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Abstract NMR-I-TASSER, an adaption of the I-TAS-

SER algorithm combining NMR data for protein structure

determination, recently joined the second round of the

CASD-NMR experiment. Unlike many molecular dynam-

ics-based methods, NMR-I-TASSER takes a molecular

replacement-like approach to the problem by first threading

the target through the PDB to identify structural templates

which are then used for iterative NOE assignments and

fragment structure assembly refinements. The employment

of multiple templates allows NMR-I-TASSER to sample

different topologies while convergence to a single structure

is not required. Retroactive and blind tests of the CASD-

NMR targets from Rounds 1 and 2 demonstrate that even

without using NOE peak lists I-TASSER can generate

correct structure topology with 15 of 20 targets having a

TM-score above 0.5. With the addition of NOE-based

distance restraints, NMR-I-TASSER significantly im-

proved the I-TASSER models with all models having the

TM-score above 0.5. The average RMSD was reduced

from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in

Round 2. There is no obvious difference in the modeling

results with using raw and refined peak lists, indicating

robustness of the pipeline to the NOE assignment errors.

Overall, despite the low-resolution modeling the current

NMR-I-TASSER pipeline provides a coarse-grained

structure folding approach complementary to traditional

molecular dynamics simulations, which can produce fast

near-native frameworks for atomic-level structural

refinement.

Keywords NMR restraints � NOE assignment � CASD-
NMR � I-TASSER � Protein structure prediction

Introduction

Methods for automated protein structure determination by

nuclear magnetic resonance (NMR) spectroscopy have

matured to the point that they are used by structural ge-

nomics centers, such as the Northeast Structural Genomics

Consortium (NESG; http://www.nesg.org), for large-scale

protein structure determination. Nevertheless, the use of

automated methods is still far from being routine, espe-

cially for large proteins and cases with sparse or noisy data.

To overcome the limitations of traditional molecular dy-

namics-based NMR methods, approaches from the protein

structure prediction community, which are designed to

predict 3D structures from amino acid sequence only, have

been adapted for NMR (Li et al. 2004; Meiler and Baker

2003; Montelione 2014). These methods take advantage of

restraints derived from homologous structures from the

Protein Data Bank (PDB), which can implement the re-

straints derived from NMR experiments, so that the struc-

ture sampling has more restraints to lead to convergence.
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Meanwhile, traditional NMR and structure prediction

methods share the same underlying computational problem

of structure sampling to minimize the energy functions.

One example of the advanced structure prediction methods

is I-TASSER (Roy et al. 2010; Yang et al. 2015), which

was designed to identify homologous and analogous tem-

plates from the PDB by meta-threading; the full-length

models are then constructed by reassembling the con-

tinuously aligned fragments excised from the threading

templates, under the guidance of the consensus contact/

distance restraints collected from multiple threading

alignments. To examine the capacity of I-TASSER in

NMR data-driven structure determination, we have devel-

oped NMR-I-TASSER, which combines the fragment

assembly simulations with distance restraints from NOE

assignment for template-based and reduced-level protein

structure determination.

A preliminary version of NMR-I-TASSER recently

joined the Round 2 of the Critical Assessment of Automated

Structure Determination of Proteins from NMR Data

(CASD-NMR) experiment. This manuscript will describe

the blind testing results, aswell as the data of applyingNMR-

I-TASSER retroactively to the other Round 2 targets and all

Round 1 targets. To ensure an objective evaluation, we have

excluded threading templates whose PDB deposition date

occurs after the peak list release date of the CASD-NMR

targets. Although NMR-I-TASSER was a late entrant to

CASD-NMR, itsmethods can provide a different perspective

to the NMR structure determination problem. Our method-

ology is based on a molecular replacement approach to

NMR, in the way that homologous structures are first iden-

tified by threading and NOE assignment is then performed

from these structures to provide restraints for the structure

sampling step. Molecular replacement approaches for NMR

based on threading is not a new concept. For example,

CS23D (Wishart et al. 2008) uses chemical shift threading to

identify templates. Nevertheless, the threading-based ap-

proaches for NMR have not been explored as widely as the

molecular dynamics approaches.

We will first examine how I-TASSER alone without

NMR data performs on the CASD-NMR targets and then

show that incorporating restraints from NOE peak lists

can consistently improve the structure modeling. In situa-

tions where no suitable templates exist, normal structure

assembly simulations can often get stuck in incorrect

conformations. We show here that even when no suitable

template exists, the restraints from NOEs can still guide

I-TASSER towards the correct topology. Finally, a com-

parison of the NOE assignment accuracies and structure

results between raw and refined peak lists will be pre-

sented to examine how sensitive the NMR-I-TASSER

modeling results are to the errors found in the raw peak

lists.

Methods

NMR-I-TASSER is an adaptation of the I-TASSER pro-

tocol (Roy et al. 2010; Yang et al. 2015) for NOE peak

lists. It consists of 4 main steps that form an iterative

pipeline: template identification, NOE assignment, struc-

ture sampling, and model selection by structure clustering.

The pipeline is illustrated in Fig. 1. In general, the multiple

threading approach LOMETS (Wu and Zhang 2007) was

used to identify homologous structures, and then the tem-

plate alignments were used as input to guide the NOE as-

signment. I-TASSER based fragment assembly simulations

are then used for conformational sampling, with the lowest

free energy conformations identified by structure clustering

(Zhang and Skolnick 2004b) which are used for further

NOE assignment and structure filtering. The process was

iteratively repeated several times until convergence

(Fig. 1). For a protein of 150 residues long, the typical

CPU time cost by NMR-I-TASSER is around 10-15 h on a

2.8 GHz IBM NeXtScale n1200 machine, with the ma-

jority of the time spent on the I-TASSER based structure

assembly simulations.

Template identification

The first step of NMR-I-TASSER consists of searching the

target sequence through the PDB for homologous/analo-

gous structures by threading (Bowie et al. 1991). In con-

trast to traditional homology search methods based only on

sequence comparison, such as PSI-BLAST (Altschul et al.

1997), threading is often more sensitive. In addition to the

sequence profiles derived from PSI-BLAST (Altschul et al.

1997) or hidden Markov models (Eddy 1998), structural

features including secondary structure prediction, torsion

angle and solvent accessibility are often exploited in the

threading approaches (Wu and Zhang 2008). This enables

the identification of templates that have similar fold to the

target but low sequence similarity. The threading step also

results in a sequence-structure alignment that gives the

conserved structure fragments in the aligned regions. These

fragments can then be used in the structure assembly step.

In NMR-I-TASSER, the program LOMETS was used (Wu

and Zhang 2007), which is meta-server consisting of 8

complementary threading programs. LOMETS calculates a

confidence score to predict whether the threading results

are Easy, Medium, or Hard based on the Z-scores of each

program, while an Easy target with an higher average

Z-score often have template structure with a higher

accuracy.

The threading templates are filtered by the overlap score

of the contact map and the NOE data. Before the filtering

procedure can be conducted, the missing atoms in the

templates need to be reconstructed since the sequence-
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structure alignment may have gaps and insertions. FG-MD

(Zhang et al. 2011) was used to add the missing heavy

atoms from the threading alignment, and HAAD (Li et al.

2009) was used to add the protons. Here, FG-MD is a

simulated-annealing based molecular dynamics (MD)

simulation algorithm developed for atomic-level protein

structure refinement and reconstruction (normally from Ca-
trace models). One difference from normal MD simulation

methods is that FG-MD collects restraints from analogous

structure fragments detected from the PDB, which are used

Fig. 1 Flowchart of the NMR-I-TASSER pipeline for iterative NMR

data-driven structure determination and refinement. After the initial

step of LOMETS threading, each iteration consists of structure-

guided NOE assignment, I-TASSER-based structure assembly

simulations, and SPICKER decoy clustering and model selection
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to improve the funnel shape of energy landscape of the

physics-based force field to improve the quality of the final

atomic models (Zhang et al. 2011). HAAD is a program to

quickly add protons to a heavy-atom model by optimizing

the hydrogen-bonding network and minimizing steric

clashes (Li et al. 2009). The NOE assignment algorithm

was run separately for each template model as input, and

then the models were ranked by contact overlap. The top

10 templates were used as input for another NOE assign-

ment step to obtain the distance restraints for structure

sampling. The top 40 templates were used as starting

models for the Monte Carlo simulations in the structural

sampling step.

NOE assignment

One of the key steps in the NMR-I-TASSER pipeline is

NOE assignment because it is used in multiple steps of the

procedure, including structure sample simulation and

model selection. As shown in Fig. 2, the NOE assignment

procedure consists of the following steps: (1) generating

assignment possibilities, (2) scoring each possibility, (3)

filtering by assignment score and structure, (4) generating

the one-to-one seed assignments, (5) calibrating the dis-

tances, and (6) outputting the final restraints for I-TASSER

structure sampling.

The one-to-one seed assignments represent the more

reliable assignments and the ambiguous assignments rep-

resent the less reliable assignments (Nilges and O’Dono-

ghue 1998). Each ambiguous assignment consists of

multiple assignment possibilities for a single NOE peak.

An ambiguous assignment is satisfied if at least one of its

assignment possibilities is satisfied. To handle the lower

reliability of ambiguous assignments, the ambiguous as-

signments that have less than 3 possibilities were grouped

together.

Generating assignment possibilities

We first describe the input of the NOE assignment proce-

dure and introduce the necessary notations. The input data

consists of (1) a set S of 3D model structures obtained from

Fig. 2 Overview of the NOE assignment pipeline used in NMR-I-TASSER. The input consists of the chemical shift assignment list, NOE peak

list, and 3D structures
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either the LOMETS threading or I-TASSER clusters; (2)

chemical shift assignment list; and (3) 3D NOE peak lists.

Since 3D NOE peaks were used, a potential contact c be-

tween atoms hxc and hc can be represented as a 3-tuple

c ¼ ðxc; hxc; hcÞ, where xc is a heavy atom (C or N), hxc is

the proton covalently attached to xc, and hc is a proton

believed to be in contact with hxc. For notational purposes,

Rhxc shall represent the residue number of the amino acid

containing proton hxc, and Rhc shall represent the residue

number of the amino acid containing proton hc. The dis-

tance of contact c in structure s 2 S shall be denoted as dc;s,

and the minimum distance of c among all structures in S

shall be denoted as dmin
c;S .

Denoting the chemical shift assignment of atom k as dk,
the chemical shifts of each contact c ¼ ðxc; hxc; hcÞ can be

represented as the 3-tuple dc ¼ ðdxc; dhxc; dhcÞ. Each 3D

peak p can be represented as a 4-tuple of the form p ¼
ðdp1 ; dp2 ; dp3 ; IpÞ ¼ ðdp,IpÞ where dp1 is the chemical shift of

some unknown heavy atoms, dp2 is the chemical shift of the

protons covalently attached to the heavy atoms, and dp3 is
the chemical shift of some unknown protons whose upper

bound distance to the proton with chemical shift dp2 is

given by peak intensity Ip. The NOE assignment problem is

to determine the identity of the unknown atoms for each

peak, to extract an upper bound distance from the intensity,

and to decide whether the peak represents a genuine con-

tact or is noise.

Given the chemical shift assignments and chemical shift

match tolerances D ¼ ðDd1;Dd2;Dd3Þ for each peak di-

mension, the set of all assignment possibilities Ap for peak

p can be enumerated as the set of all contacts along with

their upper distance bounds

Ap ¼ ðc; dpÞj dp � dc
�
�

�
�\D,dp ¼ k

.

I6p

� �

ð1Þ

assuming the upper bound distance dp is given by the

isolated spin pair approximation, where k is a constant

determined in the distance calibration step. For this work,

we used D ¼ ð0:35; 0:035; 0:035Þ. Finally, the set of all

assignment possibilities A for all peaks can be expressed as

the set of peak-contact pairs

A ¼ ðp; cÞjc 2 Ap

� �

ð2Þ

The assignment problem can be modeled as assigning at

most one contact to each peak. Contacts to methyl protons

were treated as a group of contacts consisting of separate

contacts to each of the 3 protons in the methyl group.

Scoring assignment possibilities

Each assignment possibility ðp; cÞ is given a score

Scoreðp; cjA; SÞ ¼ Scsðdp; dcÞ þ Sstrðc; SÞ
þ Sintðdp; dmin

c;S Þ þ Ssymðc;AÞ
þ Sinterðc;AÞ þ Snetðc;AÞ þ Snetstrðc;A; SÞ þ hðcÞ

ð3Þ

The score takes into account the contacts found in pre-

dicted structures and also other assignment possibilities.

The concepts used are similar to the terms found in the

scoring function of CANDID (Herrmann et al. 2002), such

as the closeness of the chemical shift fit, the presence of

symmetry-related cross-peaks, network anchoring, and

compatibility with intermediate 3D structures.

In Eq. (3), Scsðdp; dcÞ gives the closeness of the chemical

shift fit between the chemical shifts of a peak and the che-

mical shifts of the atoms in a contact, which is defined as

Scsðdp; dcÞ ¼
X3

i¼1

ferfcðjdpi � dci j; 0; riÞ ð4Þ

where ferfc is the Gaussian complementary error function

with mean 0 and standard deviation ri. ri was set such that

a chemical shift difference of Ddi gives a value of 0.05.

Sstrðc; SÞ gives the compatibility of the contact with the

input 3D structures, which is defined as

Sstrðc; SÞ ¼
Mðc; SÞ
MðSÞ ð5Þ

where Mðc; SÞ is the number of structures with dmin
c;S � Tcut,

and MðSÞ is the total number of structures. For this work,

Tcut was set to 6 Å.

Sintðdp; dmin
c;S Þ gives the similarity between the distance of

the contact in the 3D structures and the calibrated upper

bound distance from the peak intensity, which is defined as

Sint dp; d
min
c;S

� �

¼ 1 if dmin
c;S 6 dp

0 otherwise

�

ð6Þ

Ssymðc;AÞ considers whether or not there exists an as-

signment possibility for the symmetric contact ðyc; hc; hxcÞ
of contact c, where yc is the heavy atom covalently bound

to hc. It is defined as

Ssymðc;AÞ ¼
1 if exists ðyc; hc; hxcÞ 2 A
0 otherwise

�

ð7Þ

Sinterðc;AÞ measures the assignment possibilities be-

tween the residues Rhxc and Rhc , which is defined as

Sinterðc;AÞ ¼
QðRhxc ;Rhc ;AÞ
QðRhxc ;RhcÞ

ð8Þ

where QðRhxc ;Rhc ;AÞ is the number of proton pairs be-

tween residues Rhxc and Rhc that have at least one assign-

ment possibility in A, and QðRhxc ;RhcÞ is the number of

proton pairs between Rhxc and Rhc .
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Snetðc;AÞ is similar to Sinterðc;AÞ except that it considers
the number of assignment possibilities between the protons

of neighboring residues defined by a sequence window,

which is defined as

Snetðc;AÞ ¼
TðRhxc ;Rhc

;W ;AÞ
TðRhxc ;Rhc ;WÞ ð9Þ

where TðRhxc ;Rhc ;W ;AÞ is the number of proton pairs

between the neighboring residues Rhxc and Rhc that have at

least one assignment possibility in A, and TðRhxc ;Rhc ;WÞ is
the number of such proton pairs ignoring whether or not

they have an assignment possibility. W is the sequence

window, and it was set to 1 to consider the residues se-

quentially adjacent to Rhxc and Rhc .

Snetstrðc;A; SÞ is similar to Snetðc;AÞ except that it con-
siders whether or not the neighboring contacts are also in

the input structures, i.e.

Snetðc;A; SÞ ¼
VðRhxc ;Rhc

;W ;A; SÞ
VðRhxc ;Rhc

;W ;SÞ ð10Þ

where VðRhxc ;Rhc
;W ;A; SÞ is the number of proton pairs

between the neighboring residues Rhxc and Rhc that have at

least one assignment possibility in A, and whose minimum

distance among the input structures is within Tcut.

VðRhxc ;Rhc
;W ; SÞ is the number of such proton pairs ig-

noring whether or not they have an assignment possibility.

The sequence window W was set to 1.

Finally, hðcÞ is a bias term that favors assignments for

intra-residue and sequential contacts.

Filtering by assignment score and structure

From the set of all assignment possibilities, low scoring

assignments not found in any of the structures based on a

6 Å distance cutoff were removed. Low scoring assign-

ments found in at least one structure were not filtered out.

High scoring assignments not found in any of the structures

were also not filtered out to allow for assignments of

contacts not found in any input structure. The score cutoff

was computed dynamically by first sorting the assignments

in descending order by score and then selecting the cutoff

where Y% of the current set of top scoring assignments

were not satisfied by any of the structures. Y was chosen to

be 40 %. Assignment possibilities with score less than the

cutoff were filtered out unless satisfied by at least one

structure.

The seed assignments from the One-to-One Seed As-

signment step were also filtered similarly, except that seed

assignments must be satisfied by at least one structure;

otherwise, the seed assignment was converted to an am-

biguous assignment. Additionally, seed assignments were

filtered for isolated assignments between pairs of residues

r1, r2 that have no other assignments for atoms between r1
and r2, and also no assignments for other residues nearby r1
and r2 based on a sequence window. The number of am-

biguous assignments were also filtered to limit the number

of possibilities using the concept of partial assignments

similar to the idea in the program ARIA (Nilges et al.

1997). Unless stated otherwise, the same filters in the

pipeline were used for all targets.

One-to-one seed assignment

A one-to-one seed assignment linking one peak to one

contact was generated using a graph-based algorithm. The

assignment problem was modelled after the problem of

finding the maximum weighted matching on a bipartite

graph (Burkard et al. 2012). The seed assignment algorithm

maximizes the sum of the assignment scores subject to the

constraint that each peak is assigned to at most one contact,

and each contact is assigned to at most one peak. Similar

restraints are found in MOTOR (Schieborr et al. 2013), but

implemented differently here. Linear programming was

used to solve the bipartite graph problem. The linear pro-

gram is given in Eq. 1. The assignment variable X(p, c) is

equal to 1 if NOE peak p is assigned to contact c; otherwise

it is 0. The top equation gives the sum of the scores of the

assignments, and this equation is maximized over the set of

all assignment variables denoted by the vector X. The

second equation restricts each peak to being assigned to at

most one contact, and the third equation restricts each

contact to being assigned to at most one peak. Although the

variables take on binary values, the restraints have the

property that they form a totally unimodular matrix be-

cause the problem is formulated as the standard bipartite

matching problem, so it can be solved efficiently by linear

programming rather than by integer linear programming,

i.e.

max
X

X

p;c2A
Score p; cð Þ � X p; cð Þ

8p;
X

c

X p; cð Þ� 1

8c;
X

n

X p; cð Þ� 1

X p; cð Þ 2 0; 1f g

ð11Þ

Distance calibration

After the structure-based filtering, the seed assignment was

used for distance calibration. The calibration factor k in

dp ¼ k=I6p was determined similarly as in ARIA (Nilges

et al. 1997), where k ¼
ffiffiffiffiffiffiffi
kikj

p
was divided into separate
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proton classes i and j depending on the proton types in the

contact. Separate calibration factors were determined for

backbone protons, beta protons, methyl protons, and other

side-chain protons. Intra-residue and sequential contacts

from the seed assignments were used for calibration, where

distances with low standard deviation in the input struc-

tures were used to provide the reference distances. Similar

to CANDID (Herrmann et al. 2002), the calibration factors

were automatically adjusted such that at most 10 % of the

distance bounds were violated by the input structures. After

calibration, the Sint score terms were computed and then the

seed assignment was recomputed.

Assignment output

The output of NOE assignment are proton–proton distance

restraints, but for sampling efficiency, I-TASSER uses a

reduced amino acid representation consisting of the Ca

atom and a two-rotamer approximation for both Cb and the

side-chain center of mass pseudoatom of the remaining

side-chain heavy atoms. NMR-I-TASSER also includes the

backbone nitrogen atom, which was reconstructed from the

backbone Ca’s by REMO (Li and Zhang 2009). The pro-

ton–proton restraints were converted to residue-based re-

straints by grouping proton–proton contacts that have the

same residue-based contact type. The set of residue contact

types T is given by T = (Ca–Ca, Ca–Cb, Ca–N, Ca–SC,

Cb–Cb, Cb–N, Cb–SC, N–N, N–SC, SC–SC), where SC is

the side-chain center of mass. Given a proton–proton

contact c, we shall denote its residue contact type as tc. The

distance violation penalty function for residue contact type

t between residues r1 and r2 is defined as

Pðr1; r2; tÞ ¼
X

ðp;cÞ jðRhxc ;Rhc Þ¼ðr1;r2Þ;tc¼t

Scoreðp; cÞ ð12Þ

where the summation is over all peak-contact assignments

where the contact is of residue contact type t and the

contact contains residues r1 and r2. The upper bound dis-

tance UB was set to the maximum distance among the

proton–proton contacts in the summation plus a correction

factor for SC type contacts to account for the uncertainty of

using a side-chain pseudoatom. If the distance in the

structure is greater than the upper bound UB plus a 1.0 Å

error tolerance, the penalty is set to P(r1, r2, t). Otherwise,

the penalty is decreased linearly until a distance of UB at

which the penalty is 0. For each ambiguous assignment, the

penalty and upper bound distance were set to the maximum

among the assignment possibilities.

Constrained I-TASSER structure sampling

NMR-I-TASSER samples different structure conformations

using amodifiedMonte Carlo simulation algorithm based on

replica-exchange parallel hyperbolic sampling (Zhang et al.

2002). The idea of replica-exchange is to help the low-

temperature simulations to cross the energy barriers that

separate different minima, by swapping the conformations

periodically with that found in the high-temperature

simulations; and the idea of parallel hyperbolic sampling is

to flatten the energy function so that energetically inacces-

sible regions are easier to reach. The simulations start from

the fragments excised frommultiple threading templates and

are guided by contact restraints from both the templates and

NOE assignment. The non-NOE restraints are represented

by a knowledge-based energy function along with energy

terms derived from statistics from the PDB. For details of the

energy terms, refer to the references (Yang et al. 2015;

Zhang et al. 2003).

The Monte Carlo sampling is based on fragment

assembly consisting of bond-vector and fragment move-

ments. The template fragments have variable size in order

to adapt to the degree of homology between the target

sequence and template structure. One of the advantages in

the I-TASSER sampling is that the templates can often be

drawn closer to the native by the combination of multiple

threading alignments. But for hard targets that have no

consensus templates, many regions need to be constructed

from scratch where external restraints such as those from

the NOE assignments are particularly useful to guide the

sampling.

Due to the ruggedness of the energy landscape, how-

ever, the structure sampling can get trapped in incorrect

conformations even when some correct restraints are pro-

vided because the incorrect template conformations may be

consistent with many of the restraints (Snyder et al. 2005).

To help address the issue, the structure sampling was

conducted with two different sets of restraints from the

templates. One set included the long-range contacts (se-

quence separation C6) from the high-rank templates to

consider the case that the templates are correct; and the

other set excluded these high-rank contacts to consider the

contacts from the low-rank templates. The latter contact

sets are not turned on until later in the simulations. After

the clustering step, the cluster centroid structures from both

runs were merged and filtered by contact overlap.

Modeling selection by decoy clustering

After structure sampling, the structure samples were clus-

tered according to structure similarity by SPICKER (Zhang

and Skolnick 2004b). In comparison to the traditional

molecular dynamics simulation methods, I-TASSER does

not require the sampling to converge to a single cluster.

Using clustering and multiple templates can result in

multiple clusters, especially in situations where there are

multiple structures that are consistent with the restraints.
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The cluster centroid models were filtered by contact

overlap. The overlap values were converted to Z-scores by

subtracting the mean and dividing by the standard de-

viation. Z-score cutoffs of 0, 0.5, and 1.0 were used to filter

out the models in iterations 1, 2, and 3, respectively. If the

top-ranked model was similar to the top-ranked model

from the previous iteration, i.e. the TM-score (Zhang and

Skolnick 2004a) between two generations of models is

[0.9, then the top-ranked model was returned. Otherwise,

the remaining cluster centroid models served as input for

both NOE assignment and Monte Carlo simulations in the

next iteration.

Results and discussion

NMR-I-TASSER participated in the blind assessment only

for two targets in Round 2: HR8254A (PDB: 2m2e) and

HR2876C (PDB: 2m5o). For other targets in the two

CASD-NMR rounds, we run the pipeline retroactively by

excluding all template proteins whose PDB deposition date

occurs after the release date of the peak lists of the CASD-

NMR target to simulate our participation for those targets.

The RMSD values reported are between the backbone

heavy atoms of the model (N, CA, C) and the representa-

tive conformer of the ensemble of models in the PDB file in

the well-defined regions (average pairwise RMSD of the

models\2 Å). For the Round 1 targets, we used the resi-

due ranges in CASD-NMR report (Rosato et al. 2012). The

TM-score (Zhang and Skolnick 2004a) and the global

distance score (GDT-TS) (Zemla 2003) are also reported

for the predicted models. Unlike RMSD, TM-score is less

sensitive to outliers and more sensitive to the global fold

topology because the metric weighs close atom pairs more

than the outliers, so excluding residue ranges is not nec-

essary. The GDT-TS score is also not sensitive to outliers

because GDT only counts the percentage of residue pairs

below a set of distance cutoffs (1, 2, 4, 8 Å). For brevity,

each target shall be referred to by their PDB ID rather than

by their target name.

Results using I-TASSER alone

It is of interest to see how a protein structure prediction

program like I-TASSER performs without NMR data to

determine if it can produce models useful for molecular

replacement by NMR. Tables 1 and 2 give the I-TASSER

results for the Round 1 and 2 targets, respectively. The data

show that I-TASSER predicted the correct topology for

most of the targets although the best model was not nec-

essarily ranked first.

I-TASSER ranks the cluster centroid models according

to the cluster size. For Round 1 targets, 5 out of 10 proteins

have the first-ranked model\4 Å to native. If the best in

the top 10 ranked models are considered, 7 out of 10 targets

have a RMSD\ 4 Å. For Round 2, 7 out of 10 targets have

the top-ranked model \4 Å to native, and 9 out of 10

targets if the best in top 10 are considered. For two targets,

2kmm and 2l9r, I-TASSER built high-resolution structures

with a RMSD\ 1 Å. Figure 3 illustrates the top-ranked

model for 2kmm, where is nearly a perfect match to the

native. For these targets, there is little room for NMR-I-

TASSER to improve, partly due to its resolution of reduced

modeling. But there are several targets (e.g. 2kky, 2knr,

and 2loj), where none of the top 10 models have an ac-

ceptable fold, which provides a test bench on how the

NMR restraints could improve the results.

Overall, the average RMSD of the I-TASSER models in

Round 1 is 5.29 Å, slightly larger than that in Round 2

(3.18 Å), partly due to the more distant template identifi-

cation by LOMETS, as demonstrated by the best TM-score

of the threading templates (i.e. TM-score = 0.514 for

Round 1 and 0.568 for Round 2). As shown in Tables 1

and 2, the I-TASSER models have a higher TM-score in

both rounds (0.564 and 0.650) than the templates, indi-

cating the ability of I-TASSER for threading template

refinements.

We note that there is one target (2kj6) in Round 1,

whose PDB structure was indicated to be problematic

(Zhang et al. 2014). The I-TASSER model and the NMR-I-

TASSER model have only a modest similarity to the PDB

structure at around 4 Å. In these models, the main helix is

packed in the hydrophobic core even though NOE as-

signment yielded very few contacts between the helix and

the core. But in the PDB structure, the helix is not packed,

which was revealed later to have errors in the chemical

shift assignment (Zhang et al. 2014).

NMR-I-TASSER results

As a control to the I-TASSER models, the NMR-I-TAS-

SER modeling results are listed in the right-hand side

columns in Tables 1 and 2 for the Rounds 1 and 2 targets,

respectively. In general, the use of distance restraints from

NOEs improved the I-TASSER modeling except in 3 cases

when the I-TASSER models have a high resolution (\2 Å),

which may indicate a resolution limit of using residue-

based contacts. For NMR-I-TASSER, the average RMSD

for the Round 1 targets was 2.14 Å compared to 5.29 Å for

I-TASSER. For the Round 2 targets, the average RMSD for

NMR-I-TASSER was 1.79 Å on the raw peak lists, and

1.71 Å on the refined peak lists, in control with the

I-TASSER models that have an average RMSD of 3.18 Å.

Figure 4 illustrates an example from 2lci that was built

on the raw peak lists. The I-TASSER model appears to

have correct topology (3.65 Å), but NMR-I-TASSER was
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Table 1 I-TASSER and NMR-I-TASSER results for Round 1 targets

Target Length I-TASSER only NMR-I-TASSER

R1 (Å)
a TM1

b GDT1
c R10 (Å)

d TM10
e GDT10

f R1 (Å)
a TM1

b GDT1
c

2kif 102 1.84 0.862 0.846 1.84 0.862 0.846 1.73 0.845 0.817

2kj6g 97 3.97 0.566 0.539 3.94 0.566 0.544 3.92 0.571 0.544

2kk1 135 4.93 0.474 0.422 2.82 0.648 0.594 1.53 0.667 0.609

2kkx 102 9.38 0.490 0.466 3.64 0.600 0.583 2.84 0.718 0.657

2kky 102 9.87 0.509 0.476 8.60 0.509 0.476 2.29 0.755 0.681

2knr 118 12.39 0.265 0.237 9.51 0.325 0.305 3.07 0.758 0.672

2kmm 73 0.80 0.813 0.843 0.77 0.823 0.843 0.99 0.785 0.815

2kpm 105 3.48 0.505 0.464 3.47 0.514 0.464 2.05 0.588 0.557

2kpt 148 4.75 0.470 0.389 4.75 0.472 0.392 1.51 0.735 0.661

2kru 63 1.50 0.684 0.754 1.44 0.684 0.754 1.44 0.671 0.726

Average 104.5 5.29 0.564 0.543 4.08 0.600 0.580 2.14 0.709 0.674

a R1: Backbone heavy atom (N, CA, C) root-mean-square deviation (RMSD) between the first model (ranked by cluster size) and the

representative conformer of the native model
b TM1: TM-score between the first model and the representative conformer of the native model
c GDT1: GDT-TS score between the first model and the representative conformer of the native model
d R10: The minimum RMSD between the top-ten models and the representative conformer of the native model
e TM10: The maximum TM-score between the top-ten models and the representative conformer of the native model
f GDT10: The maximum GDT-TS score between the top-ten models and the representative conformer of the native model
g This PDB structure was later revealed to be problematic (Zhang et al. 2014)

Table 2 I-TASSER and NMR-I-TASSER results for Round 2 targets

Target Length I-TASSER Only NMR-I-TASSER

Raw peak lists Refined peak lists

R1 (Å)
a TM1

b GDT1
c R10 (Å)

d TM10
e GDT10

f R1 (Å)
a TM1

b GDT1
c R1 (Å)

a TM1
b GDT1

c

2l9r 69 0.54 0.750 0.801 0.54 0.782 0.826 0.90 0.710 0.765 0.99 0.690 0.732

2la6 99 1.95 0.757 0.745 1.85 0.763 0.755 1.52 0.769 0.725 1.57 0.759 0.707

2lah 160 3.08 0.790 0.719 3.00 0.794 0.722 2.25 0.788 0.664 2.18 0.790 0.700

2lci 134 3.65 0.610 0.528 3.42 0.651 0.567 1.87 0.829 0.735 1.69 0.844 0.750

2ln3 83 3.23 0.628 0.639 2.30 0.690 0.705 1.52 0.769 0.753 1.65 0.763 0.747

2loj 63 7.23 0.336 0.377 5.88 0.338 0.377 2.54 0.414 0.472 2.20 0.508 0.560

2ltm 107 4.22 0.632 0.579 3.42 0.646 0.594 1.77 0.780 0.717 1.86 0.777 0.715

2ltl 119 4.03 0.584 0.523 3.60 0.605 0.538 1.79 0.740 0.660 1.63 0.763 0.691

2m2eg 71 1.82 0.672 0.729 1.82 0.672 0.641 1.82 0.672 0.729 1.59 0.737 0.761

2m5og 97 2.02 0.744 0.770 2.02 0.744 0.680 1.96 0.738 0.702 1.70 0.751 0.767

Average 100.2 3.18 0.650 0.641 2.79 0.668 0.640 1.79 0.721 0.692 1.71 0.738 0.713

a R1: Backbone heavy atom (N, CA, C) root-mean-square deviation (RMSD) between the first model (ranked by cluster size) and the

representative conformer of the native model
b TM1: TM-score between the first model and the representative conformer of the native model
c GDT1: GDT-TS score between the first model and the representative conformer of the native model
d R10: The minimum RMSD between the top-ten models and the representative conformer of the native model
e TM10: The maximum TM-score between the top-ten models and the representative conformer of the native model
f GDT10: The maximum GDT-TS score between the top-ten models and the representative conformer of the native model
g Blind result from NMR-I-TASSER only. Refinement models from Xplor-NIH were submitted to CASD-NMR but not shown here
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able to improve further the model (1.87 Å), especially in

the beta sheet region. Although the improvements were

subtle, this example shows that the coarse-grained model-

ing based on residue-based contacts can produce fine-

grained improvements.

The cases where I-TASSER did not succeed but NMR-I-

TASSER succeeded can be placed into two groups: (a) the

best I-TASSER model was not in the first (largest) cluster

where NMR-I-TASSER refine both the rank and quality of

the models, and (b) none of the top 10 I-TASSER cluster

centroid models had the correct topology where NOE data

helps NMR-I-TASSER to construct better models.

Figure 5 illustrates an example of Group (a) refinement

from 2kk1. The first-rank I-TASSER model (blue) had the

circled helix at the incorrect location while the 5th best-

ranked model had the helix at the correct location. The first-

ranked NMR-I-TASSER model (yellow) correctly placed

the helix (probably by pulling the lower-rank I-TASSER

models to a higher-rank), which also improved the overall

quality of the best I-TASSER model, particularly on the

Fig. 3 Superposition of the I-TASSER model (green) to the native

structure of 2kmm (red). Dynamic residues at the C-terminus have

been omitted (S63-H73)

Fig. 4 Modeling results for 2lci. The I-TASSER model is shown

green cartoon, the NMR-I-TASSER model from raw peak lists in

yellow, and the native PDB representative conformer in red. The

highlighted beta sheet region shows the improvement of the NMR-I-

TASSER model over the I-TASSER-only model

Fig. 5 Modeling results for 2kk1. The native PDB representative

conformer is shown in red cartoon. The first-ranked I-TASSER model

is in blue, where the circled helix (S38-L53) is at the wrong location.

The 5th ranked I-TASSER model is shown in green, where the helix

is at the correct location. The first-rank NMR-I-TASSER model

shown in yellow improves upon the 5th ranked I-TASSER model in

the circled loop region (A108-G114). The dynamic N-terminal

residues M1-K36 have been removed for clarity
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circled loop region in Fig. 5. The overall RMSD of the first

NMR-I-TASSER model is 1.53 Å, compared to the RMSD

of 2.82 Å from the best I-TASSER model.

Figures 6 and 7 present two examples of the Group (b).

In Fig. 6, the first-rank I-TASSER model for 2kky had the

N-terminal helix in the wrong position (Fig. 6a). NOE

assignment yielded the inter-helical contacts shown as

yellow lines. The final NMR-I-TASSER model has the

helix relocated to the correct position. Note that although

the target was classified as hard by LOMETS and all

templates are incorrect on the N-terminal helix location,

the NOE assignment algorithm was able to correctly assign

some of the inter-helical contacts as ambiguous restraints,

which eventually guided the NMR-I-TASSER simulations

to draw the helix to the right location, resulting in a RMSD/

TM-score improvement from 8.6 Å/0.509 to 2.29 Å/0.755

for the first NMR-I-TASSER model (Fig. 6b).

In Fig. 7a, the best I-TASSER model for 2knr is shown

in green. Although the global topology was incorrect with a

TM-score = 0.325, the secondary structures of the model

appear generally correct but were assembled incorrectly.

The model in Fig. 7b shows the first-ranked NMR-I-

TASSER model after the first iteration (magenta), and

Fig. 7c shows the final-iteration model (yellow). The final

model improved upon the first iteration model at the

C-terminal tail region as highlighted by the upper circle in

Fig. 7c. Both NMR-I-TASSER models have the topology

generally correct except for the lower loop region. In both

iterations, the upper bound distances between the left and

right parts of the loops (highlighted by the lower circle in

Fig. 7c) were too large, so they are farther apart in the

model compared to in the native structure. This problem of

distance calibration highlights the current NOE assignment

which needs to be further addressed.

In these two examples, the use of two different sets of

template restraints—one set that included the long-range

template contacts and one set without—improved the

modeling because the different structure samplings in-

creased the chance of finding better models. For 2kky, the

set that included the long-range template contacts had the

best overall model at 3.29 Å (TM-score = 0.668) from the

5th largest cluster after the first iteration, and the model

was ranked the highest based on the contact overlap cri-

terion. The best model from the excluded set was 3.89 Å

(TM-score = 0.595), but both models were automatically

selected for the next iteration based on contact overlap

along with various other models, which resulted in a much

improved final model of RMSD/TM-score = 2.29 Å/0.755

in the final iteration. Contrarily, for 2knr the simulations

with the long-range template contacts excluded had the

better model (RMSD = 4.02 Å) than that without

(5.04 Å). Contact overlap ranked the 4.02 Å model higher,

but both models were automatically selected, which in-

creases the chance of model selection for the next iteration.

Blind test results

The protocol used for the blind tests is slightly different

from that described in Fig. 1 because the blind tests were

performed in 2013. The main difference is that the NOE

assignment-based filtering of templates was not imple-

mented at that time, and the input models for NOE as-

signment came from running I-TASSER alone rather than

from threading. In addition, all-atom refinement was per-

formed with Xplor-NIH (Schwieters et al. 2003). Never-

theless, the results in Tables 1 and 2 show only the NMR-I-

TASSER result before the all-atom refinement step.

For 2m2e, LOMETS classified the threading result as

Easy with all models having 3 alpha helices similar to the

Myb-like DNA-binding domain (Fig. 8). The first-ranked

I-TASSER model without NOE restraints had an RMSD of

1.82 Å. The raw peak lists were noisier than many of the

Fig. 6 Modeling results for

2kky. The native PDB

representative conformer is

shown in red cartoon. a The

green cartoon represents the

best I-TASSER model

superposed on the native, with

lines highlighting the contacts

from the NOE assignment step

in the first iteration. Only the

contacts between the two

helices are shown for clarity.

b The final NMR-I-TASSER

model shown in yellow has the

helix (S1-C12) at the correct

location
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other targets in this round. For example, the number of

peaks in 2m2e is greater than that for the target 2lah, de-

spite 2lah contains more than twice as many residues. NOE

assignment from the raw peak lists yielded some obvious

unphysical long-range contacts (the bending of the C-ter-

minal helix by more than 90�), which caused NMR-I-

TASSER to bend the helix unless the restraints are re-

moved. Therefore, we chose to refine directly from the

Fig. 7 Modeling results for 2knr. The native PDB representative

conformer is shown in red cartoon. a The green cartoon represents the
best I-TASSER model overlaid on the native. b The magenta cartoon

shows the top-ranked NMR-I-TASSER model selected by contact

overlap after the first iteration. c The yellow cartoon give the final

NMR-I-TASSER model. The upper circle highlights the main

improvement in the C-terminal region starting from E105 to the

C-terminus. In the lower circled region, there are restraints from

NOEs between the two contacting segments (R2-L3 with R65-E67),

but the upper bound distances used are too large, so the segments are

farther apart in the model than in the native structure

Fig. 8 Blind testing results of

target 2m2e. All models are

shown as cartoons where the

native PDB representative

conformer is shown in red and

the I-TASSER only model is in

green. a From raw peak lists,

final model after all-atom

refinement (yellow). This model

was refined directly from the

I-TASSER only model. b From

refined peak lists, NMR-I-

TASSER model (grey) and final

model after all-atom refinement

(blue)
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I-TASSER-only model. For refinement, we used the

I-TASSER model to filter out the unphysical long-range

contacts. The lowest energy refined model from the raw

peak lists improved to an RMSD of 1.54 Å (Fig. 8a). This

example illustrates that the I-TASSER model can be used

to effectively filter out noise in the peak lists. From the

refined peak lists, the RMSD of the NMR-I-TASSER

model was 1.59 Å and after refinement it was reduced to

1.45 Å (Fig. 8b).

Similar to 2m2e, the I-TASSER assembly simulation

constructed a good initial model for 2m5o with an RMSD

of 2.02 Å for the next step NMR-I-TASSER refinement

(Fig. 9). By combing the raw peak list data, NMR-I-

TASSER produced the first model of a RMSD 1.96 Å

(Fig. 9a), which was further improved to 1.70 Å when

using the refined peak lists (Fig. 9b). After all-atom re-

finement with the raw peak list data, the RMSD of the first

model was reduced to 1.36 Å (Fig. 9a); and it became

1.00 Å (if the first 3 residues from the N-terminal tail are

excluded) with the refined peak lists (Fig. 9b). For this

target, dynamic residues as predicted by the chemical shift

assignment-based TALOS? program (Shen et al. 2009)

were removed prior to the structure calculation to improve

sampling efficiency. However, for simplicity of compar-

ison to PDB structures, the dynamic residues were not re-

moved in non-blind tests.

To conclude this section, we briefly summarize the all-

atom refinement protocol. To obtain the NOE restraints,

our NOE assignment algorithm was used. Three iterations

of refinement were performed by first generating 50 mod-

els, taking the top 10 by energy, running the NOE as-

signment algorithm with these 10 models as input, and then

filtering the contacts not satisfied by at least 1, 2, or 5

models (based on a 6 Å distance cutoff) depending on

whether it is the first, second, or third iteration respectively.

The final model selected was the lowest energy model

according to Xplor-NIH.

Comparison of modeling with raw and refined peak lists

Round 2 saw the introduction of raw peak lists in addition

to the refined ones. To evaluate the difference, we com-

pared the NOE assignment accuracy for each peak list

using the top 10 models from running I-TASSER alone as

the input structures (see Table 3). In general, the accuracy

of NOE assignments was better with the refined peak lists.

For the long-range (C6 sequence separation) seed assign-

ments, the average accuracy was 85.0 and 92.8 % for the

raw and refined peak lists respectively. For the ambiguous

assignments, if we define a correct assignment as that with

at least one contact possibility in the ambiguous assign-

ment being correct, the average accuracy was 85.8 and

96.9 % for the raw and refined peak lists, respectively.

For some targets, there was a large difference in the

NOE assignment accuracies, so the quality of the raw peak

lists appears to vary significantly across the targets. For

example, the accuracy of the seed assignment of 2la6 did

not vary much: 96.4 % for raw peak lists and 96.7 % for

refined. However, the difference between the raw and re-

fined peak lists for 2lci, 2loj, and 2m2e was large: from

56.7 to 74.0 % for 2lci, 73.8 to 85.5 % for 2loj, and 71.9 to

95.3 % for 2m2e. Coincidentally, the lowest assignment

accuracies for the raw peak lists were for these 3 targets.

For 2m2e, we observed that it had many more peaks

compared to the other targets even though the protein has

only 71 residues, which indicates that more aggressive

filtering by the NOE assignment algorithm should be used

to better filter the seed assignment for this target. For 2lci,

although the raw peak list seed assignment accuracy was

low, the ambiguous assignment accuracy was high

(83.8 %), so a model\2 Å was produced.

Despite the differences in NOE assignment accuracy,

with respect to the final structure models, there does not

appear to be a significant difference in quality between the

models from raw or refined peak lists, which have an

Fig. 9 Blind testing results of

target 2m5o. All models are

shown as cartoons where the

native PDB representative

conformer is shown in red and

the I-TASSER only model is in

green. a From raw peak lists,

NMR-I-TASSER model

(purple) and final model after

all-atom refinement (yellow).

b From refined peak lists, NMR-

I-TASSER model (grey) and

final model after all-atom

refinement (blue)
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average RMSD of 1.79 and 1.71 Å, respectively. This

indicates that the structure-sampling algorithm is relatively

robust to the additional assignment errors from using raw

peak lists. Furthermore, the number of restraints derived

from raw peak lists is not significantly more than that from

refined peak lists. The fraction of all contacts with se-

quence separation C6 in the native structure that are found

in the seed assignment is 0.20 and 0.19 for raw and refined

peak lists, respectively.

Conclusion

NMR-I-TASSER is a hierarchical template-based method

that takes a molecular replacement-like approach to the

NMR structure determination, where the initial NOE as-

signment step uses structure information from threading

templates. The approach takes advantage of multiple tem-

plates and produces multiple clusters of models using a

reduced residue-based conformational search. Even though

the conformational search is course-grained, 8 out of 10

Round-2 targets had high-resolution models (\2 Å), and

this was obtained without performing all-atom refinement.

For two targets from 2kmm and 2l9r, the I-TASSER

models were both\1.0 Å, which was even more accurate

than the NMR-I-TASSER model due to errors in the NOE

assignment. Although limited in resolution due to the

coarse-grained modeling, we have shown that NMR-I-

TASSER can produce accurate starting models in the

conformational search. Therefore we believe the pipeline

can play a complementary role to the existing all-atom

NMR structure determination methods. For example, for

proteins larger than 10 kDa, a combination of traditional

NMR methods with all-atom refinement was shown to be

more CPU efficient and just as effective as restrained

assembly simulations (Mao et al. 2014). It is known that for

large proteins, traditional NMR methods may not con-

verge, so the combination of NMR-I-TASSER with the

traditional all-atom refinement methods will be an inter-

esting direction to explore, in particular for efficient and

effective structure determination of large proteins.

NMR-I-TASSER is potentially useful in cases when there

is sparse data, where multiple structure models may be

consistent with the data. In these cases, it is important to

quickly generate many different structure topologies, espe-

cially if the structure sampling needs to sample away from

incorrect template conformations. The problem then be-

comes more of a model selection problem, which requires a

good function to discriminate between models that fit and

those that do not fit the NMR data well. For ranking models,

we have thus far ignored important chemical shift infor-

mation. Adding a score based on chemical shift prediction

from structure, such as from ShiftX2 (Han et al. 2011), and

combining it with different model quality scores, such as the

DP-score (Huang et al. 2005) and MQA score (Kosciolek

and Jones 2014) should prove helpful for model selection, in

addition to the inherent I-TASSER force field.
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