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Abstract

Motivation: Cysteine-rich proteins cover many important families in nature but there are currently

no methods specifically designed for modeling the structure of these proteins. The accuracy of di-

sulfide connectivity pattern prediction, particularly for the proteins of higher-order connections,

e.g. >3 bonds, is too low to effectively assist structure assembly simulations.

Results: We propose a new hierarchical order reduction protocol called Cyscon for disulfide-

bonding prediction. The most confident disulfide bonds are first identified and bonding prediction

is then focused on the remaining cysteine residues based on SVR training. Compared with purely

machine learning-based approaches, Cyscon improved the average accuracy of connectivity

pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the

accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-

rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the

ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve

the ab initio structure modeling for cysteine-rich proteins.

Availability and implementation: http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/

Contact: zhng@umich.edu or hbshen@sjtu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The methods of protein structure prediction can generally be

grouped into template-based and template-free (or ab initio) model-

ing (Zhang, 2008). Since the topology of the protein structure can

be decided by the contact maps, many efforts have been dedicated to

predicting residue-residue contacts. In the template-based modeling

where homologous templates can be detected from the PDB, residue

contacts can be reliably derived from the template structures

(Misura et al., 2006; Zhang and Skolnick, 2004a). But for the ab ini-

tio modeling targets that do not have homologous templates, the

contact information must be predicted from sequence either by fea-

ture-based training (Cheng and Baldi, 2007; Wu and Zhang, 2008)

or correlated mutations (Göbel et al., 1994; Jones et al., 2012; Sun

et al., 2015). In the 11th CASP (Critical Assessment of protein
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Structure Prediction) experiment, the modeling of several New Fold

targets reached an unprecedented resolution due to the successful in-

tegration of the ab initio contact predictions (Grishin, 2014).

However, except for the targets that have a high number of homolo-

gous sequences which can be used for detecting the conserved muta-

tions and contacts, the accuracy of ab initio contact predictions is in

general too low to be useful for 3D structure determination (Wu

et al., 2011). One feasible improvement is to decompose the contact

map into different types of contacts that can be predicted more reli-

ably, such as disulfide bonds.

Disulfide bonds are formed between cysteine residues, which are

the only coded amino acids that have a reactive sulfhydryl group.

This type of residue interaction can be formed between residues

from either the same or different polypeptide chains, which usually

induces long-range contacts along the protein sequence (Gromiha

and Selvaraj, 1997). It has been widely acknowledged that the long-

range contacts are crucial to protein structure modeling because

they constrain the possible conformations and reduce the entropy of

unfolded states (Harrison and Sternberg, 1994; Wu and Zhang,

2008). Thus, accurate prediction of the disulfide-bonding network

should improve ab initio protein structure prediction (Chuang et al.,

2003; Gupta et al., 2004).

Disulfide bonds are important for protein function and structural

stability. For instance, the formation of disulfide bonds is a key post-

translational modification in numerous proteins (Winther and

Thorpe, 2014). In dual oxidase proteins, disulfide bonds contribute

importantly to protein–protein interactions (Meitzler et al., 2013).

Previous studies have revealed that incorrectly formed disulfide

bonds can be deleterious to both the function and stability of some

proteins (Cloos and Christgau, 2002; Kénesi et al., 2003).

Due to the importance of disulfide bonds in both protein struc-

tural and functional studies, many computational methods have

been developed for predicting their connectivity patterns from pro-

tein sequence, with the aim to identify the correct bonding of oxi-

dized cysteine residues. This problem was first addressed via

maximum weight perfect matching (Fariselli and Casadio, 2001),

where the weight of each edge is equivalent to the contact potential

between the two cysteine residues, which was derived by Monte-

Carlo simulated annealing. Following this work, considerable efforts

were devoted to machine learning-based ab initio approaches to pre-

dict the contact potential for improving the performance. Progress

in this regard focuses on two directions:

i. Developing more powerful prediction algorithms: e.g. neural

network (NN) (Fariselli et al., 2002), support vector machine

(SVM) (Chen et al., 2006), kernel method (Vincent et al., 2008),

correlated mutation analysis (Raimondi et al., 2015; Rubinstein

and Fiser, 2008) and support vector regression (SVR) (Savojardo

et al., 2011, 2013; Song et al., 2007);

ii. Introducing novel feature representations: besides traditional

global and local sequence-derived features, recent studies have

shown that some features such as protein subcellular localization

(Savojardo et al., 2011), correlated mutations (Savojardo et al.,

2013) and context-based features (Yaseen and Li, 2013) can also

improve the performance. In addition, feature selection methods

such as Fisher score (Zhu et al., 2010) were proposed to over-

come the high-dimensional problems and improve the

prediction.

Different from the above ab inito approaches which perform pre-

dictions by only using the amino acid sequence information, the

other trend is using the homology modeling techniques, where some

prediction features are extracted from the modeled structures. For

instance, the spatial distance between the cysteine residues in the

modeled structure can be used as an encoding feature (Yu et al.,

2015). Other studies in this trend include: Lin and Tseng (2010) and

O’Connor and Yeates (2004). Despite this type of methods is prom-

ising considering the rapid increase of the deposited 3D structures in

PDB, which may increase the possibility of finding good templates,

they may still fail for large portion of proteins, which cannot find

good templates in current PDB.

This study aims to further enhancing the disulfide bonds predic-

tion by using only the amino acid sequence information. Although

existing methods can predict disulfide connectivity patterns with

reasonable accuracy, there are still challenging problems that ser-

iously limit the prediction performance. One of the biggest chal-

lenges is the high order problem: sequences with more disulfide

bonds are much more difficult to predict accurately than those with

fewer bonds. In fact, the entire pattern prediction accuracy will be

very low for sequences with more than five bonds. The reason is

that a disulfide connectivity pattern represents a unique correct com-

bination of all the disulfide bonds in the sequence, and it is correct

only if all the independent bonds are correctly predicted. For a se-

quence with 5 bonds, there will be 945 different bond combinations

(c.f. Equation 4), where only 1 arrangement is correct and the ran-

dom prediction success rate is �0.1%. The situation will be even

worse for many cysteine-rich proteins, which often contain more

than five disulfide bonds.

To this end, we propose a new algorithmic improvement based

on the idea of order reduction by first finding the most confident di-

sulfide bonds. For example, if we can determine 1 confident bond

from a query sequence of high order (e.g. 5 bonds), then the problem

is reduced to finding the correct combination among 4 remaining

bonds, which has only 105 candidate patterns, much less than the

original 945. It is fulfilled by an effective confident bond detector

based on the observation that some disulfide bonds are found

aligned at the same positions in the multiple sequence alignments

(MSA). The detected confident bonds will be eliminated from the

following decision process to reduce the complexity. Then, a max-

imum weight graph matching approach will be used to determine

the remaining bonds, where the weights are predicted using a statis-

tical machine learning predictor. Our hierarchical system for pre-

dicting disulfide connectivity patterns is called Cysteine contact

(Cyscon). The new order reduction characteristic enables Cyscon to

achieve higher prediction accuracy than traditional approaches.

2 Materials and methods

2.1 Datasets
For a fair comparison of the performance, we employed the two

benchmark datasets that have been used in previous studies, i.e.

SPX dataset (Cheng et al., 2006) and PDBCYS dataset (Savojardo

et al., 2011). The first dataset is used to evaluate our proposed

method, and the second is used for comparing with other existing

methods. In these two datasets, only intra-chain disulfide bonds

are presented and the disulfide bond information is derived from

SSBOND records in the PDB files. Each dataset is described in de-

tail below.

2.1.1 SPX dataset

This dataset was taken from DIpro (Cheng et al., 2006), which in-

cludes 1018 protein sequences that were collected from the PDB.

These sequences have at least 1 intra-chain disulfide bond. We eval-

uated our method on the SPX dataset using 10-fold cross-validation,

3774 J.Yang et al.
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where the 10-folds were downloaded from http://dislocate.biocomp.

unibo.it/dislocate/. We only selected chains containing at least 2 and

at most 5 disulfide bonds from the original dataset for model train-

ing, resulting in 428 protein sequences, where the pairwise sequence

identity is below 25%. Besides, 36 chains with more than 5 disulfide

bonds were selected for an independent test of high order proteins.

2.1.2 PDBCYS dataset

In order to compare with the recent state-of-the-art methods, we as-

sessed our method on the PDBCYS dataset using the same 20-fold

cross-validation as DISLOCATE (Savojardo et al., 2011). This data-

set is homology reduced at the 25% sequence identity level, which

contains 1797 protein sequences. In the PDBCYS dataset, 458 se-

quences have at least 1 intra-chain disulfide bond. Similar to previ-

ous studies, chains with at least 2 and at most 5 disulfide bonds

were picked from the original dataset, which resulting in 263 protein

sequences for cross-validation. Additionally, 51 chains with more

than 5 disulfide bonds were selected for an extra independent test.

Supplementary Table S1 shows the detailed information of the two

datasets.

2.2 System architecture
Cyscon predicts the disulfide bonds directly from amino acid se-

quence and is a hierarchical two-stage approach that integrates the

machine learning-based predictions with the predictions from the se-

quence alignment-based confident bond detector (Fig. 1). Given a

protein sequence, before the prediction of disulfide bond locations,

we need to know the bonding states of each cysteine residue. The

reason is that although disulfide bonds are only formed between

cysteine residues, not necessarily every cysteine will be involved.

Due to predicting whether a cysteine residue will be bonded or not

can be transformed into a two-class classification problem and its

accuracy is already very high (Chen et al., 2004), we assume that the

bonding states of cysteine residues are known as the prior know-

ledge, which is the same as other previous studies (Rubinstein and

Fiser, 2008; Song et al., 2007). In Cyscon, the confident bond de-

tector assigns the most reliable disulfide bonds to the test sequence

in the first stage, which will be eliminated from the undirected

weighted graph for final decision. In the second stage, the sequential

features of the oxidized cysteine residues are extracted and com-

bined, and then fed into an SVR model to obtain the initial probabil-

ities of cysteine pairs forming disulfide bonds. The first step can

effectively reduce the decision complexity and hence is helpful for

improving the predictor’s performance.

2.3 Feature extraction
Feature representation is critical in machine learning-based applica-

tions. In this work, we extracted four types of discriminative features

to encode cysteine residues, which are all extracted directly from the

amino acid sequence. The features are described in detail as follows.

2.3.1 Position specific scoring matrix (PSSM)

The evolutionary information in PSSM was proven to be effective in

previous studies (Savojardo et al., 2011; Song et al., 2007). In this

work, it was generated by running PSI-BLAST (Altschul et al., 1997)

to search against the UniRef90 database with three iterations and an

E-value threshold of 0.001. Each oxidized cysteine residue was rep-

resented as a vector of 20 elements that indicates the probabilities of

20 amino acids occurring at that position. A local window of size 13

was used to include the neighboring information, thus, we encoded

the PSSM feature with a 13�20¼260-D vector. The original score

in each position was normalized by the following logistic function:

f ðxÞ ¼ 1

1 þ e�x
(1)

where x is the original score.

2.3.2 Predicted secondary structure (PSS)

The predicted secondary structure was also used to encode each

cysteine residue by using PSIPRED (Jones, 1999), which outputs the

propensities for the three secondary structure states (helix, strand

and coil). To consider neighboring structural information, we

encoded the PSS feature with a 13�3¼39-D vector.

2.3.3 Correlated mutation (CM)

Since the disulfide bond is a well-defined residue–residue contact, it

is expected to result in covariation between the two sequence pos-

itions. To reduce calculation bias, we used two different algorithms

to calculate the residue correlated mutation features, which will gen-

erate two feature scores. The first scoring scheme is the same as

(Rubinstein and Fiser, 2008). Based on the MSA obtained through

searching the query sequence against the UniRef90 database, the

first CM value was calculated as:

CMkði; jÞ ¼

1=ðjCkj � 1Þ; i; j 2 C

1=ðjNCkj � 1Þ; i; j 2 NC

0; other

8>><
>>:

(2)

where the function j�j is the size of the set. For each valid sequence k

in the alignment, positions were divided into two sets based on

amino acid type. The set C contains the positions of the cysteine resi-

dues while the set NC contains the positions of the other residues.

The CM score between positions i and j is a mean value and was

computed by averaging over all the sequences in the alignment,

which lies in the range of [0, 1]. Note that if two positions are in dif-

ferent sets, the CM score is set to 0. The second CM score was ex-

tracted from GREMLIN (Kamisetty et al., 2013) outputs, which is a

pseudo-likelihood approach for residue contact prediction via fewer

homologous sequences. The larger the CM score is, the higher po-

tential the cysteine pair forms a disulfide bond.

2.3.4 Cysteine separation distance (CSD)

This feature encodes the sequence distance between two oxidized

cysteine residues. CSD is defined by:

CSDði; jÞ ¼ logðji� jjÞ (3)

Fig. 1. A schematic diagram of Cyscon to predict disulfide connectivity

patterns. (1) highly conserved confident bond detector; (2) contact potential

predicted by statistical machine learning-based engine; and (3) order

reduction-based decision system

Structure prediction of cysteine-rich proteins 3775
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where i and j represent the positions of the two oxidized cysteine

residues along the query sequence that potentially form a disulfide

bond. As shown in (Tsai et al., 2005), scaling the sequence distance

value by the logarithm function works better than other scaling

methods in terms of the accuracy of the final prediction.

In summary, according to the PSSM and PSS features, when the

local window size is 13, we can get a vector of 13�
(20þ3)�2¼598 components for each cysteine pair. Together with

the CM (2D) and CSD (1D) features, we can then obtain a 601-D

vector to encode one cysteine pair. We applied e-insensitive support

vector regression (e-SVR), a module from the SVMlight (Joachims,

2002) software package to build the machine learning model using

the radial basis function kernel (RBF) with e¼0.01. The parameters

c and C were optimized by combining a grid search with cross-

validation.

2.4 Confident bond detector
Based on the findings that sequences with similar cysteine separation

profiles may have similar disulfide connectivity patterns (Zhao

et al., 2005) and disulfide bonds are often highly conserved

(Perlman et al., 1995), we built an effective confident bond detector

engine. Given a protein sequence, we first used HHblits (Remmert

et al., 2012) to search against the bundled UniProt20 database with

three iterations to generate MSA. And then, we used HHsearch

(Söding, 2005) to search against a database of profile hidden

Markov models (HMMs), where the database was annotated with

the known disulfide connectivity patterns. Lastly, we aligned the

query sequence against the searched best sequence. Labeled disulfide

bonds from the best aligned sequence are then assigned to the query

sequence if the corresponding aligned positions on the query se-

quence are both cysteines. Our results show that disulfide bonds de-

tected through this alignment-annotation approach have a high

success rate and hence can be regarded as confident edges and then

eliminated from the next-step of the decision process. This will help

to reduce the decision order. Figure 2 illustrates the process of the

confident bond detector. In the case of k-fold cross-validation, the

annotated database is composed by the other k-1 training folds.

2.5 Maximum weight graph matching
Suppose that there exists B disulfide bonds in a protein sequence,

then it will have 2B oxidized cysteine residues. The number of pos-

sible disulfide connectivity patterns N will be:

N ¼
YB
i¼1

ð2i� 1Þ ¼ ð2BÞ!
B!2B

(4)

As shown in Supplementary Figure S1, the number of disulfide con-

nectivity patterns increases exponentially with the number of disul-

fide bonds. The problem to be solved is to find the unique correct

connectivity pattern from all the possible solutions. It can be trans-

formed to the problem of maximum weight graph matching for an

undirected weighted graph G, which contains 2B nodes and

2B(2B�1)/2 edges. The weight of each edge indicates the probabil-

ity of the cysteine pair forming a disulfide bond. Then, our aim is to

find the maximum weight matching corresponding to the disulfide

connectivity pattern, where each node is uniquely connected with

another node. Obviously, the larger B is, the more difficult it is to

find a correct matching due to noise in the edge weights and the de-

cision complexity.

In Cyscon, we used the above confident bond detector to first

determine the confident bonds, which will be eliminated from

the undirected weighted graph. This will reduce the graph size.

Then, we find a maximum weight matching from the remaining

edges. For instance, given the weighted graph of the remaining M

cysteine pairs, we can calculate the possibility of each disulfide con-

nectivity pattern as follows:

Pi ¼ q1 þ q2 þ � � � þ qM; ði ¼ 1; 2; . . . ;NÞ (5)

where qj (j¼1,2, . . . ,M) is the contact potential. Thus, the disulfide

connectivity pattern with the maximum score will be predicted as

the result, i.e.

l ¼ argmax
i¼1;2;���;N

fPig (6)

where l is the argument of i that maximizes Pi of Equation 5. The

final predicted disulfide connectivity pattern is determined by two

sub-predictors: (i) confident bond detector and (ii) maximum weight

graph matching of Equation 6.

2.6 Application in QUARK-based ab initio structure

prediction
QUARK is a recently developed method for ab initio protein struc-

ture prediction (Xu and Zhang, 2012). The structure fragments of

1–20 residues are first identified from unrelated protein structures

by gapless matches. The full-length structure models are then con-

structed by reassembling the fragments using replica-exchange

Monte Carlo simulations under the guidance of a composite physics-

and knowledge-based force field, where the residue-based contacts

derived from the distance profiles of short-range fragments are inte-

grated as restraints to the force field (Xu and Zhang, 2013b). The

QUARK method has been systematically tested in both blind CASP

experiment (Xu et al., 2011) and genome-wide structure predictions

(Xu and Zhang, 2013a) and demonstrated considerable advantage

over peer methods on ab initio protein structure folding (Lee, 2012).

Fig. 2. Flow chart of sequence alignment-based confident bond detector. By

searching the query sequence against an annotated database of disulfide

bonds, a confident bond is assigned between two cysteines when the follow-

ing two conditions are satisfied: (1) their corresponding aligned residues are

both cysteines, and (2) the two cysteines in the annotated sequence (Sbjct)

form a disulfide bond. The detected confident bonds will be eliminated from

the decision graph to reduce the problem order

3776 J.Yang et al.
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To integrate the disulfide bond predictions, each distance re-

straint with a cutoff of 8 Å was implemented in the QUARK simula-

tions by:

Eresði; jÞ ¼

�U0 dij < 8

�1

2
U0 1� sin

dij � 9

2
p

� �� �
8�dij�10

0 dij > 10

8>>>>><
>>>>>:

(7)

where dij is the distance of Ca atoms of the ith and jth residues that

are predicted by Cyscon as disulfide-bonded. Considering the accur-

acy for disulfide bond prediction is high, U0 is set to 30 energy units,

corresponding to a strong restraint potential. The final models are

selected by SPICKER clustering of the QUARK simulation decoys

and ranked by the size of the structure clusters (Zhang and Skolnick,

2004b).

2.7 Evaluation criteria
The disulfide bond predictions are evaluated with two widely

used criteria QC and QP, which are defined as QC¼NC/TC and

QP¼NP/TP, respectively, where NC is the number of disulfide bonds

that are correctly predicted, TC is the total number of disulfide

bonds in the dataset, NP is the number of protein sequences whose

disulfide connectivity patterns are correctly predicted and TP is the

total number of protein sequences in the dataset.

The quality of the 3D structure models of the QUARK predic-

tions is evaluated by the RMSD and TM-score (Zhang and

Skolnick, 2004c), where the TM-score has been demonstrated to be

more sensitive to the fold of protein structures, especially for very

similar low-resolution structures that nevertheless still have high

RMSD. A model with TM-score >0.5 to native usually indicates

correct modeling at the fold level based on large-scale statistics of

PDB structures (Xu and Zhang, 2010).

3 Results

3.1 Evaluation of confident bond detector
In this work, we proposed a straightforward confident bond de-

tector to reduce the decision order. This approach identifies disulfide

bonds through searching the query sequence against a database with

disulfide connectivity pattern annotations. We have tested this ap-

proach on three different annotated databases. The first is the

benchmark SPX dataset, the second is benchmark PDBCYS dataset

and the third is a bigger one called bDD collected from the recent re-

lease of Swiss-Prot database.

In the case of SPX dataset, we performed a 10-fold cross-valid-

ation, which uses HHsearch (Söding, 2005) to scan and match each

of the test sequences against the annotated database that consists of

the sequences from the other nine training folds. The best aligned se-

quence with the lowest E-value was selected to assign disulfide

bonds to the query sequence using its annotation (Fig. 2). Detected

disulfide bonds through this approach are very reliable by the fact

that 301 from 322 assigned bonds are correct, which involves 173

tested protein sequences. The prediction accuracy of QC is as high as

93.5%. For the PDBCYS dataset, we performed 20-fold cross-valid-

ation. Finally, there are total 215 assigned bonds, and 199 bonds are

correct, where 106 protein sequences are involved. The accuracy of

QC is 92.6%.

We also evaluated this approach on a bigger annotated disulfide

bonds database (bDD), which was constructed based on the newest

Swiss-Prot database. This database was constructed according to the

following procedures: (i) sequences with at least one disulfide bond

have been collected; (ii) sequences annotated with ambiguous or un-

certain terms, such as ‘potential’, ‘probable’, ‘probably’, ‘maybe’,

‘likely’ or ‘by similarity’ were excluded; (iii) inter-chain bonds were

also excluded. Finally, we will obtain 3476 protein sequences in

bDD. It’s important to note that in the testing process, we do not

use any sequence in bDD that shares more than 25% sequence iden-

tity with the query sequence for strict evaluation purpose. By search-

ing the SPX/PDBCYS dataset against bDD, the proposed confident

bond detector assigned 455/285 bonds for 220/145 tested protein se-

quences on the two datasets, respectively, where 422/272 bonds are

correct (QC¼92.7%/95.4%).

The above results demonstrate the following two interesting ob-

servations: (i) The coverage for bonds found by the confident bond

detector can be improved when using a bigger annotated database.

When tested on the SPX dataset with 10-fold cross-validation, the

bond-based coverage is only 322/1265¼25.5%, but this number

increased to 455/1265¼36.0% on the new bDD database. On the

PDBCYS dataset, the coverage is increased from 215/804¼26.7%

to 285/804¼35.4% when using bDD as the searching pool. (ii)

Despite the different coverage ratios, all assigned disulfide bonds

through the confident bond detector are very accurate. For instance,

the QC will reach 92.6 and 95.4% on the PDBCYS and bDD data-

bases, respectively. The results show that these detected bonds can

be reliably removed from the undirected weighted graph to reduce

the order of the model. Supplementary Tables S3–S5 show the per-

formance at the different sequence identity thresholds.

3.2 Order reduction-driven hierarchical protocol

enhances the prediction performance
Compared with the pure machine learning-based predictors, the

new order reduction-driven hierarchical protocol is able to signifi-

cantly improve the prediction accuracies. Tables 1 and 2 summarize

the results obtained from the final consensus hierarchical protocol

on the SPX and PDBCYS datasets, respectively. Taking the case of

bDD as the searching pool as an example, on the SPX dataset, the

Cyscon model can achieve the average prediction accuracies of QC

and QP as 72.9 and 66.3%, respectively for B¼2–5 group, which

are 10.9 and 9.0% higher than the pure machine learning-based

SVR model. Similarly, on the PDBCYS dataset, QC and QP have

been improved 10.8 and 13.0%.

It can be also observed from Tables 1 and 2 that when we used

the bigger annotated database bDD as the searching pool, the results

are all better than the cases of cross-validation searching the smaller

SPX and PDBCYS datasets. The reason is that the coverage of de-

tected confident bonds is increased as well when using the bigger

bDD. It’s interesting to observe that the improvement is higher on

the PDBCYS dataset. For instance, QP is improved from 65.4 to

66.3% (0.9%) for B¼2–5 group on the SPX dataset, while on the

PDBCYS dataset, QP is improved from 65.3 to 72.3% (7.0%). To

dig the reason, we calculated the overlap ratios between the confi-

dent bonds searched from different annotated pools and those bonds

with the largest probability predicted by the SVR model. On the

SPX dataset, the overlap ratios are 23.6 and 23.5% when using the

smaller SPX and bigger bDD, respectively, which are very close. On

the contrary, for the PDBCYS dataset, the two ratios are 31.6 and

27.7%, respectively. In the maximum weight graph matching step,

the predicted bond with the largest probability may be selected as a

component bond of connectivity pattern in a greedy way. Thus, the

lower the overlap ratio is, the more helpful of the detected confident

bonds to the final system performance due to the more diversity
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generated in the consensus system. Hence, on the PDBCYS dataset,

using bDD is more helpful since the overlap ratio is 3.9% lower

than the smaller pool, whereas this number is 0.1% on the SPX

dataset.

One of the most challenging problems in disulfide connectivity

pattern prediction is the high order problem. For example, if there

are 6 bonds in the protein sequence, we will have to find the unique

real connectivity pattern from 10 395 candidates (Equation 4), and

the random assignment correctness ratio will be as low as 0.096%.

This extreme imbalance significantly limits the feasibility of the

maximum weight perfect matching approach. Motivated by the idea

of reducing the problem order, we eliminate the detected confident

bonds in the first layer. Through this way, the possible solutions can

be decreased exponentially and the problem can be thus solved

much more easily. From Tables 1 and 2, we can already see that the

performance is improved as expected for the group of B¼2–5.

In order to demonstrate our approach for dealing with higher

order proteins, we collected 36 and 51 proteins with B¼6–10 bonds

from the SPX and PDBCYS datasets for independent tests, respect-

ively. Tables 1 and 2 show Cyscon’s results on the higher order

group of B¼6–10. As shown in Table 1, when we used the pure

SVR model on SPX, only 4 out of 36 proteins’ connectivity patterns

can be correctly predicted (QP¼11.1%). While the number was

increased to eight if we introduced the order reduction idea by using

bDD as the searching pool (QP¼22.2%). Our results demonstrate

that the order-reduction approach is especially useful for reducing

the order. For instance, the test protein of 1olzA has eight disulfide

bonds. The traditional pure SVR prediction model has to determine

the unique pattern from 2 027 025 candidates, which failed.

However in the Cyscon protocol, 5 confident bonds have been iden-

tified in the first layer, which has significantly reduced the original

searching problem to much less 15 candidates, which is finally cor-

rectly predicted.

Similarly, for the 51 proteins of B¼6–10 in the PDBCYS data-

set, only 1 connectivity pattern can be correctly predicted when

using the pure SVR model (QP¼2.0%). This serious situation was

relieved by using the order reduction. Concretely, 6 more proteins

can be correctly predicted (QP¼13.7%), i.e. 3 proteins with 6

bonds, 1 protein with 7 bonds and 2 proteins with 8 bonds. These

results demonstrate the effectiveness of the order reduction strategy

in Cyscon.

3.3 Comparison with existing predictors
To compare with the recent state-of-the-art methods (Savojardo

et al., 2011, 2013), we also evaluated our method on the benchmark

PDBCYS dataset using the same 20-fold cross-validation and also

the same folds as previous studies. This dataset is homology reduced

at the 25% sequence identity level. Table 2 shows the results. As can

be seen, the Cyscon model gives better results than DISLOCATE

(Savojardo et al., 2011), which was trained with the additional fea-

ture of subcellular localization. It also outperforms DMC

Table 2. Performance comparison with other methods on the PDBCYS dataset

numBa DISLOCATE DMCb SVRc Cyscond Cyscone Cyscone Cyscone

QP QC QP QC QP QC QP QC QP QC QP QC QP QC

2 75 75 76.0 76.0 79.9 79.9 83.4 83.4 83.1 83.1 83.5 83.5 84.4 84.4

3 48 60 55.3 62.8 53.6 64.3 61.6 69.3 60.4 69.3 68.5 75.8 76.5 82.5

4 44 57 51.2 67.7 52.8 66.4 55.6 68.4 52.8 66.4 54.2 67.0 57.4 69.6

5 19 46 32.4 58.9 29.4 50.7 39.2 59.0 34.3 53.6 43.1 62.3 55.4 69.9

2–5 54 60 59.3 66.2 59.5 65.8 65.3 70.4 63.1 68.6 67.2 72.7 72.3 77.0

6–10f – – – – 2.0 34.3 7.8 39.8 3.9 36.7 9.8 43.0 13.7 46.2

aNumber of bonds.
bDISLOCATEþMIpþ iCOV.
cPure SVR model trained with four types of sequential features.
dConfident bond detections were derived from 20-fold cross-validation on the PDBCYS dataset.
ebDD was used as the searching pool and the searched sequence shares no more than the certain sequence identities with the query sequence (15, 20 and 25%,

respectively).
fOverall results for proteins with the number of disulfide bonds from 6 to 10, where no results reported in DISLOCATE and DMC for this group.

Table 1. Performance of disulfide connectivity pattern prediction on the SPX dataset

numBa SVRb SVRþOR (SPX)c SVRþOR (bDD)d SVRþOR (bDD)d SVRþOR (bDD)d

QP QC QP QC QP QC QP QC QP QC

2 71.4 71.4 75.8 75.8 73.3 73.3 78.0 78.0 77.0 77.0

3 61.8 70.3 64.8 73.3 62.0 70.8 63.1 72.1 67.8 75.6

4 44.3 57.0 56.7 66.7 45.5 58.0 54.3 66.7 55.4 70.2

5 11.5 45.2 36.4 62.4 19.8 52.1 23.6 54.1 36.3 61.9

2–5 57.3 62.0 65.4 71.2 60.5 65.9 64.1 69.7 66.3 72.9

6–10e 11.1 32.8 11.1 34.8 11.1 34.0 16.7 40.4 22.2 43.6

aNumber of bonds.
bPure SVR model trained with four types of sequential features.
cOrder reduction (OR)-driven prediction protocol. Confident bond detections were derived from 10-fold cross-validation on the SPX dataset.
dOrder reduction (OR)-driven prediction protocol. The bDD database was used and the searched sequence shares no more than the certain sequence identities

with the query sequence (15, 20 and 25%, respectively).
eAverage results for proteins with the number of disulfide bonds from 6 to 10.
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(DISLOCATEþMIpþ iCOV) (Savojardo et al., 2013), which was

trained with additional correlated mutation features calculated by

using MIp (Dunn et al., 2008) and PSICOV (Jones et al., 2012). The

overall accuracies of QC and QP of final Cyscon are 77.0 and

72.3%, respectively, which are 10.8 and 13.0% higher than DMC.

The power of the newly developed Cyscon on the high order pro-

teins is obvious. Taking the subset of B¼5 for instance (compared

to B¼4), QP drops 25% accuracy in DISLOCATE and 18.8% in

DMC, while Cyscon drops only 2.0%. This also demonstrates the

efficacy of the proposed order reduction approach for high order

problems. It’s also worthy to mention that Cyscon detected 285 con-

fident bonds in the first layer on the PDBCYS dataset, and these

bonds will not be participated in the final maximum weight match-

ing decision process, which is one of the major reasons for the per-

formance improvement.

3.4 Case study
To highlight why Cyscon works better, we take the protein 1jxcA as

an example. There are 4 native disulfide bonds in this protein, i.e.

C11–C63, C24–C48, C33–C58 and C37–C60. Hence, there will be

105 possible combination patterns in this sequence. For the pure

machine learning-based SVR model, it mistakenly predicted the di-

sulfide connectivity pattern as: C11–C33, C24–C48, C37–C58 and

C60–C63 (Fig. 3). Thus, only the second bond is correct, which

makes QC¼12.5% and QP¼0% on this protein.

However, in the final confident bond-driven Cyscon predictor,

the confident bond detector found 2 confident bonds as C33–C58

and C37–C60. We thus eliminated the two confident edges from the

undirected weighted graph. Then we performed maximum perfect

matching algorithm on the order-reduced weighted graph composed

of only four cysteine residues, which has only three possible combin-

ation patterns. Expectedly, we obtained a correct sub connectivity

pattern of C11–C63 and C24–C48. Together with the two steps,

Cyscon predicted the correct connectivity pattern QC¼100% and

QP¼100% for the protein 1jxcA as illustrated in Figure 3.

3.5 Application to 3D structure modeling of

cysteine-rich proteins
There are many cysteine-rich proteins, such as from various toxins

etc. A common feature of the cysteine-rich proteins is that there are

many disulfide bonds. Although the structure prediction field has

achieved great successes in the past decade, there are few structural

modelers that are specifically developed for the cysteine-rich pro-

teins. A typical feature for the cysteine-rich protein 3D structure pre-

dictors is that they should be capable of incorporating the disulfide

bonds as restraints. We have obtained statistics on 105 339 entries

in the current PDB database, where 15 429 structures are found to

have at least 3 disulfide bonds (�14.6%). The high ratio also indi-

cates the importance of adding the disulfide connectivity pattern

into the structure prediction, especially considering that most of

them are long-range contacts.

To examine quantitatively the usefulness of the predicted disul-

fide connectivity patterns to protein 3D structure prediction, we col-

lected 158 protein sequences (see supplementary Table S2) from the

PDB with experimentally determined 3D structures according to the

following criteria: (i) solved by X-ray diffraction; (ii) resolution less

than 2.5 Å; (iii) number of bonds not less than 3; (iv) number of resi-

dues not less than 20 and not more than 100; and (v) sequence iden-

tity not more than 30%. We focused on the small proteins below

100 residues because the number of the disulfide bond pairs is rela-

tively low (3–5), compared with the coverage of contacts normally

needed to derive the tertiary structure (>L/10) (Li et al., 2004; Wu

and Zhang, 2008; Zhang et al., 2003).

We first predicted the disulfide connectivity patterns for the 158

proteins from their primary sequence with the above Cyscon pre-

dictor; then, we used the ab initio modeling software QUARK (Xu

and Zhang, 2012) to predict their 3D structures in two cases: (i)

without restraints from the connectivity patterns; and (ii) with re-

straints from the predicted connectivity patterns. The average results

are listed in Table 3.

From Table 3, we can see that the connectivity pattern restraints

improve the accuracy of protein 3D structure modeling. Despite the

low coverage of the disulfide bond predictions relative to the normal

contact predictions, the results show an average improvement of

12.1% for TM-score and 14.4% for RMSD by the introduction of

the Cyscon predictions. There are 10 protein models that improved

from TM-score below 0.5 to above 0.5 as shown in Table S2

(1edmB, 1hypA, 1n69A, 1p9gA, 2posA, 2rjiA, 3qteA, 3s64A, 3tvjI

and 4i6oA).

In Figure 4, we show three examples of QUARK versus Cyscon-

assisted QUARK modeling of 3qteA, 1p9gA and 4i6oA, respect-

ively. First, 3qteA is an antimicrobial protein with 32 residues,

where Cyscon generated 3 disulfide bond predictions which are all

correct. The first model by the original QUARK simulation without

Cyscon only has 1 disulfide bond satisfied which resulted in an in-

correct fold with TM-score¼0.166. When integrated with the

Fig. 3. Illustration of Cyscon on the case protein of 1jxcA. Bold lines indicate

the observed or predicted disulfide bonds. SVR tries to detect the pattern in

all 105 possible combination candidates. In Cyscon, by removing 2 confident

edges, it tries to detect the pattern in 3 possible combination candidates

Table 3. Structure modeling of 158 proteins by QUARK with or

without disulfide bonds predicted by Cyscon as restraints

numBa 3 4 5 >5 Overall

numPb 83 37 23 15 158

TM-scoreQUA
c 0.303 0.279 0.255 0.212 0.282

TM-scoreCys
c 0.343 0.300 0.293 0.240 0.316

RMSDQUA
d 8.9 9.7 11.2 11.3 9.7

RMSDCys
d 7.2 8.7 9.9 10.4 8.3

aNumber of bonds.
bNumber of proteins.
cTM-score of QUARK prediction without Cyscon predictions (TM-

scoreQUA), and with Cyscon predictions (TM-scoreCys).
dRMSD (Å) of QUARK prediction without Cyscon predictions

(RMSDQUA), and with Cyscon predictions (RMSDCys).
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Table 3. Structure modeling of 158 proteins by QUARK with or without disulfide bonds predicted by Cyscon as restraints.a Number of bonds. b Number of proteins. c TM-score of QUARK prediction without Cyscon predictions (TM-scoreQUA), and with Cyscon predictions (TM-scoreCys). d RMSD (&Aring;) of QUARK prediction without Cyscon predictions (RMSDQUA), and with Cyscon predictions (RMSDCys).Fig. 4. Illustrative examples of QUARK modeling improved by Cyscon disulfide bond predictions. From left to right columns: the first QUARK model without Cyscon, the first QUARK model with Cyscon predictions, and the experimental structures. The dot blue lines label the disulfide bonds predicted by Cyscon with number denoting the actual distance in the structures. (a) 3qteA; (b) 1p9gA; (c) 4i6oA.
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Cyscon predictions, 3 Cyscon contacts were satisfied and the TM-

score of the first QUARK model was increased to 0.572 (Fig. 4a).

The second example from 1p9gA is an antifungal protein with 40

residues and 5 disulfide bond predictions by Cyscon. Again, the in-

clusion of the Cyscon contacts increased the number of disulfide

bond satisfaction from 2 to 4, and therefore the TM-score of the first

model improved from 0.206 to 0.508 (Fig. 4b). The final example is

an alpha protein from 4i6oA with 68 residues. Cyscon generated 3

disulfide bonds with an accuracy¼100%, where 0 of them are satis-

fied in the original QUARK model. The Cyscon-assisted QUARK

model has 3 predicted disulfide bonds satisfied which brought the

TM-score of the first model from 0.286 to 0.676 (Fig. 4c).

4 Discussion

One challenge to the ab initio prediction of disulfide connectivity

pattern is the high order problem, i.e. the prediction accuracy will

drop significantly with the increasing of number of disulfide bonds.

The mathematical reason to the issue is that the number of possible

disulfide connectivity patterns increases exponentially with the num-

ber of Cyscine residues (Supplementary Fig. S1). It consequently in-

duces the high order of graph search in the maximum weight graph

matching. Motivated by the straightforward idea of order reduction,

we developed a novel disulfide bond predictor, Cyscon, which suc-

cessfully reduces the graph matching order by eliminating the highly

confident disulfide bonds, which are detected by a newly designed

detector.

The high order problem can be effectively solved by the proposed

approach of this paper, resulting in significant improvement of the

prediction performance. For instance, on the SPX dataset, the

residue-based accuracy (QC) and the protein-based accuracy (QP) in

the subset of test proteins with 5 bonds are 16.7 and 24.8% higher,

respectively when comparing the final Cyscon predictor to the pure

machine learning-based SVR method. For the proteins with more

than five bonds, QP is two times better than the original perform-

ance. On the PDBCYS dataset, QP is 6.9 times better than the pure

SVR model for the proteins of 6–10 bonds.

Inspired by the improvements from sequence alignment-based

order reduction, we have also tried to remove the edge with the

highest weight corresponding to machine learning-based contact po-

tential for comparison. However, the results are much worse. For

the 428 protein sequences in the SPX dataset, we found that QC is

284/428¼66.4%, which is far worse than the proposed confident

edge detector. The reason is probably due to the noise from SVR

predictions which has a lower confidence than the stringent se-

quence-alignment derivations.

Although the order reduction approach can improve the predic-

tion performance, we found that the improvement depends on the

detection coverage. Our experimental results show that when using

the big bDD as the searching pool, the improvement is generally

higher. We will keep on updating bDD database to include the most

up-to-date data for improving the confident bond detection success

rate, which is expected to further enhance the overall prediction ac-

curacy for high order protein sequences.

Besides the high order problem, inter-chain disulfide bond pre-

diction is another important issue need to be addressed. However,

there are few studies devoted to the problem probably due to the

fact that the annotated inter-chain bonds are very few in the current

databases. This type of bond is related to protein quaternary struc-

ture and protein–protein interactions. Hence, predicting inter-chain

disulfide bonds will be an important follow-up work, where similar

idea of order reduction might expect to be helpful.

We also show that predicting reliable disulfide connectivity pat-

terns can improve the 3D structure modeling of cysteine-rich pro-

teins. Using QUARK (Xu and Zhang, 2012) as an example, our data

show that the quality of ab initio structure predictions can be signifi-

cantly improved when adding the predicted disulfide connectivity

patterns as distance restraints. This is consistent with the exciting

successes on contact-driven protein structure prediction recently

observed in the CASP 11 experiment (Grishin, 2014) and other con-

tact-assisted structure prediction efforts (Marks et al., 2011; Wu

et al., 2011).
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Göbel,U. et al. (1994) Correlated mutations and residue contacts in proteins.

PROTEINS Struct. Funct. Bioinf., 18, 309–317.

Grishin,N.V. (2014) Template free modeling assessment in CASP11. 11th

Community Wide Experiment on the Critical Assessment of Techniques for

Protein Structure Prediction. Riviera Maya, Mexico.

Gromiha,M.M. and Selvaraj,S. (1997) Influence of medium and long range

interactions in different structural classes of globular proteins. J. Biol. Phys.,

23, 151–162.

Gupta,A. et al. (2004) A classification of disulfide patterns and its relationship

to protein structure and function. Protein Sci., 13, 2045–2058.

Harrison,P.M. and Sternberg,M.J. (1994) Analysis and classification of disul-

phide connectivity in proteins: the entropic effect of cross-linkage. J. Mol.

Biol., 244, 448–463.

Joachims,T. (2002) Learning to Classify Text Using Support Vector Machines:

Methods, Theory and Algorithms. Kluwer Academic Publishers, The

Netherlands.

Jones,D.T. (1999) Protein secondary structure prediction based on position-

specific scoring matrices. J. Mol. Biol., 292, 195–202.

Jones,D.T. et al. (2012) PSICOV: precise structural contact prediction using

sparse inverse covariance estimation on large multiple sequence alignments.

Bioinformatics, 28, 184–190.

Kamisetty,H. et al. (2013) Assessing the utility of coevolution-based residue–

residue contact predictions in a sequence-and structure-rich era. Proc. Natl.

Acad. Sci. USA, 110, 15674–15679.
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