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Protein sequence alignment is essential for template-based protein structure prediction and function
annotation. We collect 20 sequence alignment algorithms, 10 published and 10 newly developed, which
cover all representative sequence- and profile-based alignment approaches. These algorithms are
benchmarked on 538 non-redundant proteins for protein fold-recognition on a uniform template library.
Results demonstrate dominant advantage of profile-profile based methods, which generate models with
average TM-score 26.5% higher than sequence-profile methods and 49.8% higher than sequence-sequence
alignment methods. There is no obvious difference in results between methods with profiles generated from
PSI-BLAST PSSM matrix and hidden Markov models. Accuracy of profile-profile alignments can be further
improved by 9.6% or 21.4% when predicted or native structure features are incorporated. Nevertheless,
TM-scores from profile-profile methods including experimental structural features are still 37.1% lower
than that from TM-align, demonstrating that the fold-recognition problem cannot be solved solely by
improving accuracy of structure feature predictions.

T
emplate-based modeling (TBM) is by far the only reliable approach to protein 3D structure prediction1,2.
With rapid accumulation of experimental structures in the Protein Data Bank (PDB)3, TBM plays an
increasingly important role in protein structure determination and structure-based function annotation

studies as more and more protein structures become available as putative templates. In fact, recent studies showed
that the current PDB library has already approached completeness in structural space4,5. Nevertheless, only
around 2/3 of targets can have the templates reliably identified by current threading (or fold-recognition)
methods in genome-wide protein structure prediction6–9. A critical issue for protein template identification is
the correct construction and scoring of the target-to-template alignments of amino acid sequences.

Early efforts on protein sequence alignments can be traced back to the 1970s when Needleman and Wunsch
pioneered a global alignment algorithm for protein sequences via dynamic programming recursion10. Smith and
Waterman extended the algorithm for identifying highly conserved subsequence motifs by local alignments11.
However, dynamic programming is too slow for scanning large-scale sequence databases. Altschul, Lipman and
coworkers developed FASTA and BLAST based on a heuristic search and extension of common sequence patterns
(words) among the compared sequences, which significantly increases the speed of sequence alignment and
database search12,13. Later, the authors extended BLAST to PSI-BLAST which improves the sensitivity of
sequence-sequence alignments14. The key idea of PSI-BLAST is to generate multiple sequence alignments
(MSAs) by iterative sequence database search, where a sequence profile in terms of a position-specific scoring
matrix (PSSM) is constructed from the MSAs and used to enhance the accuracy of sequence alignment by
sequence-profile comparisons.

The idea of sequence profiles has revolutionized the sequence alignment search and template-based protein
structure prediction15,16. A variety of profile alignment based threading methods have been recently developed for
efficient protein homologous template identification and structure prediction17–21; most of the methods rely on
PSI-BLAST for MSA search and profile generations. The multiple sequence alignments and sequence profiles
can also be created by hidden Markov models (HMMs), which are represented by a chain of match and insert/
deletion nodes with the MSAs corresponding to the paths with the highest probabilities given by the product of
amino acid emission and insertion/deletion probabilities22. Typical HMM-based threading algorithms include
SAM23 and HHsearch24, where SAM is based on HMM-sequence alignments and HHsearch on HMM-HMM
alignments.
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In addition to sequence profiles, a variety of structure features have
been recently introduced to improve the alignment accuracy. For
example, secondary structure predictions from neural network train-
ing25 are used by almost all contemporary threading/alignment
programs17,19,24. Other structural characteristics, including residue-
residue contacts, backbone torsion angles26, solvation27 and residue
depth19, are often exploited in protein threading approaches17,21,28,29.

Despite the extensive effort made in developing sequence align-
ment algorithms, little is known about the relative performance of the
methods. In particular, a number of critical questions remain to be
addressed; for example, what are the quantitative differences of
sequence- versus profile-based or local- versus global-alignment
methods on close- and distant-homology detections? As the two
most often-used approaches, what are the strength and weakness
of PSSM- and HMM-based profiles in sequence alignments? How
much can we possibly gain in fold-recognition by developing the best
structural feature prediction methods? The answer to these questions
is of essential importance for guiding the uses within the biology
community, as well as for leveraging future method development
studies in the field.

As community-wide platforms, the CASP30,31, CAFASP32 and
Livebench33 experiments provided valuable opportunities for critical
assessments of various threading methods. However, one limit of the
assessments is due to the fact that predictors in the experiments
usually exploit different template libraries, the construction of which
can have important impact on the final modeling results. Meanwhile,
the number of targets involved in the experiments is limited (,100)
and unbalanced; most of the targets are closely homologous to the
experimental structures, which are easy to be detected34. The pro-
blems have been partly addressed by several of previous studies that
compared different sequence alignment methods on large sets of
benchmark proteins35–42. For example, Park et al41 and Madera and
Gough42 compared HMM- and PSSM-based profiles on the datasets
collected from SCOP43 and found that HMM-based profiles can
detect more homologous relationships than PSSM-based profiles.
Dunbrack and coworkers35,37 examined different sequence alignment
tools using structure alignments as the gold standard and found that
sequence-profile alignments by PSI-BLAST are only slightly more
accurate than sequence-sequence alignments by BLAST but PSI-
BLAST achieves much longer alignments. Girshin and coworkers36

evaluated the alignment methods in multiple reference-dependent/
independent and global/local modes and showed that different
aspects of evaluation reveal different properties of the methods.
Barton and coworkers38 developed a multiple-level benchmark suite
to evaluate eight alignment methods and concluded that the majority
of alignment improvements since 1985 were due to pair-score mat-
rices rather than algorithmic refinements. Elofsson40 compared dif-
ferent sequence alignment and threading algorithms and found that
the alignment difference among different methods occurs mainly in
the region of 15–20% sequence identity where secondary structure
prediction and PSI-BLAST profiles are the major driven force of
alignment improvements.

Despite the valuable insights revealed, most of the benchmark
studies focused on a limited set of traditional sequence alignment
algorithms and were performed nearly a decade ago. Many recent
developments, e.g. structural feature integrations and HMM-HMM
alignments which are important for protein structure prediction, are
yet to be assessed. Meanwhile, the testing datasets used in these
studies were mostly collected from the SCOP library and largely
belong to the easy homology category (which represents a similar
problem in the CASP experiments mentioned above), while the per-
formance of the methods on detecting hard distant-homology tem-
plates, which are more challenging to the field, needs to be
appropriately examined.

In this work, we aim to develop a comprehensive and balanced
experiment to systematically examine the strength and weakness of

various up-to-date sequence alignment methods. Ten publicly avail-
able methods and ten in-house methods specially designed for
concept testing, which constitute a representative set of various align-
ment/threading approaches, were installed on the local computer
cluster. These methods are tested on a large set of 538 proteins con-
sisting of a balanced category distribution of difficulty (i.e. including
similar number of easy, medium and hard protein targets), based on
a uniform set of template structure libraries. We conducted a detailed
analysis on the benchmark results to address a series of critical ques-
tions in sequence alignment and template-based protein structure
prediction, which aim to provide insightful guidance for biological
use and future method developments. All alignments and modeling
data in this study can be downloaded at http://zhanglab.ccmb.me-
d.umich.edu/publicdata/benchmark1.

Results
Dataset and template library. All the sequence alignment programs
are benchmarked on the same set of 538 non-redundant proteins
randomly collected from the PDB library3. These proteins have a
pair-wise sequence identity less than 30% and length ranging from
34 to 804 residues. Proteins with broken chains or missing residues
were not included. The sequences were divided into three categories:
Easy, Medium and Hard targets, based on the consensus confidence
score of the meta-threading LOMETS program44, which consists of 9
protein threading programs (dPPAS, MUSTER, HHsearch-I,
HHsearch-II, PPAS, PROSPECT, SAM, SPARKS and SP3). A
target is defined as Easy if at least one strong template hit can be
detected for the target by each program with the Z-score higher than
the confidence cutoff; a target is defined as Hard if none of the
threading programs has a strong template hit; otherwise, it is
considered a Medium target. In total, the 538 proteins are selected
to include a balanced category distribution of difficulty with 137
Easy, 177 Medium, and 224 Hard targets. Here, we have put more
focus on the challenging targets by arbitrarily increasing the number
of Medium and Hard proteins in our benchmark protein set,
although a naturally collected sample from the PDB would have a
much lower portion of Medium/Hard cases. A list of all the 538
proteins, together with the classification, are provided in http://
zhanglab.ccmb.med.umich.edu/publicdata/benchmark1/protein_
types.txt.

The existence of template structures in the library is a precondition
for template identification. To eliminate potential bias of the align-
ment algorithms from the template structure library, we constructed
the libraries of all threading programs using the same sequence iden-
tity cutoff updated to the same time stamp (by Jan, 2013). In fact, the
template libraries for NW-align, SW-align, BLAST, PSI-BLAST,
PSA, PPA, PPAS, dPPAS, MUSTER, SAM, PRC, PROSPECT,
SPARKS, SP3 and FFAS are generated from the same set of non-
redundant PDB proteins with a pair-wise sequence identify cutoff
70% (see http://zhanglab.ccmb.med.umich.edu/library/). The librar-
ies for HHsearch-I and HHsearch-II are downloaded from ftp://
toolkit.lmb.uni-muenchen.de, which has also a sequence identity
cutoff of 70%. The size of these two libraries is about the same.
The programs of all the tested methods are described in METHODS.

Summary of performance by individual alignment methods.
Table 1 presents a summary of the 3D structural models, which are
built by copying the framework of the highest ranked and the best in
the top ten scoring templates based on the alignments generated by
different alignment programs. The quality of alignments is generally
measured by the root-mean-square deviation (RMSD) of the models
(Columns 4–5), where BLAST, PSI-BLAST, PRC, FFAS and HH-
search programs have the lowest RMSD to the targets (,7–9 Å).
However, the alignments by these programs tend to have a smaller
number of residues aligned (i.e. lower alignment coverage, Columns
6–7), typically below 80%. Such short alignments can have a negative

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2619 | DOI: 10.1038/srep02619 2

http://zhanglab.ccmb.med.umich.edu/publicdata/benchmark1
http://zhanglab.ccmb.med.umich.edu/publicdata/benchmark1
http://zhanglab.ccmb.med.umich.edu/publicdata/benchmark1/protein_types.txt
http://zhanglab.ccmb.med.umich.edu/publicdata/benchmark1/protein_types.txt
http://zhanglab.ccmb.med.umich.edu/publicdata/benchmark1/protein_types.txt
http://zhanglab.ccmb.med.umich.edu/library
ftp://toolkit.lmb.uni-muenchen.de
ftp://toolkit.lmb.uni-muenchen.de


impact on the full-length structure construction by homology
modeling since structure information is missed for a large portion
of unaligned sequences. In fact, the full-length models by
MODELLER45 have a very high RMSD (.20 Å) for all these local
alignment methods (see values in parentheses). Here, the full-length
models ware generated by the script model-default.py in the
MODELLER package. The modeling results from MODELLER are
deterministic in the sense that more runs do not change the quality
result of the final models.

In Columns 2–3, we also list the result of the alignment models on
TM-score, which is defined to combine the alignment accuracy and
coverage as a unique score46:

TM{score~
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where L is the length of target sequence, Lali the number of aligned
residues, and di the pair-wise distance of ith residue in the model and
target after the optimal superposition. In this scoring function, the
programs, which have a better balance of alignment coverage and
RMSD, excel, including MUSTER, HHsearch and PPAS programs.
The simple sequence-to-sequence based alignment algorithms gen-
erally have a lower TM-score.

Meanwhile, the local-to-local alignment based algorithms gen-
erally have a lower coverage and TM-score compared to the glo-
bal-to-global alignment methods. A typical example is SW-align
based on Smith-Waterman, which only identifies the highly con-
served regions and has on average 56% residues aligned, while

Needleman-Wunsch based NW-align uses the same parameter and
scoring function but generates alignments with a much higher cov-
erage (84.9%). Accordingly, the TM-score of NW-align is 21.1%
higher than that of SW-align. The completeness of alignment search-
ing also plays a role in final model determination. For instance, both
BLAST and SW-align are local sequence alignments based on
BLOSUM62 mutation scores. But BLAST searches are based on an
incomplete heuristic word search algorithm, which has an average
TM-score 7% lower than SW-align. BLAST is however 39 times
faster than SW-align in our test.

Although TM-score aims to balance the accuracy and coverage of
alignments, it still favors algorithms that have a higher coverage,
since including additional residues in the alignments always has a
positive contribution to TM-score according to Eq. 1, although the
contribution is small if the added residues from templates are far
away from the target. To examine the effect of such bias, we con-
structed full-length models of the targets based on the alignments,
using the widely-used comparative modeling tool MODELLER45.
Although TM-score is now normalized by the same length of the
target sequence, the TM-score ranking of full-length models is lar-
gely consistent with that of the original alignments, except for some
small but notable variations. Taking the top hits as an example, the
original alignments by HHsearch-I have a lower TM-score than
those by dPPAS (0.422 vs. 0.426) due to the low coverage of the
sequences (76.3% vs. 81.9%). After full-length modeling, the TM-
score of HHsearch-I becomes higher than that of dPPAS (0.444 vs.
0.438) and several other related algorithms (e.g. PPAS and SP3).
Here, the more precise alignments by HHsearch-I in the aligned
regions have probably introduced some restraint/guidance to

Table 1 | Summary of template identification by different alignment methods

Methodsa

TM-scoreb RMSD (Å)c Coveraged

CPUeFirst Best in top10 First Best in top10 First Best in top10

Profile-to-profile alignments
MUSTER 0.435(0.449) 0.487(0.512) 10.3(15.2) 8.7(12.3) 0.875 0.875 27.0
HHsearch-II 0.429(0.449) 0.477(0.507) 9.5(21.6) 9.0(14.1) 0.767 0.820 13.0
dPPAS 0.426(0.438) 0.481(0.502) 9.6(20.6) 8.5(15.3) 0.819 0.844 17.0
PPAS 0.424(0.441) 0.473(0.499) 10.3(17.4) 8.9(13.4) 0.839 0.850 10.0
SP3 0.424(0.438) 0.476(0.499) 10.7(15.7) 9.1(12.3) 0.873 0.873 11.0
HHsearch-I 0.422(0.444) 0.472(0.502) 9.5(20.3) 9.0(14.7) 0.763 0.817 16.0
SPARKS 0.421(0.433) 0.469(0.493) 11.0(15.7) 9.4(12.1) 0.891 0.886 36.0
PROSPECT 0.418(0.428) 0.469(0.490) 11.5(13.3) 9.9(11.3) 0.914 0.903 15.0
PPA 0.397(0.413) 0.447(0.469) 10.9(17.5) 9.7(15.5) 0.844 0.851 25.0
FFAS 0.393(0.406) 0.444(0.465) 9.5(24.2) 8.6(18.9) 0.758 0.790 4.0
PRC 0.372(0.388) 0.417(0.442) 8.6(32.9) 8.0(24.3) 0.668 0.712 23.0
Average 0.415(0.429) 0.465(0.5) 10.2(19.5) 9.0(17.7) 0.818 0.838 17.9
Sequence-to-profile alignments
SAM 0.344(0.358) 0.405(0.426) 10.6(27.5) 9.9(18.3) 0.717 0.778 8.0
PSA 0.338(0.333) 0.371(0.392) 12.9(17.5) 12.0(15.0) 0.870 0.873 9.0
PSI-BLAST 0.301(0.320) 0.344(0.369) 7.8(51.7) 7.4(42.1) 0.507 0.556 4.0
Average 0.328(0.337) 0.373(0.4) 10.5(32.3) 9.8(25.1) 0.698 0.736 7.0
Sequence-to-sequence alignments
NW-align 0.321(0.336) 0.377(0.403) 12.7(21.7) 11.4(15.0) 0.849 0.866 5.0
SW-align 0.265(0.285) 0.324(0.348) 9.9(49.5) 9.2(35.7) 0.560 0.625 4.0
BLAST 0.246(0.263) 0.292(0.315) 8.5(59.7) 8.2(47.5) 0.470 0.529 0.1
Average 0.277(0.295) 0.331(0.424) 10.4(43.7) 9.7(23.6) 0.626 0.673 3.0
Other controls
TM-align 0.661(0.664) 0.663(0.683) 3.1(7.5) 3.0(7.1) 0.856 0.846 90.0
MUSTERSS 1 BTA 1 SA 0.482(0.511) 0.512(0.559) 8.0(14.1) 7.2(11.2) 0.797 0.800 26.0
MUSTERSS 1 BTA 0.453(0.481) 0.493(0.536) 9.5(12.7) 8.1(11.3) 0.831 0.820 26.0
MUSTERSS 0.447(0.474) 0.487(0.528) 9.7(12.7) 8.3(11.3) 0.839 0.830 26.0
aAlignment methods as sorted by TM-score in each category.
bAverage TM-score. Values in parentheses are for full-length models built by MODELLER. ‘First’ refers to the top-ranking model based on alignment score; ‘Best in top10’ to the best model of the highest TM-
score among the top ten models with the highest alignment scores.
cRMSD to the native.
dAlignment coverage equals to the number of aligned residues divided by target length.
eAverage CPU time in minutes, which consists of constructing profile and building of alignments in a HP DL1000h computer.
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the structure modeling of the unaligned regions, e.g. through bond-
length and change connectivity, which have resulted in models of a
higher overall TM-score.

Performance of sequence alignment programs in different target
categories. The performance of different alignment programs varies
with the difficulty of the targets, i.e. the evolutionary distance
between target and template proteins. If we use the target structure
as a probe to search through the PDB library by TM-align47, the
average TM-scores of aligned regions of the best structural
templates in the three categories of Easy, Medium and Hard are
0.779, 0.666 and 0.586, respectively, after excluding homologous
templates with a sequence identity . 30%. This data on one hand
sets up an upper-bar for template identifications by fold-recognition;
on the other hand, it demonstrates that the target category as defined
by the LOMETS prediction is largely consistent with the actual
difficulty of the template identification for the targets.

In supplementary Tables S1, S2, and S3, we summarize the results
of different programs on the Easy, Medium and Hard targets,
respectively. Figure 1 is the histogram of the average TM-score
achieved by different programs. As shown in Table S1, HHsearch
programs generate the highest TM-score in the Easy targets.
MUSTER and other structure-assisted alignment methods (dPPAS,
SP3 etc) generally outperform the HHsearch programs in the
Medium and Hard targets. This data demonstrates the usefulness
of structure-based features in detecting the distant homologous tem-
plates.

Specificity of alignment programs. Except for the accuracy of the
template alignments (or sensitivity), the specificity of the alignments
(i.e. the correlation of the scoring function and the accuracy of the
final alignments) is another important measurement of the
alignment algorithms, as this correlation essentially decides how
the results can be used in the comparative structural modeling and
function annotations.

In Figure 2, we present the TM-score data of the highest ranked
alignment models versus the alignment scores by the 20 alignment
programs. Here, we tried both the default alignment score of the
programs and the Z-score (defined as the difference between the
raw alignment score and average in units of standard deviation),
and chose the one with the highest correlation to the TM-score of
the final models to present in the plot. As expected, positive correla-
tions are observed for all the alignment programs, with PPAS, SAM

and MUSTER having the highest Pearson correlation coefficients
(0.789, 0.787, and 0.782, respectively). The NW-align and BLAST
programs have the lowest correlation coefficient because a number of
targets have a high alignment score but with low quality (TM-score
, 0.5), indicating a low specificity of the programs.

We also mark in Figure 2 an alignment score cut-off that mini-
mizes the false positive rate, FPR 5 FP/(FP 1 TN), and the false
negative rate, FNR 5 FN/(TP 1 FN), where a model of TM-score .

0.5 is defined as a positive hit that has the correct fold48. The score
cut-offs, false positive and false negative rates are listed in Table 2.
The programs with alignment score that are calibrated by the stat-
istics of random samples, including PSI-BLAST, SAM and FFAS,
have the lowest FPR 1 FNR values, i.e. the highest specificity, based
on this measurement. Meanwhile, the Easy and Hard targets are
clearly grouped in the right-up and left-bottom regions in Figure 2
for all programs, demonstrating the dependence of the performance
of the alignment algorithms on the evolutionary distance of target
and templates.

Profile-based alignments versus sequence-based alignments. De-
pending on whether the homologous sequences are included in the
target-template alignments, the alignment methods can be grouped
into the three general categories of sequence-to-sequence alignment
(including NW-align, SW-align and BLAST), sequence-to-profile
alignment (PSI-BLAST, SAM and PSA), and profile-to-profile
alignment (PRC, HHsearch-I, HHsearch-II, PPA, PPAS, dPPAS,
MUSTER, PROSPECT, SPARKS, SP3 and FFAS). Since the sequ-
ence profiles derived from multiple sequence alignment of protein
families contain important information of conserved/diverged loca-
tions along the sequences, the profile-based alignments can generally
generate more accurate target-template alignments than that made
by single sequence-based alignments16,49.

Such insight is also observed in our data analysis. As shown in
Table 1 (rows highlighted in bold), the average TM-score obtained by
the sequence-to-profile based methods is 18.4% higher than the TM-
score from the sequence-to-sequence based methods. Similarly, the
TM-score from profile-to-profile alignment methods is 49.8% higher
than that of sequence-to-sequence based methods. These increases in
TM-score are not only due to the higher coverage of alignments
(81.8% vs. 62.6%), but also the enhanced accuracy of alignments as
the average RMSD is reduced slightly in the profile-profile methods
from 10.4 to 10.2 Å. This tendency is also seen in Tables S1–3 where

Figure 1 | TM-score histogram of the top hits identified by different algorithms in Easy, Medium and Hard categories.
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the targets were categorized into different groups of Easy, Medium,
and Hard, demonstrating that the profile-based alignments enhance
both close and distant homology identifications.

Two types of sequence profiles, PSSM and HMM, are often
exploited in various alignment methods. Given a MSA, the PSSM
profile is designed to account for the estimated frequency of amino
acids at each position, while the HMM profile accounts for both
amino acid frequency and position-specific probabilities for inser-
tion and deletion. Although the HMMs seem to contain additional
gap information from MSAs, there is no obvious difference between
the HMM-based (e.g. HHsearch-I and –II) and PSSM-based align-
ment algorithms (e.g. PPAS), in terms of the TM-score of the align-
ment models (Table 1). However, HMM-based methods did generate

higher TM-scores than PSSM-based methods in the Easy targets
(Table S1). Additionally, the HMM-based methods have generally
a lower RMSD and lower coverage of alignments, indicating that the
HMM method is more sensitive in detecting local structural motifs
and scaffolds.

Meanwhile, there are a number of targets that have the correct
templates identified by either HMM- or PSSM-based methods (but
not both), demonstrating that these two types of methods are com-
plementary to each other. This complementarity from multiple
alignment algorithms is essential to the success of meta-server based
structure modeling approaches44,50.

How much space is left for improvement by structural feature
prediction? The performance of profile alignments could be
further improved by incorporating structural information. One
example is secondary structure comparison, which has been used
by almost all contemporary alignment/threading methods to guide
the target-template alignments. As a quantitative test of the impact of
secondary structure information on alignment accuracy, we
developed two sequence profile-profile based methods, PPA and
PPAS, where the only difference is that PPAS contains a secondary
structure match in the scoring function but PPA doesn’t (see Eqs. 3
and 4 in METHODS). As a result, the inclusion of secondary
structure prediction increases the TM-score of PPA by 6.8%.
MUSTER is another typical profile-profile alignment based
algorithm that incorporates multiple composite structure features
in the alignments, including secondary structure, residue depth,
solvent accessibility, and backbone torsion angle predictions. These
features result in a TM-score increase of 9.6% compared to the PPA
method, corresponding to a p-value , 10–14 in paired student t-test.

The performance of the structure feature assisted algorithms relies
on the accuracy of structure feature predictions for the target
sequence. In our test on the 538 non-homologous proteins, the aver-
age Q3 score (three structure states per residue overall accuracy) for
PSSpred and PSI-pred is 83.1% and 80.7%, respectively; the mean
absolute errors in y and Q angle predictions are 28u and 41u, respect-
ively; and the Pearson correlation coefficient correlation between

Table 2 | Score cutoffs and false positive and negative rates of dif-
ferent programs

Methods* Cutoff FPR FNR FPR 1 FNR

PSI-BLAST 50.4 0.093 0.094 0.187
SAM 14.5 0.129 0.099 0.229
FFAS 12.9 0.170 0.100 0.270
PPA 7.8 0.126 0.158 0.284
SP3 6.5 0.117 0.175 0.292
SPARKS 6.4 0.111 0.194 0.306
SW-align 8.0 0.162 0.149 0.311
PRC 20.8 0.110 0.205 0.316
BLAST 35.7 0.149 0.169 0.318
PPAS 6.9 0.186 0.145 0.331
dPPAS 13.2 0.113 0.233 0.346
HHsearch-I 8.1 0.172 0.179 0.351
MUSTER 6.2 0.147 0.205 0.353
HHsearch-II 9.3 0.16 0.200 0.360
PROSPECT 4.2 0.075 0.317 0.392
PSA 4.1 0.128 0.400 0.528
NW-align 1.5 0.464 0.160 0.625

*Methods sorted by sum of false positive rate (FPR) and false negative rate (FNR).

Figure 2 | TM-score of full-length models of 20 threading methods on 538 non-homologous proteins versus the alignment scores. Easy, Medium and

Hard targets are colored blue, green and red, respectively. PSI-BLAST, BLAST and PRC use bit score and others use z-score to score the alignments.
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predicted and actual solvent accessibility is 0.678. Incorrect assign-
ments of the structure features can compromise the performance of
MUSTER. In fact, we observed a number of cases where the TM-
score of the alignments by MUSTER, which considers additional
structural features, is lower than that of PPAS.

In order to explore the potential of the alignment improvement
obtained by considering structural features, we implemented
MUSTER using the native structure features derived from the target
structures, where the weighting parameters were re-optimized in a
separate test of 100 proteins. As shown in Table 1, the average TM-
score of the full-length models from MUSTER alignments showed a
gradual increase from 0.449 to 0.511, when we exploited more
native structure features from secondary structures (MUSTERSS),
backbone torsion angle (MUSTERSS1BTA), and solvent accessibility
(MUSTERSS1BTA1SA). This change corresponds to an overall increase
of 13.8% in the average TM-score.

In Figure 3, we present an illustrative example from the PP7 bac-
teriophage coat protein (PDB ID: 2qudA), which has the secondary
structures arranged as b1-b2-b3-b4-b5-b6-a1-a2 from the N- to C-
terminals. The PSI-pred method has however mis-assigned most
secondary structure elements in 12S-90M (see ‘*’ in Figure 3A),
which resulted in the first two beta-strands (7T-11S and 15A-25T)
in the target mis-aligned to the coiled regions in the template 1qbeB
by MUSTER. This alignment has a TM-score 5 0.607. When using
the actual secondary structure assignment, the MUSTERSS program
correctly matches the two beta strands of the target with the strands

on the template. Based on the same template, the correction of the
secondary structure comparison increases the TM-score of the
model to 0.7 in this example.

Despite the significant increase in alignment accuracy brought by
the integration of structure features, the quality of the alignments
using the best structure features from the native is still far from the
best templates detected by structural alignments, i.e. the average TM-
score by TM-align is 37.1% higher than that by MUSTERSS 1 BTA 1 SA

(Table 1), which demonstrates considerable room for further align-
ment improvement. The gap is relatively small in Easy targets (7.4%)
according to the data in Table S1, which indicates that the current
state-of-the-art alignment methods generate nearly optimal align-
ments for close homology targets. But for the Medium and Hard
targets, the gaps become highly significant, which correspond to a
TM-score difference of 35.6% and 79.2%, respectively (Tables S2 and
S3). Apparently, such gaps cannot be filled by solely improving the
structure feature prediction methods, and a completely different
alignment system based on novel scoring and alignment schemes
might be required.

Discussion
We developed a comprehensive experiment to systematically exam-
ine the strength and weakness of 20 representative sequence align-
ment methods for template-based protein structure prediction. The
data analysis demonstrates the dominant advantage of profile-profile
based alignment methods in protein template identification, which

Figure 3 | The illustration of template identifications for 2qudA. (A) MUSTER with predicted secondary structure; (B) MUSTERSS with native

secondary structure. The experimental structure and MUSTER models are shown in red and green cartoons, respectively, and the first two beta-strands in

(A) are in yellow on the template. The secondary structures are labeled as ‘C’ for coil, ‘E’ for strand and ‘H’ for helix, where ‘Pred’ and ‘Obs’ denotes the

PSI-pred prediction and the native, respectively. ‘*’ in (A) marks the residues with mis-predicted secondary structure.
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generates structural models with an average TM-score 26.5% higher
than sequence-profile alignments, and 49.8% higher than single
sequence-sequence alignments. The superiority of profile-based
alignments over sequence-based alignments was also observed in
previous benchmark studies35,51.

The sequence profiles are typically constructed by PSI-BLAST and
hidden Markov model (HMM) searches, where the former is usually
specified by a position-specific scoring matrix (PSSM) and the latter
by a trained chain model of matches and insertions/deletions. Our
data analysis showed that there is no obvious difference between
PSSM and HMM profiles in terms of overall average TM-score,
although the HMM based alignments tend to obtain higher TM-
scores in Easy targets and generate alignments of higher accuracy
but with lower alignment coverage. This data seems in contradiction
to the results by Park et al41 and Madera and Gough42 who concluded
that the HMM based methods consistently outperform PSI-BLAST.
We believe that the major reason for the seeming contradiction is due
to the difference in sample preparations. In our testing dataset, we
intentionally included more medium and hard targets to keep a
balanced category distribution in difficulty and all templates with a
sequence identity . 30% to the target were excluded. In the experi-
ments by Park et al and Madera and Gough, however, the authors
collected large-scale proteins from SCOP without intention to
include more hard proteins. In addition, the authors used a sequence
identity cutoff 40% for template filtering, which includes homolog-
ous templates with a sequence identity in 30–40% that are easy to
detect by most threading methods. Therefore, it is anticipated that
most of the test proteins in these two studies should correspond to
Easy targets in our categorization and their conclusion on the HMM
and PSSM profile comparisons is in fact consistent with our analysis
on the Easy proteins (Table S1).

The profile-based sequence alignments can be considerably
improved by the combination of structure feature predictions. For
example, the program of MUSTER, which combines profile align-
ments with sequence-based secondary structure, residue depth, tor-
sion angle and solvation predictions, has a 9.6% higher TM-score on
average when compared to the profile-profile alignment algorithms.
The performance of structure-assisted methods relies on the accu-
racy of the sequence-based structure feature predictions, which can
be further improved by nearly 10.8% (or 13.8% in full-length models)
if the native structure features extracted from experimental struc-
tures are exploited. Nevertheless, the latter is still far worse from the
best possible templates as identified by structural alignment program
TM-align, which uses the target structure as a probe to generate the
optimal alignments. In the Easy, Medium and Hard categories, the
TM-score by TM-align is 7.4%, 35.6%, and 79.2% higher than that of
MUSTERSS 1 BTA 1 SA. While filling such a big gap is one of the most
urgent goals in template-based protein structure prediction, it appar-
ently cannot be achieved solely by the improvement of structure
feature prediction methods. New algorithms with completely novel
scoring functions and alignment search engines are probably needed
to attack the central problem of sequence alignment, which is essen-
tial to template-based protein structure prediction and function
annotations.

Methods
Twenty threading/alignment methods, covering different categories of target-tem-
plate alignment algorithms and possible to install at local computers, are bench-
marked in this article. All algorithms without cited references are newly developed in
house and first presented in this study.

1. NW-align. NW-align is a sequence-to-sequence alignment program constructed
based on the standard Needleman-Wunsch dynamic programming algorithm10. The
amino acid mutation matrix is from BLOSUM6252 with gap opening penalty 5 211
and gap extension penalty 5 21.

2. SW-align. SW-align is a sequence-to-sequence alignment program using a similar
setting as NW-align but with dynamic programming based on the standard Smith-
Waterman algorithm53. The major difference from NW-align is that the negative

score values are set to zero and the alignment trace-back procedure starts from the
highest scoring cell and ends with a cell of zero score in SW-align. This setting allows
SW-align to identify subsequence motifs having the highest local sequence similarity.
The source codes and the executables of both NW-align and SW-align are available at
http://zhanglab.ccmb.med.umich.edu/NW-align.

3. BLAST. BLAST13 is a local sequence alignment tool based on a heuristic searching
method, where high-scoring segment pairs (HSPs, or words) are first identified by
gapless comparisons. The final alignments are constructed by extension and
connection of the HSP regions. The heuristic algorithm in BLAST is often suboptimal
but much faster than the optimal dynamic programming algorithms.

4. PSI-BLAST. PSI-BLAST14 is a sequence-to-profile alignment program extended
from BLAST which aims to increase the alignment sensitivity of distant homologous
proteins by iterative MSA search. It first collects a list of close homologous sequences
from a reference database (e.g. NCBI non-redundant sequence database, NR) by
BLAST. A PSSM is then derived from the MSA of the sequence homologies, which is
used to search against the reference database again to identify a newer set of
homologous sequences. The procedure can be repeated a number of times until the
PSSM profiles converge. In our test, PSI-BLAST was searched against NR database for
3 iterations using an E-value cutoff, which assesses the significance of the HSP score,
below 0.001.

5. PSA. PSA is sequence-to-profile alignment algorithm based on the Needleman-
Wunsch dynamic programming. The scoring function of the ith position in the query
(q) aligned with the jth position in the template (t) is

ScorePSA(i,j)~
X20

k~1

Fq(i,k) � Bt(k,j)zshift ð2Þ

where Fq(i, k) represents the frequency profile of kth amino acid at ith position of the
query. Bt(k, j) denotes a BLOSUM mutation score between the amino acid k and jth
residue of the template. The shift parameter is introduced to avoid the alignment of
unrelated residues in the local regions. Parameters of shift (20.01), gap opening
(go, 28.6) and gap extension (ge, 20.9) penalties were optimized on the ProSup
dataset54.

6. PPA. PPA is an in-house profile-profile alignment method on the Needleman-
Wunsch algorithm. The scoring function is defined by

ScorePPA(i,j)~
X20

k~1

Fq(i,k) � Lt(k,j)zshift ð3Þ

where Fq(i, k) and Lt(j, k) stand for the sequence frequency profile of query and the
log-odds profile of template, respectively. To build the sequence profiles, the
sequences are searched against the NR by 3 PSI-BLAST iterations, at an E-value cutoff
0.001. The Henikoff weighting scheme55 is then used to generate frequency or log-
odds profiles. Similarly, the parameters of shift (20.94), go (26.8), and ge (20.52), are
optimized by trial and error using the ProSup dataset.

7. PPAS. PPAS is an in-house profile-profile alignment method that combines profile
log-odds score and secondary structure comparison. The scoring function is defined
by

ScorePPAS(i,j)~ScorePPA(i,j)zC1d Sq(i),St(j)
� �

ð4Þ

where ScorePPA(i, j) is defined in Eq. 3, d(Sq(i), St(j)) is the Kronecker delta function to
assess the secondary structure match between target and template. Sq(i) is the
secondary structure of the ith residue on the target predicted by PSSpred
(http://zhanglab.ccmb.med.umich.edu/PSSpred), and St(j) is the secondary structure
of the jth residue on the template structure assigned by DSSP. A position-specific gap
penalty scheme is used in the alignment search, i.e. no gap is allowed inside the
secondary structure regions, go and ge penalties apply to other regions, and the ending
gap-penalty is neglected. The four parameters C1 (0.65), shift (20.96), go (27.0), and
ge (20.54), are optimized for PPAS in a similar way as PPA.

8. dPPAS. dPPAS is an in-house profile-profile alignment program extended from
PPAS. The only difference from PPAS is that a structure fragment depth profile is
added in dPPAS to enhance the alignments, i.e.

ScoredPPAS(i,j)~

P20

k~1
Fq(i,k) Lstr(j,k)zLt(j,k)ð Þ

2
zC1d Sq(i),St(j)

� �
zshift ð5Þ

where Fq(i, k) and Lt(j, k) are defined in Eq. 3. Lstr(j, k) is a frequency depth profile
derived from a set of structural fragments that have similar depth as the fragment at
jth position of the template17,19. Similarly, the parameters (C1 5 6.5, shift 5 20.96, go
5 27.0 and ge 5 20.54) are optimized on the ProSup dataset.

9. MUSTER. MUSTER17 is a profile-profile based threading program which
combines multiple sequence and structure matching information. In addition to the
sequence profiles obtained by PSI-BLAST searches, the scoring function contains
secondary structure match (SS), fragment depth profiles, solvent accessibility (SA),
backbone torsion angles (BTA), and hydrophobic scoring matrix. The optimal
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alignment is generated by Needleman-Wunsch dynamic programming. Compared to
dPPAS, MUSTER contains additional terms from SA, BTA, and hydrophobic scoring
matrix matches, whereby the weighting parameters are re-trained by a new dataset.

To further examine the potential of structure-assisted threading algorithms, we
developed three variants of MUSTER programs, MUSTERSS, MUSTERSS 1 BTA and
MUSTERSS 1 BTA 1 SA, which exploit the SS, BTA, and SA features extracted from the
experimental structures of the target. Similar to MUSTER, all parameters in these
algorithms are optimized in a separate training set of 100 non-redundant proteins by
maximizing the TM-score.

10. SAM. SAM56 is a hidden Markov model (HMM) based protein fold-recognition
method. Starting from the PSI-BLAST search, SAM constructs a HMM profile based
on the iterative MSA searches. The HMM profile is then used to search through the
PDB library to identify structural templates. SAM can conduct both local and global
alignment searches and we use the local alignment mode in this work.

11. PRC. PRC57 is a program for scoring and aligning profile HMMs. To run PRC, we
first construct HMMs of both target and template sequences by SAM56. The HMM–
HMM based alignments are then computed and ranked by PRC which is designed to
find the Viterbi path that maximizes the sum of forward–backward odds scores.

12. HHsearch-I and HHsearch-II. HHsearch24 is a HMM-HMM based alignment
program which combines the profile log-odds score and the secondary structure
prediction in the Viterbi dynamic programming. We run two versions of HHsearch:
HHsearch-I uses PSI-BLAST to start the MSA search for building the profile HMMs
for target and template sequences, while HHsearch-II uses HHblits to construct the
profile HMM for target sequences. HHblits uses a discretized-profile prefilter that can
generate HMM profiles faster than PSI-BLAST58. The final query-template
alignments are constructed by the same HHsearch program. Both HHsearch-I and
HHsearch-II are in the local alignment mode.

13. PROSPECT. PROSPECT21 is a sequence profile-profile alignment algorithm
assisted with a residue-level contact potential and SS predictions. A global
optimization of target-template alignment is generated by the divide-and-conquer
searching method.

14. SPARKS and SP3. Both SPARKS18 and SP319 were developed in Zhou Lab. In
SPARKS, the authors exploit a sequence profile–profile alignment combined with a
single-body statistical potential; in SP3, they use a residue depth dependent structure
profile to replace the single-body potential used in SPARKS.

15. FFAS. FFAS59 is a sequence profile-profile based alignment program. It calculates
the sequence profile by PSI-BLAST searching against the NR85s database with 5
iterations. A dot-product scoring function is then used to align two sequence profiles.
The alignment score is finally translated into a statistical measure by comparing it
with the distribution of scores obtained for pairs of unrelated proteins.
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