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ABSTRACT

Motivation: Human cells are organized into compartments of different

biochemical cellular processes. Having proteins appear at the right

time to the correct locations in the cellular compartments is required

to conduct their functions in normal cells, whereas mislocalization of

proteins can result in pathological diseases, including cancer.

Results: To reveal the cancer-related protein mislocalizations, we

developed an image-based multi-label subcellular location predictor,

iLocator, which covers seven cellular localizations. The iLocator in-

corporates both global and local image descriptors and generates

predictions by using an ensemble multi-label classifier. The algorithm

has the ability to treat both single- and multiple-location proteins. We

first trained and tested iLocator on 3240 normal human tissue images

that have known subcellular location information from the human pro-

tein atlas. The iLocator was then used to generate protein localization

predictions for 3696 protein images from seven cancer tissues that

have no location annotations in the human protein atlas. By comparing

the output data from normal and cancer tissues, we detected eight

potential cancer biomarker proteins that have significant localization

differences with P-value50.01.
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1 INTRODUCTION

The knowledge of the subcellular/organelle localization of pro-
tein molecules can provide important help for understanding

their functions in cells (Chou and Shen, 2008; Emanuelsson

et al., 2007). In the past decade, a variety of methods have

been developed for predicting the subcellular localizations of

proteins (Nair and Rost, 2009). These methods can be grouped

into two categories: one-dimensional (1D) amino acid sequence-
based and two-dimensional (2D) image-based methods.

The sequence-based methods usually generate protein sub-
cellular location predictions through homology transfer

(Nair and Rost, 2009), target signal search (Emanuelsson
et al., 2007) or statistical machine learning (Chou and Shen,
2008). These methods have been successfully applied to
genome-wide large-scale function annotations, but they are

hard to detect protein translocations, which often cause changes
in the related biological network functions. One reason is that
when the translocation occurs, the primary sequences of the

translocated protein are about the same, which cannot be de-
tected by the sequence-based comparisons. Therefore, the intui-
tive 2D image-based algorithms are explored in this situation

(Peng et al., 2012).
Efforts on the 2D image-based approaches are mainly focused

on three aspects: (i) studies on new representative image descrip-
tors, with examples including the subcellular location features

(SLFs) for protein distributions as proposed by Boland and
Murphy (2001); (ii) studies on improving the accuracy of classi-
fication algorithms, with examples including the classification

based on multi-resolution subspaces as reported by Chebira
et al. (2007), and the two discriminative models by Li et al.
(2012b), which extended the logistic regression with structure

latent variables; and (iii) applications of existing predictors to
the data analysis (Li et al., 2012a).
Most of the 2D methods are single-label predictors, i.e. they

assumed that each protein corresponds to only one location.
However, nearly 20% of human proteins co-exist at �2 different
subcellular locations (Zhu et al., 2009). These multi-label pro-
teins often contain significant biological information, such as

protein complex transcription in cell cycles. Only few studies
have attempted to predict distribution from human protein
images in multiple-location cases (Peng et al., 2010; Zhao

et al., 2005). These studies tried to use statistics of fluorescence
objects to differentiate location patterns. In these approaches,
protein fluorescence objects in images are detected and clustered

into several types based on their shape, size and position in cells;
then each single-label pattern is represented by a set of objects in
distinct types. Finally, a multi-label image is linearly decomposed
into the object frequencies in each type (Zhao et al., 2005).

Such methods have several limitations: (i) overlapping objects
and filamentous proteins will confuse the object detection algo-
rithm because a continuous region of pixels was defined as an

object; and (ii) prediction accuracy is limited by the simple linear
model. The former limitation may lead to incorrect object*To whom correspondence should be addressed.
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targets, and the latter tends to cause the constructed classifier to
be too sensitive to the noise and overfitting.
Instead of the linear statistics, in this study we seek to develop

a more flexible and accurate machine learning predictor, named
iLocator, which can handle multi- and single-label samples
simultaneously. Three factors critical for machine learning algo-

rithm developments, including high-quality benchmark dataset,
highly discriminative image descriptors and accurate multi-label
learning algorithms, will be carefully designed and systemically
examined.

For benchmark training and testing, we will collect the high-
resolution immunohistochemistry (IHC) microscopy images
from the human protein atlas (HPA, http://www.proteinatlas.

org/) (Pontèn et al., 2008). The efficiency of both global and
local image descriptors will be examined as input to the classi-
fiers. The global features contain the Haralick texture features

and the DNA distribution features, which both belong to the
well-defined SLFs (Boland and Murphy, 2001). The local
binary patterns (LBPs) are applied for the first time to this

multi-label problem to describe the local details. Moreover, we
will implement an ensemble classifier in iLocator composed of
two multi-label learning modes, i.e., binary relevance (BR)

(Boutell et al., 2004) and classifier chains (CC) (Read et al.,
2009), because both have been reported performing well in
multi-label image pattern recognition.

For normal cell function, it is critical to have the proteins
appear at the right location at the correct time for forming
appropriate interactions with correct molecular partners.

Mislocalization will make the proteins inaccessible, and thereby
not be integrated into the proper functional biological networks
or pathways. Protein function loss caused by the mislocalization

will inevitably affect the whole biological system, which has been
found to be associated with many human diseases (Hung and
Link, 2011). Several potential reasons can result in aberrant pro-

tein locations, such as amino acid mutations in targeting signal
sequence, changes in the post-translational modifications and
the expression level, and trafficking machinery deregulations.

To fully understand the underlying mechanisms of the protein
mislocalizations, it is important to first identify the mislocalized
protein targets. Although studies to look for biomarker proteins

have been previously reported (Murphy, 2004), these studies only
involved single-label classifiers, which cannot detect changes
from multiple locations to a single location, from a single loca-

tion to multiple locations or from multiple locations to different
multiple locations. Considering the fact that there are �20%
human proteins co-localized in more than one location, these

changes can occur frequently. For example, in a healthy cell,
protein cylin D1 can shuttle between the nucleus and cytoplasm.
In contrast, a reduction of cyclin D1 exported from the nucleus

can lead to overexpression of this protein in the nucleus, and the
inactivation of retinoblastoma, which is a tumor-suppressing
protein (Gladden and Diehl, 2005). Other such multiple-location

shuttling proteins associated with cancers include p53, BRCA1,
SOX9 and APC (Bratthauer and Vinh, 2009; Fabbro and
Henderson, 2003). Detecting these changes requires accurate

multi-label predictors. In this study, iLocator has been applied
to screen such potential mislocated biomarkers in our protein
dataset, which includes multi-label proteins. By comparing the

predictions output from iLocator between cancer and normal

tissues, several proteins have been detected as potential cancer
biomarkers.

2 MATERIALS AND METHODS

The flow chart of the experiment in this study is depicted in Figure 1,

which includes two procedures of iLocator development and the applica-

tion for cancer biomarker detection.

2.1 Preparing dataset

The basic idea of the statistical machine learning is to learn the discrim-

inative rules from training datasets. Hence, the image data quality is of

critical importance for the experiments of this study. For instance, it has

been pointed out that the high quality of antibody staining provides a

more accurate reflection of subcellular patterns (Uhlen et al., 2010). Here,

the benchmark dataset is constructed from the HPA database. We

selected high-quality samples based on two indexes: the validation score

and the objective score in HPA (Pontèn et al., 2008). Protein labels were

obtained from the HPA and UniProt. We collected proteins from both

the normal image dataset and the cancer image dataset (Supplementary

Table S1).

2.1.1 Normal image dataset This dataset was used for training and

testing classifiers. It contained 3240 images from 28 proteins in normal

cells, of which seven proteins with two or more organelle labels (in

normal tissues) are considered as multi-label proteins. We considered

seven major organelles: cytoplasm, endoplasmic reticulum, Golgi appar-

atus, lysosome, mitochondria, nucleus and vesicles.

2.1.2 Cancer image dataset The subcellular locations of cancer

images are not annotated in HPA, so the cancer image dataset was to

be predicted and compared with the data from normal cells to detect

mislocalizations. This dataset contained 3696 cancer images of the same

28 proteins as in the normal dataset. Seven cancers were considered in this

study: breast cancer, lung cancer, pancreatic cancer, prostate cancer, renal

cancer, thyroid cancer and urothelial cancer.

Each IHC image shows a specific protein in brown and DNA in purple

(Pontèn et al., 2008). To avoid artifacts from poorly stained images,

such as those with too much black or cyan dye, we removed images

that had hue values exceeding a threshold of 13 in the hue, saturation

and value color space (Newberg and Murphy, 2008). After this step, 3207

Fig. 1. The flowchart of the experiment in this study. (A) The procedures

of iLocator creation with normal image dataset. (B) The process of

biomarker protein detection using iLocator

2033

Detect mislocated human proteins using iLocator

 at U
niversity of M

ichigan on July 30, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://www.proteinatlas.org/
http://www.proteinatlas.org/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt320/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt320/-/DC1
http://bioinformatics.oxfordjournals.org/


images remained, including 823 multi-label ones. Then, the datasets were

partitioned into 2 folds: 1604 images (include 412 multi-label ones) were

put into the training set, whereas the other 1603 (include 411 multi-label

ones) were put in the testing set.

2.2 Image separation

The original HPA image is the fusion of DNA (purple sections) and

protein (brown sections). Because we mainly need the distribution of

protein, it is important to separate the protein channel from that of the

DNA.We tested two separation techniques, i.e., linear spectral separation

(LIN) and blind spectral separation by non-negative matrix factorization

(NMF), on the benchmark dataset. Both of them separate purple and

brown channels through color transforming (Newberg and Murphy,

2008).

2.3 Feature extraction

After the separation step, we extracted Haralick texture features, DNA

distribution features and LBP features from the separated channels.

Haralick features describe image texture by some intuitive aspects of

image, such as inertia and isotropy (Nanni et al., 2010a). Here, we used

10 Daubechies filters with vanishing moments from 1–10 (db1–db10)

when extracting Haralick features. Each of them can generate an inde-

pendent set of 836 Haralick features. Four DNA distribution features

were used because the nucleus is fairly consistent among cells as a

common point, and may provide reference for determining the protein

localization pattern (Newberg and Murphy, 2008). In this study, LBP is

256-dimensional (See Supplementary Fig. S1 for an example of the LBP

descriptor), which characterizes the spatial structure of local image tex-

ture and can detect micropatterns in the image, such as flat areas, edges

and spots (Nanni et al., 2010a; Tahir et al., 2012).

To reduce computational time and avoid overfitting, feature selection

was performed to select the most informative features. We selected fea-

tures using stepwise discriminant analysis (SDA) (Newberg and Murphy,

2008). The output of SDA is a subset of features ranked in terms of their

importance and can be fed into classifiers.

2.4 Multi-label classification

We trained classification models using BR and CC modes, respectively.

According to BR, one binary algorithm is trained for predicting the rele-

vance of one class. The method ‘cross-training’ was used in the training

section (Tsoumakas et al., 2010). Cross-training means that when creating

a label classifier, all the training samples associated with this label are

considered as positive samples, whereas all others are considered as nega-

tive ones. As in BR, CC also trains seven binary classifiers corresponding

to seven labels. However, considering labels that are correlated might

indicate multiple possible locations, CC takes the correlation among

labels into account. It extends the attribute space of each classifier with

the 0/1 label of all previous classifiers, and the seven binary classifiers are

linked to form a chain (See Supplementary Fig. S2 for illustrations of BR

and CC learning modes) (Read et al., 2009). Because different label orders

can give slightly different results, we used a random chain order. We

applied support vector machine (SVM) as the classifier, and the

LIBSVM-2.91-1 package was used (http://www.csie.ntu.edu.tw/�cjlin/

libsvm/).

Each classifier based on BR or CC can output a seven-dimensional

(7D) score vector [s1, s2, . . . , s7] per testing image, where each score cor-

responds to a specific class (organelle). The score represents the confi-

dence of belonging to the corresponding class. It is positive if the

corresponding binary classifier predicts the image belongs to the class,

and negative if not. To decide the label set of a sample from its score

vector, we used two criteria, i.e. top criterion and threshold criterion

(Boutell et al., 2004), and obtained intersection elements of their results

to compose the final label set. The top criterion considers that the label

set consists of the labels with positive scores, and if all seven scores

are negative, the label with the maximum score is considered as the

unique label. The assumption of threshold criterion is that the score

values corresponding to the real labels are the largest, and, in the case

of multiple labels, have similar scores. Therefore, a threshold T is needed

to judge whether the top scores are close enough. When deciding whether

the label c should be assigned to the predicted label set, we defined H1 to

denote yes and H2 no. And dif was defined as the difference between the

biggest score and the cth one:

dif ¼ maxfs1, s2, � � � , s7g � sc ð1Þ

Then Hb is determined according to magnitude of dif: H1 is true if

dif�T, and H2 is true if dif5T. The objective function is:

b ¼ argmax
"¼1, 2

PðH"j dif Þ

¼ argmax
"¼1, 2

Pðdif jH"Þ � PðH"Þ =Pðdif Þ

¼ argmax
"¼1, 2

Pðdif jH"Þ � PðH"Þ

ð2Þ

The probabilities of dif in H1 and H2 (P(dif jH1) and P(dif jH2)), and

the probabilities ofH1 andH2 (P(H1) and P(H2)), can be calculated from

the training set (Fig. 2A–D). The process of determining T uses maximum

a posteriori (MAP) principle (Fig. 2E). According to Equation (2), T is

at the intersection of P(difjH1) � P(H1) and P(difjH2) � P(H2).

Fig. 2. The experimental results of determining the threshold T in

db8-BR model. (A) The calculation process of dif1 (dif in H1) and dif2

(dif in H2) using 1–3 label images in the training dataset. The predicted

score vector [s1, s2, . . . , s7] can be sorted to be [sr1, sr2, . . . , sr7], and the

gray circles represent real labels. dif1 are the differences between sr1 and

scores corresponding to the label not in the real label set but closest to it.

dif2 are differences between sr1 and other scores whose label also belongs

to the real label set. In theory, dif1 are generally bigger than dif2, which is

the key to get T and determine the label set. (B) The histograms of dif1.

(C) The histograms of dif2. (D) The Gaussian distribution fitting curves

of P(difjH1) and P(difjH2). (E) The fitting curves of P(difjH1) �P(H1) and

P(difjH2) �P(H2). In this model, T is 1.084, and the error represented by

the gray part is 10.43%
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In this study, we evaluated the performance of the classifier by five

multi-label classification metrics: subset accuracy, accuracy, recall, preci-

sion and average label accuracy (See Supplementary text for details).

Among them, subset accuracy is the fraction of samples whose predicted

label set is exactly the same as the true label set. We evaluated the

performance of classification mainly by it.

2.5 Identifying potential biomarkers

Protein subcellular mislocations are found to have correlations with

human diseases (Hung and Link, 2011). To reveal the hidden mechan-

isms, it is important to know the protein locations in normal and cancer

conditions, respectively. Because there are no explicit subcellular location

annotation data for proteins in cancer tissues in HPA, we cannot com-

pare these two conditions directly. Therefore, we used the obtained clas-

sifiers to give predictions of these 28 proteins in normal and cancer

tissues, respectively. The cancer image dataset contains 3696 images,

and involves seven cancers, i.e. breast cancer, lung cancer, pancreatic

cancer, prostate cancer, renal cancer, thyroid cancer and urothelial

cancer (Supplementary Table S1). For each query protein–tissue combin-

ation, suppose there are N normal images and M cancer images. Each

image has a 7D score vector. With these score vectors, we screened bio-

markers by two steps: first, screening by the direct comparison method;

second, screening by evaluating the significance of location changes using

the t-test. In the first step, we calculate an average vector from these N

normal vectors and use it to determine the final label set. The label set

corresponding to the cancer state can also be determined with the similar

procedures. The direct comparison method selects these protein–tissue

combinations satisfying the two conditions: (i) the label set of normal

and cancer states are not exactly the same and (ii) sign (þ and �) of the

average predicted scores of these changing locations are opposite between

normal and cancer states. In the second step, for each selected combin-

ation by step 1, an independent sample t-test is conducted on the M and

N score vectors. The detailed process on one example protein–tissue com-

bination can be found as Supplementary Figure S3. For each biomarker

protein–tissue combination, the t-test will output a P-value vector, where

each element represents the confidence of mislocalization in a subcellular

location from normal to the cancer condition. These protein candidates

are considered as reliable potential biomarkers only if the P-values of

their translocations are50.01.

3 RESULTS

3.1 Creating and validating single classifiers

In the initial experience, we tested LIN and NMF, respectively.

The experimental results show that LIN approach outperforms

NMF by 5–10% on the testing dataset (Supplementary Fig. S4).

This is consistent with a previous report (Newberg and

Murphy, 2008). Considering LIN can yield better results and

its faster speed, it was adopted in the following study of creating

iLocator.
To test whether pre-processing of images by enhancing tech-

nique is helpful for improving the classification performance in

this study, we compared the contrast limited adaptive histogram

equalization enhancing, and nothing is performed on the current

dataset. The results show that the latter outperforms contrast

limited adaptive histogram equalization by 3–5% in the subset

accuracy and thus was adopted in the following experiments,

which are similar to a previous study (Paci et al., 2013).
Then we calculated various features from the separated DNA

and protein channels without pre-processing, selected image fea-

tures by SDA, and then trained classification models using BR

and CC modes, respectively. We tested these classifiers on the

testing set. When deciding the label set of a sample from its score

vector, we had to determine the difference threshold T before
using threshold criterion (Fig. 2). Consequently, the subset

accuracies of these single classifiers range from 57.89 to

67.12%. The performance of CC is superior to BR because CC

can capture complex correlations, such as proteins co-existing at

different locations due to spatial proximity or functional reasons.

3.2 Effects of discriminative features and classification

methods

The SLFs, including DNA features and Haralick features, can

make good sense in predicting protein localizations (Newberg

and Murphy, 2008). In this study, we added the LBP features

to SLF vectors and obtained a 1096 (4þ 836þ 256)-dimensional

image descriptor. After feature selection, we obtained the most

informative features that can be fed into classifiers. From

Figure 3A, we can see the overall proportion of LBP components

Fig. 3. The experimental results when adding LBP into feature space.

(A) The top 30 ranked features output from SDA (totally 72 features)

when using db8 filter. The red letter L represents the LBP feature, the

blue letter H represents the Haralick feature and the green letter D rep-

resents the DNA distribution feature. In this feature rank, there are

12 LBP features, 17 Haralick features and 1 DNA feature. (B) The results

of subset accuracy from different combinations of BR, CC, SLFs and

SLFsþLBP on db1–db10. (C) The results of five multi-label classifica-

tion metrics from different combinations of BR, CC, SLFs and

SLFsþLBP on db8

2035

Detect mislocated human proteins using iLocator

 at U
niversity of M

ichigan on July 30, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt320/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt320/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt320/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt320/-/DC1
http://bioinformatics.oxfordjournals.org/


is not small in the top ranked features, where it is also interesting
to find that the LBPs contribute to the top 1 selection. This
demonstrates that both the LBP features and SLFs have a sig-

nificant role in distinguishing different protein location patterns.
The classification results also demonstrate LBPs significantly

contribute to the performance improvements (Fig. 3B and C).
For instance, on the db8 model, the subset accuracy improved

from 52.96 to 61.82% by adding LBP in BR, and similarly, a
7.11% improvement was observed in the CC mode (Fig. 3B).
Besides, the results of subset accuracy demonstrate the superior-

ity of CC over BR, indicating CC predicts more samples with all
the labels correctly identified. It is also interesting that CC is not

always better than BR in some metrics (Fig. 3C). The reason
is that CC has a disadvantage: it may add some irrelevant attri-

butes about other labels, which can make confusion in classifi-
cation. The effect of this disadvantage is obvious on single-label

samples, which can be confirmed in later experience.
Although the overall performance was improved by LBP, it

was not clear how such enhancement happened. To reveal this

point, we separated the testing set into two groups: a single-label
image set and a multi-label image set. We further represented the

two groups with SLFs alone, and with both SLFs and LBP,
respectively. The classification results show that the improve-

ments of each evaluating metric in the multi-label testing set
are more salient than in the single-label set when incorporating
LBP (Fig. 4). For example, the increments of subset accuracy in

multi-label set by BR and CC were 11.68 and 14.84%, whereas
in the single-label set, the improvements were 7.89 and 4.45%,

respectively. The disparity indicates that the multi-label samples
benefit more from adding LBP. The reason is that a multi-label

pattern is a mixture of several single-label patterns, and LBPs are
local features representing statistics of binary micropatterns.

Hence, LBP can catch the subtle local features that are important
for multi-label classification.
Besides, three more phenomena can be observed from

Figure 4. The first is that, in general, multi-label images are
much more difficult for classification than the single-label ones.

This is demonstrated by the better performance of single-label
(BR) and single-label (CC) images than multi-label (BR) and
multi-label (CC) ones, respectively. Second, the results of

multi-label (CC) images are better than multi-label (BR) ones,
especially subset accuracy, which shows a difference of 15.57%.

This phenomenon indicates that considering correlations among

labels is particularly important for multi-label set prediction.

Finally, we can see the single-label (BR) samples are higher

than single-label (CC) ones, especially when adding LBP. This

phenomenon reveals that CC is not always better than BR on

single-label samples because it may take irrelevant attributes

into account. Considering the latter two phenomena, to get

advantages of BR and CC together, we tended to combine

their models.

3.3 Performance of ensembled classifier

Therefore, considering an ensemble of multiple classifiers gener-

ally gives a better performance (Shen and Chou, 2006), we con-

structed an ensembled classifier by combining the BR and CC

classifiers on db1–db10. Each of these 20 classifiers will output a

classification vector consisting of seven probabilities of the query

image to the seven covered subcellular locations. We then took

the average of these 20 output vectors to generate the final pre-

dictions. This ensembled model is finally used in iLocator

(Fig. 1A). Its five evaluation criteria of subset accuracy, accur-

acy, recall, precision and average label accuracy are 72.49, 77.83,

75.45, 80.50 and 92.71%, respectively. As expected, we can see

big improvements in all the metrics compared with any single

simple classifier.

3.4 Identifying cancer biomarkers

In the entire dataset, there are�3 normal images and�24 cancer

images for each protein–tissue combination. We screened bio-

markers by the two steps presented before. The first step gives

predicted label sets of all the protein–tissue combinations in

normal and cancer conditions, respectively (Fig. 5A and B).

Subcellular location changes in 12 proteins were detected by

direct comparison (Fig. 5C). These 12 proteins constitute an ini-

tial set of potential biomarkers. Then we conducted an independ-

ent sample t-test on their corresponding score vectors to evaluate

the significance levels of the localization changes. There are eight

proteins with 18 protein–tissue combinations left after the second

step (Fig. 5D and Table 1).

According to HPA, there are multiple subtypes for some can-

cers like breast cancer, lung cancer and thyroid cancer, so it is

necessary to study the effectiveness of screened biomarkers listed

in Table 1 for subtype cancers. Thus, we conducted further

experiments for the following subtypes: breast cancer of duct

carcinoma and lobular carcinoma, lung cancer of adenocarcin-

oma and squamous cell carcinoma, thyroid cancer of follicular

adenoma carcinoma and papillary adenocarcinoma. In Table 1,

eight protein–tissue combinations relating to the three cancers

need to be further certificated. Using the same method as sec-

tion 2.5, we compared the images from each subtype of cancers

with the normal images separately. The final results show that

all the tested proteins, except CPT2, have the same altered sub-

cellular locations among all of the cancer subtypes for a given

tissue. However, CPT2 is an exception, where its subcellular

location in the lung squamous cell carcinoma subtype is mito-

chondria, the same as the normal condition. This result indicates

that CPT2 is only a suitable biomarker for lung adenocarcin-

oma (Table 1).

Fig. 4. The comparison of subset accuracies in the single-label and

multi-label testing dataset classified using BR and CC modes with db8

features
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From the listed detailed P-values of the involved translocation

changes of the eight proteins (Table 1), we can make five inter-

esting observations:

First, biomarker proteins in cancer tissues tend to move

away from other structures and function only in the cyto-

plasm, except for GOLGA5, DBT and CPT2. This is con-

sistent with previous results that a protein’s cytoplasmic

localization can serve as an inactivation mechanism that

gives rise to uncontrolled cell proliferation and the onset

of disease, which was suggested as a general mechanism

for the inactivation of tumor suppressors (Salmena and

Pandolfi, 2007).

Second, five screened biomarkers changed from multiple lo-

cations to only a single location. Among them, translocations

from the cytoplasm and nucleus co-localization to the

cytoplasm alone are most frequent. Capable of shuttling

between cytoplasm and nucleus and performing functions

in nucleus subcellular localization are revealed as important

features for some tumor suppressors (Fabbro and Henderson,

2003). Loss of functions in the nucleus of these proteins

Fig. 5. The protein mislocalizations detected by the iLocator. (A) The predicted subcellular locations of 28 proteins in seven normal tissues.

(B) The predicted subcellular locations of 28 proteins in seven cancer tissues. (C) The locations of these 12 proteins screened by direct comparison

method. The green lines represent normal condition, the red represents the cancer condition and the blue lines represent that these locations exist in both

conditions. (D) Evaluating the significance of location changes of these 12 selected proteins. The black lines represent changes where the P-value50.01,

and the gray are P-value40.01. The eight proteins involving with black lines were considered as reliable potential biomarkers
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can change their roles in the cell cycle and can be fatal (Hu

et al., 2004).

Third, the results also demonstrate that the developed

iLocator can deal with both multi-label and single-label pro-

teins. Of the final eight proteins, six involve multiple locations

demonstrating the importance of developing sensitive

multi-label classifiers; translocations on protein HIP1 and

GOLGA5 also demonstrate that iLocator can still be effect-

ively applied to single-label translocation problems.

Fourth, it also can be seen that if mislocalization occurs, the
changes are the same for one protein in different tissues,

except the protein GOLGA5. GOLGA5 translocates from
the Golgi apparatus to the mitochondrion in thyroid cancer,

and from the Golgi apparatus to the ER in the other five
cancers. This point, as well as the fact that mislocalization

does not occur in all the considered cancers, demonstrates

that the metabolic process of protein is various in different
tissues. So it is a reasonable way to study the protein subcel-

lular mislocalization in different tissues separately.

Table 1. Subcellular location changes of the final eight proteins between normal and cancer states

Protein Tissue Subcellular location changesa Significance of P-values in t-testb

NSDHL Kidney (ER and Vesi.)!(Cytopl.) ER(�): 4.75e-5

Vesi.(�): 1.86e-7

Cytopl.(þ): 1.5e-12

Urinary bladder (ER and Vesi.)!(Cytopl.) ER(�): 7.81e-7

Vesi.(�): 3.02e-8

Cytopl.(þ): 8.6e-16

GOLGA5 Breast (Gol.)!(ER) Gol.(�): 5.42e-7

ER(þ): 0.0018

Lung (Gol.)!(ER) Gol.(�): 5.26e-10

ER(þ): 2.77e-5

Pancreas (Gol.)!(ER) Gol.(�): 2.90e-9

ER(þ): 4.60e-6

Prostate (Gol.)!(ER) Gol.(�): 3.33e-10

ER(þ): 1.87e-6

Thyroid gland (Gol.)!(Mito.) Gol.(�): 4.14e-6

Mito.(þ): 1.94e-6

Urinary bladder (Gol.)!(ER) Gol.(�): 4.40e-7

ER(þ): 5.91e-4

HIP1 Lung (Vesi.)!(Cytopl.) Vesi.(�): 0.0039

Cytopl.(þ): 0.0067

ACTN4 Lung (Cytopl. and Nucl.)!(Cytopl.) Nucl.(�): 0.0071

Cytopl.(*): 0.3314

Prostate (Cytopl. and Nucl.)!(Cytopl.) Nucl.(�): 3.80e-4

Cytopl.(*): 0.0457

Kidney (Cytopl. and Nucl.)!(Cytopl.) Nucl.(�): 0.0028

Cytopl.(*): 0.0204

FHL2 Thyroid gland (Cytopl. and Nucl.)!(Cytopl.) Nucl.(�): 0.0037

Cytopl.(*): 0.7821

DBT Pancreas (Cytopl. and Mito.)!(Mito.) Cytopl.(�): 9.60e-4

Mito.(*): 0.0430

AHR Breast (Cytopl. and Nucl.)!(Cytopl.) Nucl.(�): 7.71e-6

Cytopl.(*): 0.0375

Pancreas (Cytopl. and Nucl.)!(Cytopl.) Nucl.(�): 1.21e-4

Cytopl.(*): 0.0049

Prostate (Cytopl. and Nucl.)!(Cytopl.) Nucl.(�): 0.0056

Cytopl.(*): 0.6544

CPT2c lung (Mito.)!(Cytopl. and Mito.) Cytopl.(þ): 0.0013

Mito.(*): 0.1741

a(Subcellular locations in normal tissue)!(Subcellular locations in cancer tissue).
bThe P-values of involved translocations: ‘�’ means location missed in the cancerous tissue compared with the normal tissue, ‘þ’ means new location in the

cancerous tissue compared with the normal tissue, and ‘*’ means the same location in both normal and cancerous tissues.
cThis biomarker is applicable to lung adenocarcinoma.
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Finally, the biomarker protein CPT2 works for lung adeno-

carcinoma but not lung squamous cell carcinoma. This dem-

onstrates that different subtypes of the same cancer might

be driven by different protein translocations. This point is

reasonable when considering that cancer subtypes have vari-

ous pathogenesis.

Some information in the literature can also be found to sup-

port our predicted biomarker results. In the annotations in

UniProt, ACTN4 locates in both the nucleus and cytoplasm in

normal tissues. According to our predicted results, it will locate

only in the cytoplasm when cancer occurs in the lung, prostate or

kidney. This screened result is consistent with the literature,

which found that ACTN4 decreases in the nucleus and locates

exclusively to the cytoplasm in cancerous samples and may serve

as a biomarker (Honda et al., 1998; Jasavala et al., 2007). Our

results also showed that the FHL2 protein is an indicator of

thyroid cancer when it only functions in cytoplasm and loses

its ability to locate to the nucleus (P-value¼ 0.0037). The litera-

ture supports the finding that cytoplasmic FHL2 is involved in

cancer invasion (Kahl et al., 2006; König et al., 2010). Besides, it

is also detected that the protein GOLGA5 can translocate

from the Golgi apparatus to the mitochondrion in thyroid

cancer. This is consistent with the literature specifying that the

translocations involving GOLGA5 have been found in thyroid

tumors (Corvi et al., 2000; Klugbauer, et al., 1998). All these

supporting findings confirm the effectiveness of our system.

4 DISCUSSION

We have built an IHC image-based multi-label human protein

subcellular location predictor iLocator and presented a frame-

work to screen cancer biomarkers. The iLocator is an efficient

bioimage-based predictor that can handle both single- and mul-

tiple-location site proteins simultaneously. By applying iLocator

to the datasets from both normal and cancer tissues, eight pro-

teins were identified as cancer biomarkers. We showed that those

proteins that can shuttle between multiple subcellular locations

are important for normal cell functions, and losing one of the

locations may cause disease. These identified mislocated disease-

causing protein targets have also opened a new avenue for the

therapeutic treatment of some human diseases. For example, by

relocating these mislocated proteins to the correct subcellular

localizations, they can restore their correct functions, which are

helpful to cure the diseases. Although these techniques are still in

the infancy stage, they have a promising and bright future.
Based on the current study, the following efforts will be made

in future studies toward improving the performance of iLocator.

(1) In this article, we used both the global and local features

as the input to the prediction engine and found that the local

features are sensitive to detect the distribution differences among

multiple locations. Here, we used LBP as the local feature, which

is a baseline texture descriptor. Actually, some LBP variants,

such as local ternary patterns and local quinary patterns, have

been proposed and proven to be powerful in image descriptions

(Nanni et al., 2010b; Paci et al., 2013). Therefore, we will try to

use these LBP variants as a future development.

(2) To handle high-dimensional image feature vectors, the

feature reduction is demonstrated necessary in our experiments

and other studies. The SDA method was used in this article to
select representative features and performed well. As an alterna-

tive, we also tested the random subspace ensemble of SVM, for

it saves the feature selection step, and performs well in other
studies (Paci et al., 2013). According to our experiments, the

random subspace ensemble of the SVM approach is not as

good as the ensemble of BR and CC algorithms used in this

study (data not shown). The reason could be that the random
selected features are not informative to reflect the multi-label

samples, and the output of the follow-up single classifiers can

cause the fluctuation of the voting results, which are sensitive to
noise. These results demonstrate the importance of the develop-

ment of an effective control mechanism that is able to make the

subspace approach suitable to handle multi-label samples.
(3) Fusion of BR and CC algorithms in iLocator is demon-

strated useful for enhancing the classification accuracy of multi-

label samples. The performance of CC mode confirms that
passing association information among labels is able to reflect

the different propensities of cellular component co-localizations

of proteins. Thus, for the bioimage-based multi-label protein
classification problem, it is also important to dig into the existing

large databases to model the associations among labels.
(4) The sequence-based and image-based protein subcellular

location prediction approaches differ in many ways, including the

feature descriptors and classification algorithms. Considering
that they both deal with protein samples, the combination of

the two strategies should help enhance the classification accuracy

because of the complementarities, which can also provide a

better understanding of the protein translocations both intui-
tively and at the amino acid level. In the next step, we plan

to explore the idea and combine our 1D sequence-based protein

subcellular location predictor Cell-PLoc (Chou and Shen, 2008)
and the 2D image-based iLocator as developed in this work.
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