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SUMMARY

Proteins perform functions through interacting with
other molecules. However, structural details for
most of the protein-ligand interactions are unknown.
We present a comparative approach (COFACTOR) to
recognize functional sites of protein-ligand interac-
tions using low-resolution protein structural models,
based on a global-to-local sequence and structural
comparison algorithm. COFACTOR was tested on
501 proteins, which harbor 582 natural and drug-
like ligand molecules. Starting from I-TASSER struc-
ture predictions, the method successfully identifies
ligand-binding pocket locations for 65% of apo
receptors with an average distance error 2 Å. The
average precision of binding-residue assignments
is 46% and 137% higher than that by FINDSITE and
ConCavity. In CASP9, COFACTOR achieved a
binding-site prediction precision 72% and Matthews
correlation coefficient 0.69 for 31 blind test proteins,
which was significantly higher than all other partici-
pating methods. These data demonstrate the power
of structure-based approaches to protein-ligand
interaction predictions applicable for genome-wide
structural and functional annotations.

INTRODUCTION

Proteins bind with other molecules to bolster or inhibit biological

functions. The binding partner, commonly referred to as ligand,

can be metal ions, small organic/inorganic molecules, or macro-

molecules like proteins or nucleic acids. In all these protein-

ligand interactions, only a few key residues are involved in the

partner recognitions and for the affinity that tethers the ligand

to its receptor molecule. Identification of these key residues is

imperative for understanding protein’s function, analyzing

molecular interactions and guiding further experimental proce-

dures (Rausell et al., 2010). Although the experimental determi-

nation provides the most accurate assignment of the binding

locations, the procedure can be time- and labor-intensive.
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Computational approaches to recognize these functional

sites in proteins are generally classified into sequence- and

structure-based methods. Most of the sequence-based

approaches (Capra and Singh, 2007; Pei and Grishin, 2001; Val-

dar, 2002; Wang et al., 2008) are based on the presumption that

functionally important residues are preferentially conserved

during the evolution, because natural selection acts on function.

In many cases, however, the sequence or evolutionary conser-

vation of residues does not necessarily translate into their

involvement in ligand binding, as these residues may play

a structural role in maintaining the global scaffold. Nevertheless,

the advantage of sequence-based methods is that 3D structure

is not a prerequisite and they require negligible time to generate

predictions.

Structure-based methods for ligand binding-site identification

start with the 3D structure of protein molecules. Most of the early

approaches followed the Emil Fisher’s assumption that ligand

binding in proteins is like ‘‘an insertion of key into a lock’’

(Fischer, 1894); hence shape and physiochemical complemen-

tarity are often used to detect concave pockets on proteins

surface (Brady and Stouten, 2000; Hendlich et al., 1997; Huang

and Schroeder, 2006; Laskowski, 1995; Le Guilloux et al.,

2009; Levitt and Banaszak, 1992; Weisel et al., 2007). There

are other methods that use calculated interaction energies

(Goodford, 1985; Laurie and Jackson, 2005; Wade et al., 1993)

or protein structure dynamics (Landon et al., 2008; Lin et al.,

2002) to examine the click of ‘‘lock and key.’’ With recent

increase in number of known protein-ligand complexes in

Protein Data Bank (PDB) (Rose et al., 2011), it is becoming

evident that homologous proteins with similar global topology

often bind similar ligands using a conserved set of residues

(Russell et al., 1998). Accordingly, many contemporary methods

utilize both geometric match and evolutionary information to

identify binding site pockets and residues. Some of them use

known protein-ligand complexes as templates (Brylinski and

Skolnick, 2008; Glaser et al., 2003; Oh et al., 2009; Tseng and

Li, 2011; Wass et al., 2010; Xie and Bourne, 2008), whereas

others utilize purely sequence-based homology information

(Capra et al., 2009; Huang and Schroeder, 2006; Laskowski,

1995).

Following the sequence-to-structure-to-function paradigm,

here we develop a hierarchical approach, COFACTOR, which

uses structure modeling and a combined global-and-local
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Figure 1. COFACTOR Protocol for Ligand

Binding Site Prediction

See also Figure S1.
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similarity search scheme to identify binding pockets and ligand-

interacting residues in query (target) protein. Figure 1 shows

a schematic diagram describing the procedure of COFACTOR

algorithm. Starting from the query sequence, the 3D structure

model is first generated using the I-TASSER fragment assembly

simulations (Roy et al., 2010; Zhang, 2008). Experimental

structure can also be used in the following steps. Template

proteins with bound ligands in the PDB library are collected

based on their global structural similarity to query protein, using

the TM-align structure alignment program (Zhang and Skolnick,

2005). Meanwhile, to examine the ligand-binding details, the

binding pockets of templates are scanned through the target

structure to identify the best local geometric and sequence

matches. The binding pose of the ligand in the target structure

is predicted based on the local alignment of predicted and

template binding site residues. Finally, superposed ligands

from multiple templates are clustered to procure the ligand-

binding predictions.

The algorithm is evaluated using both the I-TASSER models

and the experimental structures of query proteins. Large-scale

benchmarking results show that COFACTOR can correctly

identify ligand-binding locations for 65%–69% test cases

and interacting residues with MCC of 0.55–0.58, for both

natural and drug-like molecules. The algorithm was also

tested in the recent community-wide CASP9 experiments,

where the method outperformed all other participating

methods in recognizing ligand binding residues for both metal

and nonmetal ligands. The results highlight the potential

applicability of the method for genome-scale functional

annotations.
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RESULTS

Benchmarking of Binding Site
Predictions
The performance of protein-ligand

binding predictions can be evaluated

based on their ability to detect the spatial

location of ligand binding pocket and the

competency to delineate protein residues

that interact with the ligand. In the first

evaluation, the prediction errors are eval-

uated by measuring the spatial distance

between the center of the predicted

binding pocket and the ligand in experi-

mental structure, whereas in the second

one evaluates the assignment accuracy

of ligand-interacting residues in the

protein sequence. Here, we evaluate

COFACTOR on both criteria. The results

are controlled by two recently developed

structure-based methods, FINDSITE

(Brylinski and Skolnick, 2008) and Con-

Cavity (Capra et al., 2009). FINDSITE
predicts binding sites by matching the target structure with

template proteins identified by threading (Brylinski and Skolnick,

2008), whereas ConCavity assigns binding residues as those

closest to the spatial cavities surrounding the protein surface

(Capra et al., 2009).

Ligand-Binding Pocket Predictions

The ability of the algorithms to identify ligand-binding pocket is

tested on 501 benchmarking proteins, collected from three

previous experiments (Dessailly et al., 2008; Hartshorn et al.,

2007; Perola et al., 2004), which harbor 582 ligands. The exper-

imental structure of the protein-ligand complexes were collected

from the PDB library (Berman et al., 2000).

Figure 2 shows the cumulative fraction of predicted binding

pockets as a function of distance between the center of mass

of the native ligand and the center of the predicted binding

pocket. If we make a cutoff at the pocket distance <4.5 Å, which

is close to the average radius of gyration of all ligands in the

benchmark set (4.41 Å), the binding pocket predictions by

COFACTOR are correct in 65% cases when the low-resolution

I-TASSER structure models were used. The control methods

FINDSITE and ConCavity correctly predicted binding pocket

for 56% and 34% cases, respectively. These differences are

statistically significant, where the p value of paired Student’s

t test for the COFACTOR prediction is 2.3e-6 to FINDSITE and

3.2e-12 to ConCavity results.

Compared to ConCavity, both COFACTOR and FINDSITE are

not very sensitive to the accuracy of the protein structure predic-

tions, as long as the global topology of the target model is

correct. When the apo-form experimental structures of the target

proteins were used, the accuracy of the binding pocket



Figure 2. Comparison of Different Methods in Identifying Ligand

Binding Pocket Using Either I-TASSER Models or Experimental

Structures

Results are presented as the cumulative fraction of predicted binding site

pockets versus distance between the center of the native ligand position and

the center of the best in top five predicted ligand-binding poses.

See also Table S1.

Figure 3. Performance of Different Methods in Detecting Ligand

Interacting Residues

(A and B) The data are shown using cumulative data of average Matthews’s

correlation coefficient (MCC) (A), and average precision of predicted binding

sites (B).
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predictions by COFACTOR and FINDSITE was only marginally

increased to 69% and 59%, respectively, where that of

ConCavity was significantly changed from 34% to 45%. This

difference in structural sensitivity is probably due to the fact

that the cavity-based methods such at ConCavity are sensitive

to the local geometry of the target structures, whereas the

template-based methods rely more on the global similarity of

the target-template topologies. Although homologous templates

have been excluded from the I-TASSER template library, the

majority of the I-TASSER models (91%) have a correct topology

with TM-score >0.5, which explains the independence of the

average performance of COFACTOR and FINDSITE on the

models chosen of the target structures.

We observed that in 9%of the cases FINDSITE didn’t generate

any pocket predictions, due to lack of good threading templates

in its binding-site library. As a result, ConCavity shows an

improved performance over FINDSITE in difficult cases, i.e.,

ConCavity outperforms FINDSITE in cumulative fraction of

binding pocket when the pocket distance increases. If we

consider only 447 proteins (with 516 binding sites) where all

the three methods successfully generated a prediction, the

average binding-pocket distance of the best in top-five predic-

tions by COFACTOR, FINDSITE, and ConCavity using I-TASSER

models are 4.7 Å, 5.4 Å, and 7.4 Å, respectively. When the exper-

imental structures are used, the average distance errors are

reduced to 4.5 Å, 5.0 Å, and 7.0 Å, respectively. This data shows

that for both easy and hard targets the binding pockets identified

by COFACTOR are on average closer to the actual binding

pocket.

Ligand Binding-Site Residue Assignments

To evaluate the ability of COFACTOR to detect the binding site

residues, in Figure 3 we plotted the cumulative data of the

average Matthews correlation coefficient (MCC) and precision

of the predicted binding residues as a function of the coverage
Structure 20
of the predicted binding residues under consideration, where

MCC and binding precision were defined in Equations S6 and

S7 available online, respectively.

When using the I-TASSER predicted models, COFACTOR can

identify binding-site residues for 90% of the targets with an

average MCC of 0.60. The average MCC for all targets is 0.55.

The average precision of the binding residue prediction is 73%

(69%) for 90% (all) targets. Compared to the control methods

(FINDSITE and ConCavity), COFACTOR shows an overall

improvement of 17%–57% on MCC (Figure 3A), and 46%–

137% improvement on the prediction precision (Figure 3B).

The reason for the obviously low precision and MCC for

ConCavity is that the algorithms defines all the conserved

residues lining with the predicted pockets as potential ligand

interacting residue, which although increases the recall values

(Table 1) but also considerably increases the rate of false positive

prediction and results in the lowMCC and precision. When using

experimental structure, the MCC and precision of the binding

site residues by COFACTOR slightly improve to 0.64 (0.58) and

76% (71%), for 90% (all) targets (Figure 3).

This improvement in MCC by COFACTOR is not due to the

possible enrichment of analogous structural similarities. Even if

we remove the targets for which predictions were generated

from templates with a TM-score >0.7, the MCC of COFACTOR

prediction is still 26% and 30% higher than that of FINDSITE

and ConCavity, respectively.
, 987–997, June 6, 2012 ª2012 Elsevier Ltd All rights reserved 989



Table 1. AverageMCC, Pre, and Rec of Ligand-Binding Residue Predictions by ConCavity, FINDSITE, and COFACTOR Using I-TASSER

Models and Experimental apo Structures as Receptor Structure

Protein Structure Ligands (n) Methods

First Prediction Best in Top Five

MCC Pre Rec MCC Pre Rec

I-TASSER models Natural (382) ConCavity 0.33 0.27 0.58 0.35 0.34 0.62

FINDSITE 0.42 0.43 0.45 0.47 0.55 0.53

COFACTOR 0.47 0.58 0.42 0.55 0.70 0.52

Drug-like (200) ConCavity 0.32 0.25 0.56 0.34 0.27 0.59

FINDSITE 0.39 0.37 0.44 0.44 0.41 0.49

COFACTOR 0.45 0.51 0.40 0.54 0.68 0.50

Overall (582) ConCavity 0.33 0.27 0.57 0.35 0.29 0.61

FINDSITE 0.41 0.41 0.45 0.47 0.47 0.52

COFACTOR 0.46 0.56 0.41 0.55 0.69 0.51

Experimental structures Natural (382) ConCavity 0.40 0.31 0.69 0.43 0.34 0.73

FINDSITE 0.44 0.44 0.47 0.51 0.51 0.54

COFACTOR 0.48 0.58 0.43 0.57 0.71 0.54

Drug-like (200) ConCavity 0.40 0.30 0.69 0.43 0.32 0.73

FINDSITE 0.42 0.38 0.47 0.47 0.43 0.52

COFACTOR 0.47 0.54 0.43 0.58 0.72 0.55

Overall (582) ConCavity 0.40 0.30 0.69 0.43 0.33 0.73

FINDSITE 0.43 0.42 0.47 0.50 0.49 0.54

COFACTOR 0.48 0.57 0.42 0.58 0.71 0.54

MCC, Matthews’s correlation coefficient; Pre, precision; Rec, recall.
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Drug-Like versus Natural Ligands

If we define biomolecules binding to enzyme active and allosteric

sites as ‘‘natural’’ ligands and artificially designed molecules as

‘‘drug-like’’ ones, 382 out of 582 ligands are classified as natural

ligands, whereas the remaining 200 are drug-like in our bench-

mark set. Based on the results shown in Figure 4A, we find

that there is little difference in the average MCC of predicted

binding site residues for the different ligand types. The difference

becomes notable for prediction precision (Table 1), where ligand

interacting residues for natural ligands were predicted with 5%–

8% higher precision than for drug-like compounds.

In Figure 4B, we further analyzed the chemical similarity

between the predicted ligands by COFACTOR and the native

ligands in experimental structure, measured by the Tanimoto

coefficient (TC). It is appealing to observe that for �70% of the

proteins with bound natural ligands, the predicted ligands by

COFACTOR shared an average chemical similarity (TC) of 0.74,

and can therefore be used for a more detailed level elucidation

of protein function. For the targets with bound drug-like mole-

cules, even though the predicted residues had an overall high

average MCC (54%), close to that of the natural counterpart,

the predicted and solved ligands were chemically similar in

only 8% cases. This observation recapitulates the fact that the

majority of these drug-like molecules are targeted near the

active/allosteric sites, where even though they are chemically

dissimilar to the substratemolecules, they are tethered by similar

set of binding residues. These high accuracy predicted binding

site residues by COFACTOR therefore can also be used

for creating binding-site based 3D-pharmacophore models for

ligand-screening and structure-based drug design even for

proteins with unknown structure.
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Ligand Shape Comparison

In Table S1 (available online), we compare the shape of the pre-

dicted binding pocket/ligand with that of the native ligands

(average volume 743 Å3) bound in the experimental structure,

as an assessment of predicted ligand conformation. Predicted

ligands by COFACTOR, FINDSITE, and ConCavity using the

I-TASSER model (experimental structure) have an average Jac-

card coefficient (JC) of 0.33 (0.37), 0.27 (0.29), and 0.19 (0.24),

respectively, whereas the average volume of ligand/pocket

predicted by the three methods are 932 (952), 964 (962), and

2,208 (2,307), respectively. The result demonstrates that

although the volume of predicted ligands by COFACTOR are

on average smaller, the shape of the predicted ligands matches

the best with the native ligands, which is important for shape

similarity based studies such as docking and ligand screening

(Giganti et al., 2010). Moreover, the average numbers of non-

physical protein-ligand clashes are generally fewer in complexes

generated by COFACTOR (Table S1).

Confidence Score of Prediction

An estimation of the accuracy of the predictions is important for

blind predictions where the answer is unknown, because the

accuracy of the predictions essentially decides how the biologist

users will use the predictions. The confidence of the predictions

in COFACTOR is measured by the C-scoreLB (see Equation 2

in Experimental Procedures). To examine the correlation of

C-scoreLB with the experimental results, we plot in Figure 5 the

averageMCC data versus C-scoreLB. The overall Pearson corre-

lation coefficient between C-score and MCC is 0.62. If we use

a cutoff of C-score >0.25 and assign MCC >0.5 as correct

prediction, the average false positive and false negative rates

are 18% and 20%, respectively.
reserved



Figure 4. COFACTOR Ligand-Binding

Predictions for Natural Ligands and Drug-

like Compounds

(A) Cumulative data of Matthews’s correlation

coefficient (MCC) of predicted ligand interacting

residues as a function of the fraction of binding

sites.

(B) Chemical similarity between the native bound

ligands and the predicted ligands assessed using

cumulative average of Tanimoto coefficient (TC).

For both analyses, I-TASSER models are used as

the apo receptor structure.
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As a control, we also present the data of FINDSITE that uses

the fraction of templates sharing the same pocket as the confi-

dence score (Brylinski and Skolnick, 2008), where the correlation

is 0.21. Apparently, the combination of the global and local

similarities based on both sequence and structure comparisons

help increase the sensitivity of C-scoreLB to the quality of the

predictions.

Blind Test of COFACTOR in CASP9
The ninth community-wide critical assessment of techniques for

protein structure prediction (CASP9) released 129 target protein

sequences for blind test of protein structure and function predic-

tion methods. The function prediction section was focused on

evaluating the ligand binding-site predictions, where the predic-

tors were asked to identify ligand-interacting residues in the

provided protein sequence.

During CASP9, we first generated the 3D structural models

using I-TASSER and the structure-based ligand binding site

predictions were generated using the COFACTOR algorithm.

Although we generated predictions for all the 129 targets, only

31 proteins were solved in their holo form and were used in the

official assessment (Schmidt et al., 2011). The definition of the

binding site residues in our analysis follows the CASP9 asses-

sor’s rendition. The COFACTOR prediction results on the 31

proteins are listed in Table 2. Overall, the models by COFACTOR
Figure 5. Distribution of MCC of Predicted Binding Residues as

a Function of Prediction Confidence Score

The histogram shows the mean MCC of predicted binding site residues and

the error bar represents SD.
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(named ‘‘I-TASSER_FN’’ in the server section and ‘‘Zhang’’ in the

human section) were ranked at the top two positions based on

the mean MCC Z-scores with and without bootstrapping exper-

iment (Figure S3). As CASP9 assessors concluded, among all 33

participant groups ‘‘Two groups (FN096, Zhang; FN339, I-TAS-

SER_FUNCTION) performed better than the rest, while the

following ten prediction groups performed comparably well.’’

(Schmidt et al., 2011).

Overall, for the 31 evaluated proteins, the binding-site resi-

dues were predicted with an average MCC of 69%, which is

slightly higher than the above benchmark test because CASP9

has more easy targets (Schmidt et al., 2011). For the best 24

proteins, more than 50% ligand interacting residues were

correctly identified. We observed that most of the high precision

predictions are for binding-sites harboring nonmetal ligands

(average precision of 75.5%), whereas the binding-site residues

for metal ions have a slightly lower average precision 69.8%. The

metal ion binding residues also show large variations in their

prediction recall. One of the major reasons for the moderate

metal-involved predictions is the relatively lower quality of

receptor models. The average TM-score is 0.66 ± 0.21 for the

metal-bound proteins whereas that for nonmetal proteins is

0.82 ± 0.12. Also, in some of these metal-binding proteins

COFACTOR additionally predicted nonmetal ligand binding sites

(for example PO43� in T0635) and was the source of overpredic-

tion. Nevertheless, similar to observations in the benchmarking

analysis, in most of the cases, the predicted and native ligands

are highly similar, implying the applicability of COFACTOR for

a more detailed elucidation of protein function.

Figure 6 shows two representative examples of easy and hard

test cases, T0609 and T0518, for which COFACTOR predictions

significantly outperformed other groups. Target T0609 (PDB ID:

3os7) is a putative galactose mutarotase crystallized with tartaric

acid. Although the crystal structure was solved without the native

ligand, the CASP9 assessors inferred that the protein binds b-D-

galactose (GAL) in the same binding cleft as the crystallized tarta-

ric acid. Figure 6A shows the successful prediction (MCC = 0.82,

accuracy = 0.75) by COFACTOR for this target, where four of

the five binding site residues were correctly identified (shown in

green). This prediction was deduced from a distant homolog

protein of Gal10 bifunctional protein (PDB ID: 1z45) from Saccha-

romycescerevisiae,whichalsobindsGAL.Mostgroups inCASP9

missed the prediction because the template by threading has
, 987–997, June 6, 2012 ª2012 Elsevier Ltd All rights reserved 991



Table 2. Binding Site Predictions by COFACTOR for 31 CASP9 Targets

Target TM-Scorea Native Ligand(s) Predicted Ligand(s) C-scoreLB MCC Pre Rec

T0515b 0.89 PLP, LYS ORX, PLP 0.61, 0.45 0.68 0.64 0.75

T0516 0.89 PF1 PF1, HMH 0.79, 0.88 0.84 0.85 0.85

T0518 0.80 NA CA, MN 0.41, 0.39 0.38 0.38 0.43

T0521 0.52 2 CA 4 CA 0.67, 0.76, 0.66, 0.60 0.08 0.10 0.22

T0524b 0.87 GAL GAL 0.75 0.66 0.73 0.62

T0526b 0.88 GLA GAL 0.55 0.46 0.42 0.56

T0529 0.23 MN ZN, AMP 0.72, 0.23 0.55 0.31 1.00

T0533 0.79 PHE 2 PHE 0.88, 0.09 0.88 1.00 0.79

T0539 0.64 ZN, ZN ZN, ZN 0.85, 0.77 1.00 1.00 1.00

T0547b 0.71 PLP, LYS PLP, LYS, AZ1, ORX, P3T 0.61, 0.61, 0.61, 0.54,0.54 0.77 0.74 0.82

T0548 0.56 ZN SAL, ZN 0.21, 0.67 0.69 0.50 1.00

T0565b 0.74 DGL, ALA DLG, ALA, UNL 0.88, 0.50, 0.52 0.86 1.00 0.75

T0570 0.88 MG, GOL CA, GOL, PO4 0.83, 0.21, 0.34 0.87 0.88 0.88

T0582 0.85 ZN ZN 0.64 1.00 1.00 1.00

T0584b 0.83 IPR, DST IPR, RIS, MG, MG, PO4 0.51, 0.25, 0.68, 0.75, 0.58 0.75 0.63 0.92

T0585 0.78 ZN ZN 0.85 0.77 1.00 0.60

T0591 0.89 LLP PLP, PLP 0.83, 0.81 0.76 0.65 0.91

T0597 0.86 ANP MG, ATP, AMP 0.93, 0.83,0.80 0.70 0.80 0.63

T0599b 0.95 ISC MG, ISC 0.88, 0.83 0.83 0.75 0.92

T0604 0.41 FAD FAD 0.72 0.45 0.54 0.42

T0607b 0.86 ZN, ZN, BES MN, MN, BIB 0.93, 0.83, 0.68 0.50 0.71 0.36

T0609b 0.78 GAL GAL 0.74 0.82 0.75 0.90

T0613b 0.96 GAR, NHS UNL, THH 0.48, 0.58 0.70 0.77 0.67

T0615b 0.71 MN, GPX MN, PO4 0.83, 0.77 0.50 0.83 0.33

T0622b 0.69 NAD NAD,ATP 0.66, 0.71 0.76 0.67 0.93

T0625 0.74 ZN ZN 0.79 1.00 1.00 1.00

T0629 0.34 6 FE ZN 0.45 0.37 1.00 0.14

T0632 0.74 COA COA, PHB 0.68,0.60 0.46 0.67 0.38

T0635 0.91 CA MG, PO4 0.96, 0.90 0.60 0.38 1.00

T0636b 0.93 HAS, PLP HAS, PMP, PMP 0.51, 0.32, 0.51 0.79 0.78 0.82

T0641 0.91 STE PLM 0.82 0.83 0.80 0.89

Average 0.69 0.72 0.72

MCC, Matthews’s correlation coefficient; PDB, Protein Data Bank; Pre, precision; Rec, recall.
aTM-score of I-TASSER models for the target protein.
bHolo structure of these proteins was solved with nonnative ligand and the native ligand binding information was inferred by CASP9 assessors from

homologous PDB structures.
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a poor alignment quality; while COFACTOR used the I-TASSER

full-length models (TM-score = 0.78), which correctly detected

the template with correct alignment by TM-align. This is an

example showing the advantage of COFACTORby using a better

quality of receptor models by I-TASSER.

T0518 (PDB ID: 3nmb) is a putative sugar hydrolase crystal-

lized with sodium ion. Although the receptor was an easy target

for structure modeling (TM-score of I-TASSER model is 0.80)

and a close homolog (PDB ID: 3imm) had a very similar Na+

binding site, most predictors in CASP9 failed to predict the

binding site because Na+ was considered a crystallization arti-

fact. The COFACTOR template library also missed this template

protein. However, a local similarity was detected between the

I-TASSER model and peanut-lectin (PDB IDs: 2dv9 and 2tep).

Two binding sites for Mn2+ and Ca2+ were then predicted by
992 Structure 20, 987–997, June 6, 2012 ª2012 Elsevier Ltd All rights
COFACTOR although with a low confidence score in the same

binding cleft. Out of the seven native ligand-binding residues

(Figure 6B), three residues were correctly identified (shown in

green). Five were incorrectly annotated as binding residues

(shown in red), whereas four correct residues (shown in yellow)

were missed during the prediction. Nonetheless, T0518 repre-

sents a typical successful example, where although a close

template was not present in the template library, COFACTOR

correctly identified a remote homolog of the protein using local

comparisons and provided a reasonable prediction that could

be useful for understanding the function.

Why Does COFACTOR Work?
An important question is: why COFACTOR outperforms most of

the state-of-the-art methods in the overall binding site prediction
reserved



Figure 6. Examples of Successful Predictions by COFACTOR in

CASP9

Models in (A) and (B) are from T0609 and T0518, respectively. Correctly pre-

dicted residues are shown in green (true positive), false positive predictions

highlighted in red, and false negatives residues shown in yellow. The overall

ranking results of all targets in CASP9 can be seen in Figure S3.
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accuracy, although both COFACTOR and these other methods

have exploited the sequence and structural information in their

predictions?

In Figure 7A, we analyzed the dependence of binding pocket

predictions by COFACTOR and the two control methods (FIND-

SITE and ConCavity) on the accuracy of predicted receptor

structure. For clearness, the data set in Figure 7 includes only

those proteins on which the three methods perform differently.

A more complete version of the data is presented in Figure S4

that contains all protein targets, including those on which the

three methods are all successful and failed. The local structure

quality of predicted receptors is evaluated by the root-mean-

square deviation (RMSD) of known ligand binding residues,

whereas that of global structure is measured by the RMSD of

full-length receptor models. For targets with approximately
Figure 7. Influence of Local and Global Protein Structure Modeling on

(A) Structural accuracy of ligand binding residues versus the accuracy of full-leng

receptor models are shown in the inset.

(B) Local versus global similarity of template to target structures. The local similar

measured by TM-score of template and the I-TASSER model. In both the plots,

represented by different symbols. For clarity, data points of binding pockets for w

methods failed to identify the pocket (147cases) have been omitted.

See also Figures S2 and S4.
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correct global topology (RMSD <8 Å), all three methods have a

reasonable ability to predict the ligand binding pocket. Neverthe-

less, COFACTOR generates 15% and 92% more correct

(distance error <4.5 Å) binding pocket predictions than FINDSITE

and ConCavity (Figure 7A, inset), respectively. Moreover, in

these correct predictions, the average distance error of pocket

prediction by COFACTOR is lower (1.9 Å), compared to that by

FINDSITE (2.1 Å) and ConCavity (3.0 Å), which highlights the

fact that a combination of local and global structural alignment

improves the accuracy of binding site predictions for easy

modeling proteins.

Even for the harder cases, when the global topology of the

receptor models is incorrect (global RMSD >8 Å) but the ligand

binding pocket is correctly formed (local RMSD <8 Å),

COFACTOR had 13% and 94% more correct predictions, com-

pared to the control methods (lower-right area of Figure 7A),

respectively. Because the topology of the receptor models is

incorrect, methods that rely only on global comparisons will

have difficulty to identify the correct template, which was

improved in COFACTOR by using local structural comparisons.

In Figure 7B, we analyzed the performance of COFACTOR

in relation to global and local similarity between target and

template structures. When target and template proteins have

a similar fold (TM-score >0.5) and the local match near the

binding pockets are significant (BS-score >1.0), i.e., upper-right

region of Figure 7B, in 80% cases the predictions generated

by COFACTOR were correct and the average distance error

was 1.81 Å. Conversely, for protein that use template proteins

of the same fold but the local match was relatively poorer (BS-

score <1.0, the lower-right region of Figure 7B), the prediction

accuracy rapidly decreased to 53% and ligand distance error

increased to 2.3 Å. This highlights the sensitivity of local struc-

tural comparisons for selecting templates in template-based
the Accuracy of Ligand Binding Site Predictions

th receptor models. Ligand binding pocket predictions using higher resolution

ity is evaluated by BS-score (Equation 1), whereas global structural similarity is

the correct predictions with a distance error <4.5 Å by different methods are

hich either all the methods correctly identified the pocket (128 cases) or all the

, 987–997, June 6, 2012 ª2012 Elsevier Ltd All rights reserved 993



Figure 8. A Representative Example of COFACTOR Binding-Site Prediction Based on Local Structural Comparisons

Binding site residues of the carnitine CoA-transferase (PDB ID: 1xvtA) was detected using glucose-6-phosphate dehydrogenase (PDB ID: 2bh9A) as template

with MCC of 56% and precision of 75%. The NAP binding site in N-terminal domain of 2bh9A (ligand shown in magenta) was used for the prediction. The overall

TM-score of two structures is 0.36 (TM-score = 0.24 if only the binding domain of 1xvtA (4–330) and 2bh9A (27–199) is considered). The true positive residues are

shown in green and false positive ones are in red. Inset shows that CoA (native ligand) and NAP (predicted ligand) have similar chemical structure (adenine and

ribo-phosphate moiety shown in red). No local similarity was detected using the C-terminal NAP (shown in orange) binding site of template.
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binding site prediction methods in addition to the global struc-

tural similarity. Nevertheless, if we completely ignore the global

similarity (TM-score and IDstr) from C-scoreLB, the percentage

of the correctly predicted binding pocket is reduced from 65%

to 59% with the average distance error increasing from 1.9 Å

to 2.06 Å. Similarly, if we completely ignore the local similarity

search and use TM-align alignment for binding pocket predic-

tion, the percentage of correct predictions decreases to 48%

and the average distance error increases to 2.72 Å. Thus, both

the global and local comparisons are important in binding-site

recognitions.

We further examine cases in the upper left region of Figure 7B

that is most interesting because the templates used by

COFACTOR have a different fold from the query model (TM-

score <0.5). When a good local match near the binding pocket

is identified (i.e., BS-score >1), the binding pocket prediction is

correct in 75% cases, which is 88% and 67% higher than

the control methods FINDSITE and ConCavity, respectively, in

the same region. Apparently the advantage of algorithm on the

proteins in this category contributes the most to competition of

COFACTOR to these two methods.

A further analysis of all the predictions based on templates of

different folds reveals that the average sequence similarity

between the target and template binding site residues is 56 ±

27% for the correctly predicted targets, whereas that for the

failed predictions is only 35 ± 19%. The average structural simi-
994 Structure 20, 987–997, June 6, 2012 ª2012 Elsevier Ltd All rights
larity (measured using left-hand term in Equation 1) of the local

binding motifs for the correctly predicted cases are relatively

more conserved (0.66 ± 0.21), than for incorrect predictions

(0.45 ± 0.20). These data suggest that both ligand binding resi-

dues and the spatial position of the residues have been highly

preserved in functional sites during evolution, even though the

overall structural similarity has dwindled. Therefore, a combina-

tion of both structural and sequence similarity in the local pocket

comparison is essential.

In Figure 8, we show a successful example fromcarnitine CoA-

transferase (PDB ID: 1xvtA), which demonstrates the strength of

local structural matches. In this example, the correct template

protein is from the glucose-6-phosphate dehydrogenase (PDB

ID: 2bh9A) that has, however, a completely different overall

fold with a TM-score to the target 0.36 (Figure 8). Nevertheless,

the structure of both template and target contains a pocket with

three-layer (aba) sandwich architecture in their N-terminal

region, which forms a NADP+ (bound NAP in 2bh9A) binding

site in glucose-6-phosphate dehydrogenase and a CoA binding

site in carnitine CoA-transferase. Although there is no global

structural similarity, COFACTOR identifies this local structural

similarity of the two proteins with a high BS-score, which results

in predicted ligand-binding residues with an MCC of 56% and

precision of 75%. The predicted ligand (NAP) for the query

contains the same adenine and ribo-phosphate moiety as

‘‘native’’ ligand (bound CoA in 1xvtA).
reserved
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All the data of COFACTOR ligand binding prediction presented

in Figures 2, 3, 7, and 8 using the I-TASSER models, as well as

the template distributions for each entry, are listed on our web

page at http://zhanglab.ccmb.med.umich.edu/COFACTOR/

benchmark.

DISCUSSION

A hierarchical approach, COFACTOR, for high accuracy predic-

tion of protein-ligand interaction has been developed. Anatomy

of results obtained on a large-scale data set containing function-

ally diverse proteins, shows that the algorithm could accurately

identify binding pockets in 65% of cases with an average error

of 2 Å, when predicted protein structures were used and homol-

ogous templates were completely excluded from both structure

and protein-ligand template libraries. In 90% of the cases,

without knowing the ligand a priori, the ligand interacting resi-

dues were assigned with an average Matthews correlation coef-

ficient of 60% and precision of 73%.

We have analyzed the predicted binding sites for both natural

and drug-like molecules, but no significant difference was

observed between the predictions for the two classes of mole-

cules. In particular, for 70% of the proteins with bound natural

ligand, the predicted ligand shared a high chemical similarity to

the bound ligand in native state, which suggests a potential

application of the method for a more elaborate functional eluci-

dation of uncharacterized proteins. Successful predictions

were also observed for drug-like compounds, which open up

the possibility for structure-based drug design even for proteins

that have no structural information.

We have compared our benchmarking results with two

recently developed structure-based methods (FINDSITE and

ConCavity). Starting from the same set of structural models,

the MCC of ligand-binding residue predicted by COFACTOR is

17% and 57% higher than that by FINDSITE and ConCavity,

respectively, whereas the distance error in locating ligand-

binding pocket by COFACTOR is 0.7 Å and 2.7 Å lower than

that by the aforementioned two control methods. In the recent

community-wide CASP9 experiment (Schmidt et al., 2011),

COFACTOR achieved an average MCC 0.69 and precision

0.72, which significantly outperforms all other methods from 33

participating groups (Figure S3).

The major advantage of COFACTOR over the existing

methods is the optimal combination of global and local structural

comparisons for identifying ligand-binding sites. First, it outper-

forms the popular cavity-based methods (Capra et al., 2009;

Laskowski et al., 2005; Sael and Kihara, 2010) in the cases

when only low-resolution protein models are available, because

global topology comparisons can reliably identify the correct

functional templates as their accuracy is not sensitive to the local

structural errors. Second, for proteins that have functional

templates with different global topology but similar conserved

binding pockets, local structural comparisons help COFACTOR

to correctly recognize the ligand-binding residues, which cannot

be achieved by the purely global structural comparison methods

(Brylinski and Skolnick, 2008; Oh et al., 2009; Wass et al., 2010).

The latter advantage of local structural comparison is particu-

larly important for functional annotations of proteins in the

so-called ‘‘twilight-zone’’ regions, where the protein structure
Structure 20
prediction methods often have difficulties in generating correct

global fold due to the lack of appropriate templates. However,

many methods, including I-TASSER (Roy et al., 2010; Zhang,

2007), can almost always generate models with correct super-

secondary structures (Ben-David et al., 2009; Jauch et al.,

2007), especially in the functionally conserved regions, which

provide important insight for local-structure based functional

inferences. Thus, combining the presented method with the

state-of-the-art protein structure predictions represents an

automated and optimal method for genome-wide structural

and functional annotations for the majority of the proteins that

lack experimental structures.

A couple of improvements are planned for further develop-

ment of COFACTOR algorithm. First, the algorithm currently

uses Needleman-Wunsch (NW) dynamic programming (Needle-

man andWunsch, 1970) as the search engine to identify the best

local match between target and the template proteins. Because

the NW alignment is sequence-order dependent, it may limit

the applicability of the algorithm to the broader range of

functional sites because the spatial order of ligand-binding resi-

dues is often different from the sequential order. Developing a

sequence-order independent search engine will help identify

these cases. Second, the current COFACTOR prediction is

based on the comparison analysis of monomer chains, although

in many cases active/binding sites are located at protein-protein

interfaces. Although all the ligand-binding templates (regardless

of their interaction status) are included as monomers in the

COFACTOR library and the ligand-binding from protein-protein

interactions can be in principle predicted by the current algo-

rithm if monomer similarity is sufficiently high, the inclusion of

the complex structures in the comparisons may further improve

the precision and recall of the algorithm.

EXPERIMENTAL PROCEDURES

For a target protein, the structure models are first generated by the automated

I-TASSER structural assembly method (Roy et al., 2010; Wu et al., 2007). The

ligand binding information is then derived from the known proteins (templates)

in a comprehensive protein-ligand complex library, where the best templates

are identified using both global and local structure comparisons between the

target and template proteins. In the benchmarking test, to exclude the contam-

ination of homologous proteins, all templates having a sequence identity

>30% to the target, were removed from both our structure and function

libraries. A flowchart of the COFACTOR algorithm is shown in Figure 1, where

a detailed description is provided in Figure S1 and the related discussions in

Supplemental Information.

The global structure match is performed by TM-align (Zhang and Skolnick,

2005), which identifies the best alignment between the target and template

structures by a heuristic dynamic programming iteration using TM-score rota-

tion matrix. A TM-score (Zhang and Skolnick, 2004), with the value in [0, 1],

is reported to assess the global structural similarity. All template proteins

with a nonrandom structural similarity (i.e., TM-score >0.3) to the target

structure (Xu and Zhang, 2010) (or up to top 100 templates if less than 100

templates have such TM-score, which rarely happen) are selected for further

processing.

The local match between the target and template proteins is conducted in

two steps (Figure S1). The first step is to identify a set of conserved residues

in target that are used as the seed of local structure comparisons. For this

purpose, multiple sequence alignment (MSA) of the query target sequence is

constructed by PSI-BLAST (Altschul et al., 1997) through the NCBI nonredun-

dant (NR) sequence database. Conserved residues in query sequence are

then identified from the MSA based on their Jensen-Shannon divergence

score (Capra and Singh, 2007). Triplets of these conserved residues (noted
, 987–997, June 6, 2012 ª2012 Elsevier Ltd All rights reserved 995
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as a, b, c), along with their two flanking residues, are used for generating initial

candidate binding-site motifs. This is based on the fact that residues lining the

ligand binding pocket are evolutionarily more conserved than the rest of the

sequence (Valdar, 2002); therefore by generating the motifs using only evolu-

tionarily conserved residues, the search space is largely reduced. Similarly, for

any given template protein (t) with known binding site (b), motifs are generated

by selecting ligand-interacting residue triplets (ltb, mtb, ntb, see Figure S2).

In the second step, the structure of each of the candidate binding site motifs

(a, b, c) is superposed on the template motif (ltb, mtb, ntb). The rotation and

translation matrix acquired from this local superimposition is used to bring

the complete structure of query and template proteins together. A sphere of

radius r is then defined around the geometric center (Ctb) of template motif,

where r is the maximum distance of template binding site residues from Ctb

(Figure S2A). The sphere here defines a local environment, under which the

compatibility of query and template to bind similar ligand is compared, based

on the sequence and structure similarity of residues lining the pocket. The

query-template alignment within the selected sphere area provides an initial

seed alignment, which is refined further using a iterative NW dynamic

programming (Gotoh, 1982). The alignment score Sij during this iteration is

given by

sij =
1

1+

�
dij

d0

�2
+Mij ;

where dij is the Ca distance between ith residue in the query and jth residue in

the template, d0 = 3 Å is the distance scaling factor, andMij is the substitution

score between ith and jth residues taken from BLOSUM62 matrix. For each

alignment, a raw alignment score is defined for evaluating the binding site

similarity (BS-score), given by

BS� score=
1

Nt

XNali

i = 1

1

1+

�
dii

d0

�2
+
1

Nt

XNali

i = 1

Mii ; (1)

where Nt represents the total number of template residues in the binding site

sphere andNali is the number of aligned residue pairs in the sphere. This proce-

dure is repeated until the final alignment is converged. This local search proce-

dure is performed for all possible candidate binding site motifs (a, b, c) and

known binding site residues triplets (ltb, mtb, ntb). It should be noted that the

first step PSI-BLAST based conservation analysis was used only to generate

initial candidate motifs and the final binding sites can be completely different

from the initial assignment dependent on the local structure comparisons.

For each template binding site (b), the region that gives the highest BS-score

is recorded as the corresponding predicted binding site in the query, and the

residues aligned with known binding site residues in the template are assigned

as the binding site residues in target. As the ligand copied directly from the

template may have overlaps with the target structure, a quick Metropolis

Monte-Carlo simulation is performed for each inferred ligand to improve the

local geometry bymaximizing the number of contacts between ligand and pre-

dicted residues, meanwhile minimizing the protein-ligand overlaps.

The predicted ligand conformations from all the templates are clustered

based on their spatial proximity with a distance cutoff 8 Å. If a binding pocket

binds multiple ligands (e.g., an ATP binding pocket may also bind MG, PO43�,
and ADP), ligandswithin the same pocket were clustered further based on their

chemical similarity using Tanimoto coefficient. Finally, the model with highest

ligand-binding confidence score (C-scoreLB) among all the clusters is

selected, which is defined as:

C� scoreLB

=
2

1+ e
�

�
N

Ntot

3

�
0:25BS� score+TM� score+ 2:5IDStr +

2

1+ hDi
�� � 1;

(2)

where N is the multiplicity of ligand decoys in the cluster and Ntot is the total

number of predicted ligands using the templates. BS-score defined in

Equation 1 and TM-score measure local and global similarity of the target

to the template protein, respectively. IDstr is sequence identity between the

target and the template in the structurally aligned region. <D> is the average
996 Structure 20, 987–997, June 6, 2012 ª2012 Elsevier Ltd All rights
distance of the predicted ligand to all other predicted ligands in the same

cluster. C-scoreLB represents a combined score of the cluster size, and

local and global similarities of sequence and structure between target and

functional templates.
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