediction of AAG values for protein affinity changes. First, the fact
that such a method can be constructed at all is independent confirmation of the results of Gao
and Skolnick [62] that the existing PDB library is densely connected and approaching com-
pleteness with respect to the interface structural space, even if it is not yet complete with respect
to the fold space of all possible quaternary structures. If the interface structural space of the
PDB library was sparsely connected with few known structural neighbors for each complex,
the profile would consist of only a few sequences and the structural profile would not be
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predictive of AAG values. This effect can be inferred from Fig 2 when only high cutoff values
are considered. Second, the degree of correlation between AAG and the interface profile score
bears some relationship to the degree that evolution has selected for protein binding affinity at
the interface rather than other factors, although the exact relationship is obscured by the lim-
ited amount of experimental data available. As more experimental AAG values are measured,
profile scoring may help establish the exact role of binding affinity in evolutionary fitness.
Opverall, the creation of a novel evolutionary based approach with specific characteristics
(including high complementarity with physics based scores, high accuracy in finding favorable
mutations, low computational cost on a per mutant basis, and a relative insensitivity to side-
chain conformation) should find an important application in many biomedical studies includ-
ing protein design and disease-associated mutation analyses.

Materials and Methods
Experimental Values

Experimental AAG values were derived from the SKEMPI database that consists of experimen-
tal protein affinity changes upon mutation for protein-protein complexes in which a crystal
structure of the WT complex are available [16]. A subset of the database was used for testing of
the interface profile scoring and multi-level machine learning. First, the selection was restricted
to mutations occurring at one side of the interface to match the normal biological situation in
which mutations are relatively rare and it is expected that at least one chain in the complex is
WT. Since the interface profile score is fundamentally a property between two protein pairs,
only dimeric complexes were selected for analysis from this set, although the method can be
extended for the analysis of higher oligomeric complexes. Finally, the SKEMPI database con-
tains multiple entries for a single mutation for 186 entries in this set. These redundant entries
were averaged with outlier replicants with AAG values one standard deviation above the mean
disregarded. The final dataset contains 1725 entries for 130 complexes. Both single site point
mutations and multiple point mutations are considered.

For random forest machine learning, three separate training, testing, and validation datasets
were constructed. The training set (60% of the data) was used to construct the model, while the
testing set (15% of the data) was used to tune the number of variables attempted in each split.
The final model was evaluated by 10 fold cross-validation repeated three times on the valida-
tion set (25% of the data).

Construction of FoldX Models

Crystal structures were first downloaded from the PDB and stripped of water and all non-pro-
tein ligands. A short optimization of the structure of the WT protein complex was then per-
formed to eliminate small clashes and other undesirable features by the RepairPDB function
within FoldX [43]. Structures of the mutant complex were then generated from the optimized
WT structures by the BuildModel function within FoldX. The temperature for FoldX model
building and energy scoring is set to the experimental temperature when known, otherwise it is
set to 298 K [16].

Calculation of Physics and Docking Based Scores

For all the sequence and physics based energies except the docking functions PIE [45], PISA
[46], and DCOMPLEX [47] and the all atomic energy functions Talaris 2013 [44] and FoldX
[42, 43, 63] energies were calculated separately for the mutant and WT complex structures and
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for both monomeric structures. The predicted AAG values are then equal to:

AAGy; i = [Ewr(complex) — E, . (monomers)] — [E,,,(complex) — E,, . (monomers)] (3)

where E is the relevant energy function. For the docking functions PIE, PISA, DCOMPLEX,
FoldX and the Rosetta Energy function Talaris2013, this calculation is performed internally
and AAG is directly proportional to the difference between the energies of the two complexes:

AAGyy;_ i = Eyy(complex) — E,, (complex) (4)

Changes in SASA upon mutation and number of hydrogen bonds across the interface were cal-
culated by the Interface Analyzer in Rosetta [64].

Construction of the Template Library

Interface structural alignment was performed using the COTH complex library of non-redun-
dant dimeric structures. To create this library, higher order complexes in DOCKGROUND
[65] are first split into all possible combinations of pairwise dimers. This is repeated for all the
alternative binding modes contained within the pdb file. All dimers with either chain having
less than ten interface residues are removed. The remaining structures are then filtered based
on sequence and structure similarity of the complete complex to other complexes in the library.
If a dimer shares at least 70% sequence identity and a TM-score at least 0.8 obtained from
MM-align [66] to another structure in the complex library, it is removed from the database.
The current library contains ~55000 protein-protein complexes.

Interface Structural Similarity Metrics

Interface alignment was performed by either Ialign [33] or PCalign [34] program. The iTM-
score and Iscore values are calculated by Ialign and PCscore returned by PCalign.

The equation for the interface similarity metric iTM-score is a direct analogue of the scoring
matrix for TM-score [31] except that only residues within a cutoff depth of 4 A are considered
for the alignment, i.e.

, s 1
iTM — score = L_Q,Z;HTf/d[Z) (5)

where L, is the total number of residues in the interface, N, is the number of aligned residues,
d; is the distance between the Co atoms of residues at ith ahgned residue pair, and d, is an
empirical scaling factor dependent on L, to ensure the length invariance of the final score [31].

The Iscore is defined similarly except for the addition of a contact overlap factor f; reflecting
the fraction of conserved contacts, i.e.

Iscore = —Z T d2/d2 (6)

Here f; = (ci/a; + ¢i/b;)/2, where a; and b; are the numbers of interfacial contacts of ith aligned
residue pair for the template and query complex, respectively, and ¢; is the number of over-
lapped contacts. A contact is defined as being overlapped if the residues forming these contacts
are aligned in the two pairs of chains.
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The PCscore is defined analogously to the Iscore with the addition of chemical similarity
measure I; of ith residue pair:

PCscore = 7 7
seore QIZ;1+()25171)+512/42 @)

where f, is the ratio of common contacts between two sets of aligned interfacial residues. I;
equals to 1 if the ith pair of aligned residues are in the same chemical type, or 0 otherwise. To
define the chemical equivalency, the amino acids are split into non-overlapping groups of posi-
tively charged (K, R), negatively charged (E, D), mixed hydrogen bond donor/acceptors (N, Q,
S, T), aromatic (F, W), hydrophobic(C, A, I, L, M, P, V, G) and mixed donor/acceptor or aro-
matic (H, Y).

Supporting Information

S1 Fig. Relative frequency of AAG values for different type of interface residues according
to the classification in Fig 6.
(PDF)
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