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Abstract

The epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) is an important protein target for anti-tumor drug
discovery. To identify potential EGFR inhibitors, we conducted a quantitative structure–activity relationship (QSAR) study on
the inhibitory activity of a series of quinazoline derivatives against EGFR tyrosine kinase. Two 2D-QSAR models were
developed based on the best multi-linear regression (BMLR) and grid-search assisted projection pursuit regression (GS-PPR)
methods. The results demonstrate that the inhibitory activity of quinazoline derivatives is strongly correlated with their
polarizability, activation energy, mass distribution, connectivity, and branching information. Although the present
investigation focused on EGFR, the approach provides a general avenue in the structure-based drug development of
different protein receptor inhibitors.
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Introduction

The epidermal growth factor receptor (EGFR) is a transmem-

brane glycoprotein belonging to the human epidermal receptor

(HER) family [1]. It is a type I tyrosine kinase receptor which plays a

vital role in signal transduction pathways, regulating key cellular

functions such as cell proliferation, survival, adhesion, migration,

and differentiation [2–4]. The binding of a ligand to EGFR induces

conformational changes within the receptor which increase its

intrinsic catalytic activity of a tyrosine kinase and result in

autophosphorylation, which is necessary for biological activity

[5–7]. Mutations that lead to EGFR overexpression or overactivity

have been associated with a variety of human tumors, including

lung, bladder, colon, brain, and neck tumors [8–11]. Therefore,

inhibitors of EGFR — inhibiting EGFR’s kinase activity by

competing with its cognate ligands — may potentially constitute a

new class of effective drugs in clinical use or cancer therapy [12–14].

There are presently two main classes of EGFR inhibitors that

can be used in cancer therapy. Both classes — the quinazoline

derivatives [15–17] and the pyrimidin derivatives [18–20] —

consist of ATP-competitive small molecules. To discover new

effective EGFR inhibitors, investigators usually need to synthesize

many compounds and test their corresponding activities by cell-

based biological assay experiments, which is usually time-

consuming and manpower expensive [21,22]. Consequently, it is

of practical interest to develop reliable tools to predict biological

activities before synthesis.

Quantitative structure–activity relationship (QSAR) is the most

popular theoretical method for modeling a compound’s biological

activity from its chemical structure [23–28]. Using this approach,

scientists could predict the activities of series of newly designed

drugs before making the final decision on whether or not to

synthesize and assay them. The prediction is based on the

structural descriptors of the molecular features that most account

for the variations in biological activity. Furthermore, this method

also can identify and describe the most important structural

features of the compounds which are relevant to the variations in

molecular properties, thus, it also gains an insight into the

structural factors which affect the molecular properties. QSAR

models of EGFR inhibitors have been recently investigated with

encouraging results [29–33]. However, it is still vital to find faster

and more reliable methods to assess the capability of EGFR

inhibitors.

The exceedingly high dimension of the space of descriptors is a

major problem in developing QSAR models. For this reason,

increasing attention in the past several years has been devoted to

QSAR models developed by projection pursuit regression (PPR)

[34,35]. This is a general statistical technique that seeks the

‘‘interesting’’ projections of data from high-dimensional to lower-

dimensional space, with the purpose of extracting the intrinsic

structural information hidden in the high-dimensional data [36].

In the current investigation, two QSAR models were construct-

ed from a set of known quinazoline-derivative EGFR inhibitors

using multi-linear and non-linear regression approaches. The

stability and accuracy of the regression models were assessed

through an independent test set of EGFR inhibitors and a 5-fold

cross validation approach. The study sheds light on the structure–

activity relationship of this class of EGFR inhibitors and has the
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potential prediction ability to identify new EGFR inhibitors. In

addition, the explored structural features of the chemicals

described here may facilitate the design of further new inhibitors

with high pIC50 activities without any biological assay. Since the

prediction relies exclusively on structural descriptors, the approach

is expected to be of general use in drug design and discovery

research.

Materials and Methods

Data set
The present investigation considered 128 quinazoline deriva-

tives with known anti-cancer EGFR inhibitory activities

[20,30,37–41]. The structures and activities of these compounds

are listed in Table S1. The activities are expressed as pIC50

( = 2log (IC50)) values, where IC50 (nM) represents the concen-

tration of these compounds that produces 50% inhibition of the

kinase activity of EGFR. Our aim was to exploit these known

experimental activities to develop a QSAR model that would

predict, based on selected chemo-physical molecular descriptors,

the EGFR inhibitory activity of potential hits from the virtual

screening of a compound library. To this purpose, the set of

known EGFR inhibitors was randomly divided into two subsets: a

training set of 103 compounds and a test set of 25 compounds

(marked by asterisks in Table S1). The training set served to

construct the QSAR models, while the test set was used for the

model validation.

Generation of the molecular descriptors
Two-dimensional structures of the compounds were drawn by

using ISIS Draw 2.3 [42]. All the structures were fed into

HyperChem 7.0 [43] and pre-optimized with the MM+
molecular-mechanics force field. The structures were then

minimized in energy with the more precise semi-empirical AM1

method in MOPAC. After these steps, the DRAGON 5.4 [44] and

CODESSA [45] programs were used to calculate the molecular

descriptors from the structures, including 0D, 1D, 2D, and 3D

descriptors from DRAGON [46], and constitutional, topological,

geometrical, electrostatic, and quantum-chemical descriptors from

CODESSA. 0D descriptors contain constitutional descriptors; 1D

descriptors include functional-group counts and atom-centered

fragments; 2D descriptors contain topological descriptors, con-

nectivity indices, information indices, and eigenvalue-based

indices; 3D descriptors represent some novel exclusive DRAGON

descriptors and geometrical descriptors. There remained a total of

982 molecular descriptors after eliminating the constant and the

highly-correlated descriptors. Then the generated descriptors were

used to construct the regression models to predict the activities of

the compounds. In order to clarify the whole procedure, its

flowchart was drawn in Fig. 1.

Best multi-linear regression
Best multi-linear regression (BMLR) refers to a multi-linear

method which utilizes a more thorough procedure for finding the

best linear regression model, based on a dependent variable and

one or more independent variables [47]. The BMLR approach

has several advantages, including high speed and no restriction on

the size of the data set. It can either give a good estimation of the

degree of correlation to expect from the data, or derive several best

regression models. Moreover, it can highlight which descriptors

have bad or missing values, which are insignificant, and which are

highly inter-correlated. For these reasons, the BMLR method was

chosen in this study to pre-select the most important descriptors

and to construct the linear QSAR model.

Projection pursuit regression
Projection pursuit regression (PPR), developed by Friedman and

Stuetzle [34], is a powerful method for seeking the interesting

projections from high-dimensional spaces into lower-dimensional

ones by means of linear projections. It can overcome the curse of

dimensionality because it relies on estimation at most trivariate

settings. At present, it has been successfully applied to tackle

several chemical problems [36,48]. Friedman and Stuetzle’s

concept of PPR avoided many difficulties compared with other

existing non-parametric regression procedures. Different from

recursive partitioning regression, it does not split the predictor

space into two regions, thereby allowing, when necessary, more

complex models. In addition, interactions of predictor variables

are directly considered because linear combinations of the

predictors are modeled with general smooth functions. The basic

theory of PPR can be found in references [34,35]. Here, only a

brief description is given. Let X be a (k6n) data matrix, where k is

the number of observed variables and n is the number of units. Let

also A be an m-dimensional orthonormal matrix A (m6k). Then the

(m6n) matrix Y = AX represents the coordinates of the projected

data in the m-dimensional (m , k) space spanned by the rows of A.

Because the number of possible projections is infinite, it is

important to have a technique to pursue a finite sequence of

projections that can reveal the most informative structures in the

data. Projection pursuit (PP) is a tool that combines both ideas of

projection and pursuit. [36] In a typical regression problem, PPR

aims to approximate the regression pursuit function f(x) by a finite

sum of ridge functions with suitable choices of ai and gi.

f (p)(x)~
Xp

i~1

gi(a
T
i x) ð1Þ

where the ai values are m6n orthonormal matrices and p is the

number of ridge functions. All programs implementing PPR were

written in R-script under the R2.9.0 environment [49] and were

executed on a Linux-operated Pentium IV with 4Gb of RAM.

Evaluation of QSAR models
The predictive accuracy of the QSAR models was evaluated in

terms of root-mean-square error (RMSE), defined as

Figure. 1. Flowchart of the QSAR study.
doi:10.1371/journal.pone.0022367.g001

Structure-Based Prediction of EGFR Inhibitors
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RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXns

i~1
(yie{yip)2

ns

s
ð2Þ

where ns is the number of known EGFR inhibitory compounds,

and yie and yip are, respectively, the experimental and predicted

EGFR inhibitory activities for the ith compound.

Results and Discussion

Best multi-linear regression model
The best multi-linear regression (BMLR) method was utilized to

develop a multi-linear QSAR model and select the most relevant

molecular descriptors based on the training set. A variety set of

descriptors have been tested for the selection of descriptors in

different linear regression models. To avoid model ‘‘over-

parameterization’’, an increase of the squared Pearson correlation

coefficient (R2) by less than 0.02 was chosen as the breakpoint

criterion. Fig. 2 shows the number of descriptors versus the values of

R2, the leave-one-out (LOO) cross-validation (RCV
2), and Fisher’s

F-test. It can be seen that nine descriptors are sufficient to optimize

the regression model of the pIC50 of EGFR inhibitors. The

optimum model is:

pIC50~{183:56z4:501MEERCH{143:52PMIC

{22:246(R4Uz)z2:569HATS3uz11:265SIC1

{3:621HATS5u{1072:7ANRICz25:826LP1

{1:161EEig09d

N~103,R2~0:7835,R2
CV~0:7335,S2~0:3087,F~37:39

8>>>>>>>><
>>>>>>>>:

ð3Þ

where N is the number of compounds in the training set, R2 is the

squared Pearson correlation coefficient, RCV
2 is the squared cross-

validation correlation coefficient, S2 is the squared standard

deviation, and F is the Fisher F-test function. There are nine

molecular descriptors selected. Three were calculated from

CODESSA: MEERCH (Min e-e repulsion for a C-H bond),

PMIC (Principal moment of inertia C), and ANRIC (Avg nucleoph.

react. index for a C atom); the other five descriptors were obtained

from DRAGON: R4U+, HATS3u, SIC1, HATS5u, LP1, and

EEig09d.

The descriptor MEERCH is a quantum mechanical energy-

related descriptor, used to characterize the total energy of the

molecule at different energy scales and intramolecular energy

distribution using different partitioning schemes. It is calculated as

follows:

Eee(CH)~
P

m,n[C

P
l,s[H

PmvPlsSmvjlsT ð4Þ

where Pmv and Pls are the density matrix elements and SmvjlsT
are the electron repulsion integrals on the atomic basis fmvlsg.
This descriptor refers to the electron repulsion-driven process in

the molecule and can be related to the conformational (rotational,

inversional) changes or atomic reactivity in the molecule [50]. The

descriptor PMIC is a geometrical descriptor which related with

their 3D-coordinates information of the atoms in the molecule. It

is equal to
P

i

miriz
2, where mi is the mass of the ith atom and riz

denotes the distance of the ith atomic nucleus from the main

rotational z-axis of the molecule [51]. As an expression of the

principal moment of inertia, this descriptor characterizes the

distribution of mass in the molecule. The descriptor ANRIC is a

quantum chemical descriptor of the average value of the atom C

nucleophilic (NA) Fukui reactivity indices [52] for carbon in the

molecule, which are defined as follows:

NA~
X
i[A

CiHOMO
2=(1{eHOMO) ð5Þ

where, CiCHOMO denotes the ith AO coefficient for the highest

occupied molecular orbital (HOMO), and eHOMO is the energy of

these orbitals. The reactivity indices estimate the relative reactivity

of carbon in the molecule for the given series of compounds and

are related to the activation energy of the corresponding chemical

reaction. The descriptor R4U+, which belongs to the GETAWAY

(GEometry, Topology and Atom-Weights AssemblY) descriptors,

is the R maximal autocorrelation coefficient of lag 4/unweighted

and R autocorrelation coefficient of lag 5/unweighted, respec-

tively. The R and R+ descriptors are analogously obtained from

the leverage/geometry matrix [53]. The descriptors HATS3u and

HATS5u are GETAWAY descriptors defined by the leverage-

weighted autocorrelation of lag 3 and lag5/unweighted, respec-

tively. They take into account 3D molecular geometry by using the

leverage values as atom weights [53]. The descriptor SIC1 is one of

the information indices of the molecule, the name standing for

Structural Information Content index (neighborhood symmetry of

1-order). It is defined by the application of information theory to

the chemical and bonding neighborhood of the atoms in the

molecule [54]; thus it might reflect molecular polarity and

polarizability. LP1 is the Lovasz–Pelikan index or leading eigen

value, and is a topological descriptor. It has been suggested as an

index of molecular branching, the smallest values corresponding to

chin graphs and the highest to the most branched graphs. In

equation (3) the LP1 contribution has a positive sign, which

indicates that the IC50 is inversely related to this descriptor;

therefore, increasing the branching of molecules leads to a

decrease in their IC50. The last descriptor, EEig09d, is a

topological molecular descriptor. It is defined as Eigenvalue 09

from the edge adj. matrix weighted by dipole moments, and

encodes the connectivity between graph edges.

Figure. 2. Influence of the number of descriptors on the square
of Pearson correlation coefficient (R2), leave one out (LOO)
cross-validation coefficient (Rcv

2), and F-values of the BMLR
models.
doi:10.1371/journal.pone.0022367.g002
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From the above presentation, it is concluded that the selected

descriptors can be interpreted reasonably, and the inhibition

ability of quinazoline derivatives mainly depends on the following

properties: polarizability, activation energy, mass distribution,

connectivity, and branching information. In order to facilitate our

understanding of the main features of EGFR inhibitors, we also

investigated one of the existing X-ray crystal structures of ligand-

bound EGFR [55]. As shown in Fig. 3, an amide nitrogen donor

of the ligand together with the carboxyl group of MET769 form a

hydrogen bond in the EGFR hinge region. Hydrogen-bond

interactions play a crucial role in ligand–protein binding; however

polarizability was one of the critical factors in forming the

interaction in a broader sense, involving both the hydrophilic and

hydrophobic regions of the receptor. In fact, the polarizability of

the ligand is essential to stabilize any generated hydrogen bonds.

Consistently with our QSAR study, Vema et al. [30], who docked

the selected drugs to the active binding site of the same EGFR

kinase domain, found that the regions of the receptor surface

around different branching places exhibited different electronic

properties, either electronegative or electropositive. Thus the

connectivity and branching information contributed greatly to the

docking and interaction of the ligands with EGFR. Such

information was helpful to clarify the mechanisms of molecular

docking encountered in drug-discovery studies.

The correlation matrix of these selected descriptors is shown by

a heat map in Fig. 4, produced with the R-package gplots [57].

The linear correlation coefficients of all descriptor pairs are at

most equal to 0.80 and the majority of them are below 0.3, which

demonstrates the relative independence of the selected descriptors.

Furthermore, the hierarchical clustering reveals noteworthy

contributions of the nature of the different selected molecular

descriptors. For example, descriptors EEig09d and LP1, accounting

primarily for the connectivity and branching information of the

molecule, cluster together. Similarly, descriptors HATS3u, HATS5u

and R4u belong to GETEWAY descriptors, and they are in the

same cluster, by representing the information of different atoms in

the molecules, and all related with the Cartesian coordinates of the

molecule atoms (including hydrogen) in a chosen conformation

[58]. Finally, the six descriptors which were calculated from

DRAGON were clustered together; and they can be viewed as

describing the intrinsic property of the molecules. Descriptors

ANRIC and MEERCH are clustered together. They were

calculated from quantum chemistry methods, and represent their

electron and nucleoph properties in the molecules. They related

with the activation energy and electronegativity of the molecule,

respectively, and simulated the interactions with other molecules.

The predicted pIC50 activity values for all the known EGFR

inhibitors, including the training and test sets are given in Table

S1, where the experimental pIC50 values are also listed. Fig. 5

shows the predicted versus the experimental pIC50 values for the

training and test sets, respectively. There is an obvious correlation

between the predicted and experimental values of pIC50, with the

square of Pearson correlation coefficients 0.7835 and 0.7595 for

the training and test sets, respectively. The whole statistical

parameters of the BMLR model are given in Table 1. There is no

notable difference in the correlation coefficient for the test and

training data, confirming that the model was indeed not ‘‘over-

trained’’.

Principal component analysis of the selected descriptors
Principal component analysis (PCA) is always used to reduce the

dimensionality of multidimensional variables and analyze complex

intrinsic features among variables. In the current research, PCA

method was performed using the selected nine descriptors with the

aim to show the spatial location of every drug, and also check the

distribution of the drugs in the training and test sets. The two

major principal components were given here. The explained

variance of these two components is 50.38% of the total

Figure 3. Crystal structure of EGFR bound to the 4-anilinoquinazoline inhibitor Erlotinib (PDB ID: 1M17). EGFR is represented by a
cartoon model, with the side chains of the binding site wire-framed in cyan and labeled. The inhibitor is represented by a stick-and-ball model, where
carbons are colored in yellow, nitrogens in blue, oxygens in red, and hydrogens in light grey. The hydrogen bond between an amide nitrogen donor
of the ligand and the carboxyl group of MET769 in the receptor is plotted as a red dotted line. Figure produced with the PyMOL program [56].
doi:10.1371/journal.pone.0022367.g003

Structure-Based Prediction of EGFR Inhibitors
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information (PC1 explained variance equals to 33.98%), thus the

most useful information was interpreted in the first two PCs. Fig. 6

illustrates a loading plot of these two components for the training

and test sets. From this figure, it can be seen that the samples in the

both training and test sets are well balanced and evenly scattered

over the whole space occupied by dissimilar plotting symbols. This

confirmed that the drugs in the training set can be used as the

representative samples of the whole data set, and the splitting

method is also reliable for the assessment of the predictive ability

and performance of different models.

Furthermore, it also illustrates that the nine selected variables

have various directions and various sizes in this figure. These

descriptors clearly distributed in the four different regions of

rectangular coordinate system: R4u+, HATS3u, HATS5u and

SIC1 in quadrant (I); RMIC and ANRIC in quadrant (II),

MEERCH in quadrant (III), and EEig09d and LP1 in the last

quadrant (IV) . All these information explored here consisted with

the results of former cluster analysis.

Projection pursuit regression model
After building the linear BMLR model, projection pursuit

regression (PPR) was applied to effectively project the nine

descriptors to a lower-dimensional space, and to perform a non-

linear regression in this lower dimensional space; the goal of the

regression was to correlate the EGFR inhibitory activity with the

structural information. The PPR approach requires the optimiza-

Figure 4. Heat maps of the correlation matrix of the molecular descriptors. Rows and columns are ordered according to a hierarchical
clustering (cluster tree lines on the side and top) of the selected molecular descriptors codes.
doi:10.1371/journal.pone.0022367.g004

Figure 5. Plot for the training and test EGFR inhibitors of the
pIC50 values predicted by the BMLR method versus the
experimental pIC50 values.
doi:10.1371/journal.pone.0022367.g005

Table 1. Comparison of the statistical results between the
BMLR and GS-PPR models.

Parameter Sets BMLR GS-PPR Ref. [30]

R2 Training set 0.7835 0.8534 0.8492

Test set 0.7595 0.8116 0.5325

All set 0.7808 0.8461 0.7691

RMSE Training set 0.5656 0.4345 0.4347

Test set 0.5280 0.5040 0.8455

All set 0.5355 0.4489 0.5514

Note: BMLR: best multi-linear regression; GS-PPR: grid search-projection pursuit
regression. R2: squared Pearson correlation coefficient between the
experimental and predicted pIC50 values. RMSE: root-mean-square error
between the experimental and predicted pIC50 values.
doi:10.1371/journal.pone.0022367.t001

Structure-Based Prediction of EGFR Inhibitors
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tion of several parameters, including ‘nterms’ and ‘max.terms’,

which represent the number of ridge terms included in the final

model and the maximum number of ridge terms for building the

model, respectively; the parameter ‘df’ defines the smoothness of

each ridge term by the requested equivalent degrees of freedom;

the levels of optimization (parameter ‘optlevel’) differ in how

thoroughly the models are refitted. At level 0 the existing ridge

terms are not refitted. At level 1 the projection directions are not

refitted, but the ridge functions and the regression coefficients are.

Levels 2 and 3 refit all of the terms and are equivalent for one

response; level 3 is more careful to re-balance the contributions

from each regression at each step and so is slightly less likely to

converge to a saddle point of the sum of squares criterion. Since

the traditional PPR method usually adopts a single-fact correction

analysis, the models they produce tend to be only local optima.

Here, the grid-search (GS) method was employed, which relies

instead on multi-fact correction analysis, thereby producing a final

model that is generally closer to the global optimum [59]. The

results indicate that the ‘optlevel’ and ‘df’ parameters influenced

the optimization only slightly. Figures 7(a) and 7(b) show the values

of R2 and RMSE, respectively, as a function of ‘max.terms’ and

‘nterms’, the two most important optimization parameters. The

optimum values of ‘nterms’, ‘max.terms’, ‘df’, and ‘optlevel’ are

determined as 3, 7, 8, and 1, respectively. In order to assess the

internal predictability of the training set, a 5-fold cross validation is

typically used, providing an estimate for the mean performance of

a model. The values of the statistical parameters of the 5-fold cross

validation were Rcv
2 = 0.7709, and RMSE = 0.6186. Furthermore,

the results of the test set prediction were confirmed by the external

prediction of the regression model. These data suggest that the

model we proposed has a robust prediction power.

Figure 6. Principal component analysis of the nine selected
descriptors. Arrows indicate the directions of the variable vectors in
the principal component space. Black circles denote compounds from
the training set, blue circles those from the test set.
doi:10.1371/journal.pone.0022367.g006

Figure 7. Statistical parameters of the training set and the test set during the optimization process of the PPR parameters by the
grid search method. (a): R2, (b): RMSE.
doi:10.1371/journal.pone.0022367.g007

Figure 8. Plot for the training and test EGFR inhibitors of the
pIC50 values predicted by the GS–PPR method versus the
experimental pIC50 values.
doi:10.1371/journal.pone.0022367.g008

Structure-Based Prediction of EGFR Inhibitors
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The predicted results and the statistical parameters of the

optimal PPR model are shown in Tables S1 and 1, respectively.

The scatter plot of the predicted versus the experimental pIC50

values is given in Fig. 8. From Fig. 8 and Table S1 it can be seen

that the predicted values are in good agreement with the

experimental values for almost all the compounds.

Comparison of results of obtained by different models
In order to check the superiority of these two different models

(BMLR and GS-PPR), the predicted results and the statistical

parameters for the training and the test sets were collected together

and shown in Tables S1 and 1, separately. As it can be seen from

this table, the improved non-linear regression method GS-PPR

outperforms the BMLR model according to the R2 and RMSE,

and it shows much better predictive ability, and its corresponding

predicted results indicate an appropriate fit of the model.

Previously, Vema et al. [30] used the 3D-QSAR method

molecular field analysis (MFA) and receptor surface analysis

(RSA) to investigate the inhibitory activities of the same data set.

The squared Pearson correlation coefficient (R2) of their best

model (RSA) is 0.8492 for the training set and 0.5325 for the test

set. All of the other statistical parameters were collected in Table 1.

By comparing these results, it can be concluded that the GS-PPR

method is a simple but with powerful predictive capability tool as

to the inhibitory activity of potential anti-EGFR drugs.

Conclusions
We have explored the features of potential inhibitors of

epidermal growth factor receptor, a vital protein target involved

in clinical anticancer therapies, based on linear and non-linear

QSAR models. A new non-linear QSAR method for the

prediction of EGFR inhibitory activity was developed, which

combines the grid search (GS) and projection pursuit regression

(PPR) techniques to infer biological activity from a set of molecular

descriptors; these were selected by the best multi-linear regression

(BMLR) exclusively from structural information. The GS-PPR

model showed a better predictive ability than the traditional linear

QSAR model, demonstrating that the combination of PPR and

GS is a valuable strategy for QSAR model building, at least for the

prediction of EGFR inhibitors. In addition, this investigation

shows that the structural features of quinazoline derivatives are

most relevant to quinazoline derivatives inhibition — namely,

polarizability, activation energy, mass distribution, connectivity,

and branching. The set of EGFR inhibitors, real or hypothetical,

which can possibly be examined by such studies, is large and

heterogeneous, due to the purely structural nature of the

molecular descriptors. The approach can be easily extended to

other cheminformatic and bioinformatics investigations, since the

small number of parameters to be optimized makes the training

procedure generally simple.

Supporting Information

Table S1 Structures and EGFR inhibitory activities of 128

known EGFR inhibitors.

(PDF)

Author Contributions

Conceived and designed the experiments: HYD YZ. Performed the

experiments: HYD. Analyzed the data: HYD ZDH AB YZ. Contributed

reagents/materials/analysis tools: HYD ZDH YZ. Wrote the paper: HYD

AB YZ.

References

1. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine
kinase activity. Cell 61: 203–212.

2. Verbeek BS, Adriaansen-Slot SS, Vroom TM, Beckers T, Rijksen G (1998)

Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human
breast cancer cells and NIH3T3 fibroblasts. Febs Letters 425: 145–150.

3. Wells A (1999) EGF receptor. International Journal of Biochemistry & Cell
Biology 31: 637–643.

4. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network.
Nature Reviews Molecular Cell Biology 2: 127–137.

5. Hsuan JJ (1993) Oncogene regulation by growth-factors. Anticancer Research

13: 2521–2532.
6. Soler C, Beguinot L, Carpenter G (1994) Individual epidermal growth-factor

receptor autophosphorylation sites do not stringently define association motifs
for several SH2-containing proteins. Journal of Biological Chemistry 269:

12320–12324.

7. Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS (1997) Epidermal
growth factor receptor (EGFR) and EGFR mutations, function and possible role

in clinical trials. Annals of Oncology 8: 1197–1206.
8. Toyoshima E, Ohsaki Y, Nishigaki Y, Fujimoto Y, Kohgo Y, et al. (2001)

Expression of syndecan-1 is common in human lung cancers independent of
expression of epidermal growth factor receptor. Lung Cancer 31: 193–202.

9. Gross ME, Zorbas MA, Danels YJ, Garcia R, Gallick GE, et al. (1991) Cellular

growth-response to epidermal growth-factor in colon-carcinoma cells with an
amplified epidermal growth-factor receptor derived from a familial adenomatous

polyposis patient. Cancer Research 51: 1452–1459.
10. Damstrup L, Rygaard K, Spangthomsen M, Poulsen HS (1992) Expression of

the epidermal growth-factor receptor in human small-cell lung-cancer cell-lines.

Cancer Research 52: 3089–3093.
11. van der Veeken J, Oliveira S, Schiffelers RM, Storm G, Henegouwen P, et al.

(2009) Crosstalk between epidermal growth factor receptor- and insulin-like
growth factor-1 receptor signaling: implications for cancer therapy. Current

Cancer Drug Targets 9: 748–760.
12. Bridges AJ (1999) The rationale and strategy used to develop a series of highly

potent, irreversible, inhibitors of the epidermal growth factor receptor family of

tyrosine kinases. Current Medicinal Chemistry 6: 825–843.
13. Boschelli DH (1999) Small molecule inhibitors of receptor tyrosine kinases.

Drugs of the Future 24: 515–537.
14. Ma XH, Wang R, Tan CY, Jiang YY, Lu T, et al. (2010) Virtual screening of

selective multitarget kinase inhibitors by combinatorial support vector machines.

Molecular Pharmaceutics 7: 1545–1560.

15. Abouzid K, Shouman S (2008) Design, synthesis and in vitro antitumor activity
of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR

tyrosine kinase. Bioorganic & Medicinal Chemistry 16: 7543–7551.

16. Wissner A, Overbeek E, Reich MF, Floyd MB, Johnson BD, et al. (2003)
Synthesis and structure-activity relationships of 6,7-disubstituted 4-anilinoquino-

line-3-carbonitriles. The design of an orally active, irreversible inhibitor of the
tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the

human epidermal growth factor receptor-2 (HER-2). Journal of Medicinal
Chemistry 46: 49–63.

17. Pawar VG, Sos ML, Rode HB, Rabiller M, Heynck S, et al. (2010) Synthesis

and biological evaluation of 4-anilinoquinolines as potent inhibitors of epidermal
growth factor receptor. Journal of Medicinal Chemistry 53: 2892–2901.

18. Klutchko SR, Hamby JM, Boschelli DH, Wu ZP, Kraker AJ, et al. (1998) 2-
substituted aminopyrido 2,3-d pyrimidin-7(8H) ones. Structure-activity relation-

ships against selected tyrosine kinases and in vitro and in vivo anticancer activity.

Journal of Medicinal Chemistry 41: 3276–3292.
19. Solca FF, Baum A, Langkopf E, Dahmann G, Heider KH, et al. (2004)

Inhibition of epidermal growth factor receptor activity by two pyrimidopyr-
imidine derivatives. Journal of Pharmacology and Experimental Therapeutics

311: 502–509.
20. Thompson AM, Bridges AJ, Fry DW, Kraker AJ, Denny WA (1995) Tyrosine

kinase inhibitors .7. 7-amino-4-(phenylamino)pyrido 4,3-d pyrimidines and 7-

amino-4- (phenylmethyl)amino pyrido 4,3-d pyrimidines - a new class of
inhibitors of the tyrosine kinase-activity of the epidermal growth-factor receptor.

Journal of Medicinal Chemistry 38: 3780–3788.
21. Ding K, Lu YP, Nikolovska-Coleska Z, Wang GP, Qiu S, et al. (2006) Structure-

based design of spiro-oxindoles as potent, specific small-molecule inhibitors of

the MDM2-p53 interaction. Journal of Medicinal Chemistry 49: 3432–3435.
22. Li N, Thompson S, Schultz DC, Zhu WL, Jiang HL, et al. (2010) Discovery of

selective inhibitors against EBNA1 via high throughput in silico virtual
screening. Plos One 5: e10126–e10129.

23. Nunez MB, Maguna FP, Okulik NB, Castro EA (2004) QSAR modeling of the
MAO inhibitory activity of xanthones derivatives. Bioorganic & Medicinal

Chemistry Letters 14: 5611–5617.

24. Hansch C, Verma RP (2009) Overcoming tumor drug resistance with C2-
modified 10-deacetyl-7-propionyl cephalomannines: A QSAR study. Molecular

Pharmaceutics 6: 849–860.
25. Mandal AS, Roy K (2009) Predictive QSAR modeling of HIV reverse

transcriptase inhibitor TIBO derivatives. European Journal of Medicinal

Chemistry 44: 1509–1524.

Structure-Based Prediction of EGFR Inhibitors

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e22367



26. Liu FP, Liang YZ, Cao CZ (2006) QSPR modeling of thermal conductivity

detection response factors for diverse organic compound. Chemometrics and

Intelligent Laboratory Systems 81: 120–126.

27. Liu HX, Gramatica P (2007) QSAR study of selective ligands for the thyroid

hormone receptor beta. Bioorganic & Medicinal Chemistry 15: 5251–5261.

28. Verma RP, Hansch C (2010) QSAR modeling of taxane analogues against colon

cancer. Eur J Med Chem 45: 1470–1477.

29. Pasha FA, Muddassar M, Srivastava AK, Cho SJ (2010) In silico QSAR studies

of anilinoquinolines as EGFR inhibitors. Journal of Molecular Modeling 16:

263–277.

30. Vema A, Panigrahi SK, Rambabu G, Gopalakrishnan B, Sarma J, et al. (2003)

Design of EGFR kinase inhibitors: A ligand-based approach and its confirmation

with structure-based studies. Bioorganic & Medicinal Chemistry 11: 4643–4653.
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