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    11.1.    INTRODUCTION 

 The post - genomic era is witnessing an upsurge of protein sequences in public 
databases. By the end of 2009, over 9 million protein sequences had been 
deposited in the Universal Protein Resource (UniProtKB)/TrEMBL    [1] . 
However, this increase in the amount of sequence data does not necessarily 
refl ect an increase in biological knowledge. One of the most challenging tasks 
that have emerged in recent years is to functionally characterize these 
sequences for better understanding of physiological processes and systems  [2] . 
This has motivated computational biologists to develop a variety of fast and 
accurate methods for quickly characterizing these sequences. 

 One of the most signifi cant efforts in this regard has been the development 
of powerful sequence alignment algorithms like Basic Local Alignment Search 
Tool  ( BLAST)  [3] , Position - Specifi c Iterative - BLAST (PSI - BLAST)  [4] , and 
hidden Markov model (HMM) techniques  [5,6] , which are frequently used for 
identifying evolutionary homologs and transferring functional annotations. 
The underlying assumption in these approaches is that evolutionarily related 
sequences fold similarly  [7,8]  and the functional similarity between these 
related proteins can be explored by detecting evolutionary relationship 
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between them  [9,10] . It has been estimated that using these approaches, func-
tional inference can be drawn for nearly 40 – 60% of the open reading frames 
(ORFs) in the genome  [11] . However, there are numerous cases where func-
tional conservation exists in evolutionarily diverged proteins but annotations 
cannot be transferred based on evolutionary - based approaches  [12,13] . At 
this juncture, it is apparent that protein sequences are generally insuffi cient 
for determining protein functionality and providing support for functional 
genomics  [14] . 

 The three - dimensional (3D) structure of a protein is closely linked to its 
biological function  [15] . As residues located far apart in the primary sequence 
may be very close in 3D space and only a few spatially conserved residues are 
generally responsible for a protein ’ s function  [16,17] , the 3D structure of a 
protein provides useful insight into the key component(s) of its functionality. 
This awareness and the limited number of solved protein structures in Protein 
Data Bank (PDB)  [18]  have actuated the structural genomics (SG) project to 
increase the throughput of experimental structure elucidation  [19 – 21]  and 
provide a framework for inferring molecular function  [22,23] . While the SG 
aims to structurally characterize the protein universe by an optimized combi-
nation of experimental structure determination and comparative modeling 
(CM) building, 3D structures of at least 16,000 optimally selected proteins 
would be required in order that the CM can cover 90% of protein domain 
families  [24]  and at the current rate it appears that this goal can be achieved 
only in the next 10   years  [25] . This underscores the need for computational 
methods for protein structure prediction, so that 3D structural models can be 
built and can provide insight for functional analysis. Also, the development 
of better structural refi nement and CM methods would dramatically enlarge 
the scope of structural genomics project. 

 Historically, protein structure prediction methods have been classifi ed into 
three categories: CM  [26,27] , threading  [28 – 33]  and  ab initio  modeling  [34 – 38] . 
In CM, the protein structure is constructed by matching the sequence of the 
protein of interest (query) to an evolutionarily related protein with a known 
structure (template) in the PDB  [18] , where the residue equivalency between 
query and the template is obtained by aligning sequences or sequence profi les. 
Threading - based methods match the query protein sequence directly to 3D 
structures of solved proteins with the goal of recognizing similar protein folds 
that may have no clear evidence of an evolutionary relationship with the query 
protein. The last resort for predicting the protein structure, when no good 
template is detected in the PDB library, is to predict the structure using  ab 
initio  modeling. Predictions based on this method assume that the native 
structure of a protein corresponds to its global free - energy minimum  [39]  and 
the conformational space is sampled to attain this state as guided by well -
 designed energy force fi elds. This is the most diffi cult category of protein 
structure prediction and if successful will provide the eventual solution to 
protein folding problem. However, the success of  ab initio  modeling is cur-
rently limited to small proteins with less than 100 amino acids  [34 – 38] . 
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 As a general trend in the fi eld of protein structure prediction, the borders 
between the conventional categories of methods have become blurred. For 
instance, both CM -  and threading - based methods use sequence - profi le and 
profi le - profi le alignments (PPA) for identifying templates. Similarly, most of 
the contemporary  ab initio  - based methods often use evolutionary information 
either for generating sparse spatial restraints or for identifying local structural 
building blocks. Recent community - wide blind tests have demonstrated 
signifi cant advantages of the composite approaches in protein structure pre-
dictions  [40 – 42] , which combines the various techniques from threading,  ab 
initio  modeling, and atomic - level structure refi nements  [43,44] . 

 In this chapter, we will focus on the methodology of I - TASSER  [35,44,45] , 
which serves as a case study of the composite approach for generating 3D 
structural models and predicting the function of a given query sequence. The 
performance of I - TASSER on benchmark tests and in the recent Critical 
Assessment of Protein Structure Prediction (CASP) experiments  [44,46]  will 
be discussed. Finally, in the concluding section, the current status and future 
perspective are summarized.  

   11.2.     I  -  TASSER : A COMPOSITE METHOD FOR PROTEIN 
STRUCTURE PREDICTION 

 I - TASSER  [35,44,45]  is a hierarchical protein structure modeling approach 
based on the multiple threading alignments and an iterative implementation 
of the Threading ASSEmbly Refi nement (TASSER) program  [47] . Figure 
 11.1  represents the schematic diagram of I - TASSER methodology for protein 
structure and function prediction, which consist of four consecutive steps of 
threading, structure assembly, structure refi nement, and function prediction.   

   11.2.1.    Threading of Query Sequence 

 Given a query protein, the fi rst step of I - TASSER is to thread the query 
sequence through a representative PDB structure library (sequence identity 
cutoff of 70%) with the objective of identifying the global or local threading 
alignments using either MUSTER  [29]  (single threading server) or LOMETS   
 [33]  (meta - threading server). In this section, we will fi rst describe the meth-
odology of MUSTER threading algorithm and then give an overview and 
advantage of using LOMETS, a meta - threading server. 

   11.2.1.1.     MUSTER  Threading Server.     MUSTER is a sequence PPA method 
assisted by the predicted structural information like secondary structure, 
structure profi les, solvent accessibility, backbone dihedral torsion angles, and 
hydrophobic scoring matrix. The scoring function of MUSTER  [29]  for 
aligning the  i th residue of the query and the  j th residue of the template is 
defi ned as
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    Score E E E E E E Eseq_prof sec struc_prof sa phi psi hydroi j,( ) = + + + + + + ++ Eshift .     (1)   

 The fi rst term, E seq_prof , is the alignment score of the sequence PPA. The second 
term, E sec , computes the match between the predicted secondary structure of 
query and secondary structure of templates. The third term, E struc_prof , calcu-
lates the score of aligning the structure - derived profi les of templates to the 
sequence profi le of query. The fourth term, E sa , computes the difference 
between the predicted solvent accessibility of query and solvent accessibility 
of templates. The fi fth and sixth terms (E phi  and E psi ) calculate the difference 
between the predicted torsion angles (phi and psi  ) of query and those of tem-
plates. The experimental torsion angles for templates are calculated using 
STRIDE  [52] , while torsion angles of query are predicted by ANGLOR  [53] . 
The seventh term, E hydro , is an element of hydrophobic scoring matrix  [54]  that 
encourages the match of hydrophobic residue (V, I, L, F, Y, W, M) in the 

     FIGURE 11.1     A schematic diagram of the I - TASSER  [35,44,45]  protein structure 
and function prediction protocol. Templates for the query protein are fi rst identifi ed 
by MUSTER  [29]  or LOMETS  [33] , which provide template fragments and spatial 
restraints. Template fragments are then assembled by modifi ed replica - exchange 
Monte - Carlo simulations. The conformations generated during the simulation are 
clustered using SPICKER  [48] , in order to identify the structure with the lowest free 
energy. As an iterative refi nement strategy, the cluster centroids are then subjected to 
the second round of simulation for refi ning the global topology and removing clashes. 
The fi nal all - atom models are generated by REMO through the optimization of 
hydrogen - bonding networks  [49] . Finally, functional homologs (protein structures with 
an associated EC number or GO terms) of fi nal models are identifi ed by using a 
sequence - independent structural alignment tool of TM - align  [50]  by ranking the hits 
based on their TM - score  [51] , RMSD and sequence identity in the structurally aligned 
region, coverage of the structural alignment, and confi dence score (C - score  [45] ) of the 
model.  (See color insert.)
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query and the templates. Finally the last term, E shift , is a constant, which is 
introduced to avoid alignment of unrelated residues in local regions. While 
the fi rst term is sequence - based information, the second to seventh terms are 
related to structural information. If only the fi rst two terms plus E shift  in 
Equation   1 are involved, the corresponding threading program is called PPA 
 [33] , which is the precursor of MUSTER. 

 The sequence and structural information are then combined into a single -
 body energy term, which can be conveniently used in the Needleman - Wunsch 
 [55]  dynamic programming algorithm for identifying the best match between 
the query and the templates. A position - dependent gap penalty in the dynamic 
programming is employed, i.e. no gap is allowed inside the secondary structure 
regions (helices and strands); gap opening ( g o  ) and gap extension ( g e  ) penalties 
apply to other regions; ending gap - penalty is neglected. 

 Following the dynamic programming alignments, the alignments on differ-
ent structural templates are ranked based on their alignment score and the 
length of the alignment. In PPA  [33]  the templates are ranked based on a raw 
alignment score ( R  score ) divided by the full alignment length ( L  full ; including 
query and template ending gaps) as shown in Figure  11.2 . In MUSTER, 
however,  R  score / L  partial  is used as another possible ranking scheme, where  L  partial  
is the partial alignment length excluding query ending gap as shown in Figure 
 11.2 . A combined ranking is then taken as follows: If the sequence identity of 
the fi rst template selected by  R  score / L  partial  to the query is higher than that 
selected by  R  score / L  full , then the template ranking is done by  R  score / L  partial . 
Otherwise, the templates are ranked by  R  score / L  full .   

 MUSTER was applied to a benchmark test of 500 non - homologous pro-
teins (Fig.  11.3 ) and compared with PPA  [29]  at two different cutoffs: (i) all 
homologous templates with sequence identity  > 30% to the query were 
removed (cutoff 1); (ii) all homologous templates with sequence identity 
 > 20% or detectable by PSI - BLAST with an e - value  < 0.05 were removed 
(cutoff 2).   

 Here, the comparison between threading alignments and the native struc-
tures was done by evaluating the template - modeling score (TM - score), defi ned 

     FIGURE 11.2     Illustration of the full ( L  full ) and partial ( L  partial ) alignment lengths used 
to normalize the threading alignment score ( R  score ). Symbols  “  -  ” ,  “ . ”  and  “ : ”  indicate 
an unaligned gap, an aligned nonidentical residue pair and an aligned identical residue 
pair, respectively. The query and template sequences are taken from 1hroA (fi rst 53 
residues) and 155c_ (fi rst 61 residues), respectively, as an illustrative example.  (From 
Wu and Zhang  [29] ).   
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by Zhang and Skolnick  [51] , to assess the topological similarity of protein 
structure pairs with a value in the range of [0, 1]. Statistically, a TM - score 
 < 0.17 means a randomly selected protein pair with the gapless alignment taken 
from PDB; TM - score  > 0.5 corresponds to the protein pairs of similar folds. 
The statistical meaning of TM - score is independent of protein size  [51] . 

 At cutoff 1, the average TM - scores of the best threading alignment gener-
ated by PPA and MUSTER are 0.4285 and 0.4503, respectively, which shows 
that the additional structural information in MUSTER has improved the 
threading results by approximately 5%. Even at a more stringent cutoff (cutoff 
2), MUSTER fi nds a better threading alignment with an average TM - score of 
0.3638, while best threading alignment found by PPA has an average TM - score 
of 0.3423. Thus, the average TM - score of the fi rst threading alignment by 
MUSTER at cutoff 2 is about 6% better than that of PPA alignment. The 
higher TM - score of MUSTER over PPA alignments is due to both the higher 
alignment coverage and the more accurate alignments as judged by the root -
 mean - square deviation (RMSD) within the aligned regions.  

   11.2.1.2.     LOMETS : Meta - Threading Server.     As shown in Figure  11.3 , 
although MUSTER is better than PPA on average, it cannot outperform PPA 
on all protein targets. A similar trend has also been observed in CASP/Critical 

     FIGURE 11.3     TM - score comparison between PPA and MUSTER for the fi rst 
threading alignment of 500 non - homologous proteins. Circles represent the alignments 
from the  “ Easy ”  targets (z - score of alignment by MUSTER  > 7.5 and z - score of PPA 
alignment  > 7.0) and crosses indicate those from the  “ Hard ”  targets (z - score of align-
ment by MUSTER  < 7.5 and z - score of PPA  < 7.0). All homologous templates with 
sequence identity to targets (a)  > 30% (b)  > 20%, or detectable by PSI - BLAST with an 
e - value  <  0.05 are excluded in this comparison. After removing homologous templates, 
the fi rst template alignments by MUSTER for (a) 224 proteins and (b) 137 proteins 
have a correct fold (TM - score  > 0.5).  (From Wu and Zhang  [29] ).   

c11.indd   248c11.indd   248 8/20/2010   3:36:59 PM8/20/2010   3:36:59 PM



I-TASSER: A COMPOSITE METHOD FOR PROTEIN STRUCTURE PREDICTION   249

Assessment of Fully Automated Structure Prediction (CAFASP) experiments 
 [42,56] , where although the average Global Distance Test (GDT) or TM - score 
of some methods outperform others, there is no single method that can out-
perform others on all the targets. This inconsistency naturally leads to the 
prevalence of the metaserver  [33,57] , which is designed to collect and combine 
prediction results from a set of individual threading programs. 

 On the I - TASSER web server (http://zhanglab.ccmb.med.umich.edu/
I-TASSER) this idea has been implemented using LOMETS  [33] , a locally 
installed meta - threading server. The threading programs in LOMETS repre-
sent a diverse set of the state - of - the - art algorithms using different approaches, 
namely, sequence profi le alignments (PPA - I  [33] , PPA - II  [33] , SPARKS2  [33] , 
SP 3   [58] ), structural profi le alignments (FUGUE  [59] ), pairwise potentials 
[PROSPECT2]  [31] , PAINT  [33] ), and the HMM (HHSearch  [5] , SAM   - 
T02  [60] ). 

 For each target, LOMETS fi rst threads the query sequence through the 
PDB library to identify template threading alignments by each threading 
program and then ranks them purely based on consensus. The idea behind the 
consensus approach is simple: there are more ways for a threading program 
to select a wrong template than that to select a right one. Therefore, the chance 
for multiple threading programs working collectively to make a common wrong 
selection is lower than the chance to make a common correct selection. 

 Table  11.1  shows the improvement of LOMETS over individual threading 
programs. For the purpose of eliminating the dependence on the alignment 
coverage, the full - length models have been built here by MODELLER  [26] , 
using the templates from each threading program. Based on 620 non -
 homologous testing proteins, the models generated by LOMETS threading 

  TABLE 11.1    Performance Comparison of Component Threading Programs and 
 LOMETS  Metaserver on 620 Non - Homologous Testing Proteins 

   Threading 
Servers or 
Metaservers  

   TM - score (MODELLER 
models)  

   RMSD ( Å ) (MODELLER 
models)  

   First Model     Best in Top 
Five Models  

   First Model     Best in Top 
Five Models  

  PPA - I    0.4117    0.4531    16.66    14.02  
  SP3    0.4138    0.4551    13.86    12.83  
  PPA - II    0.4076    0.4512    14.89    13.02  
  SPARKS2    0.3973    0.4441    13.60    12.23  
  PROSPECT2    0.3914    0.4384    13.01    12.02  
  FUGUE    0.3721    0.4173    19.26    15.82  
  HHSEARCH    0.3827    0.4224    22.38    19.04  
  PAINT    0.3758    0.4210    15.74    14.21  
  SAM - T02    0.3575    0.3971    21.75    17.53  
  LOMETS    0.4434    0.4669    10.99    10.61  
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alignments achieve an average TM - score of 0.4434, which is at least 8% higher 
than that by any individual threading program.     

   11.2.2.    Structure Assembly and Refi nement 

 Following the threading procedure, the next step of I - TASSER is to generate 
the full - length model of the query protein and to refi ne the structure so that 
threading - aligned regions move closer to native structure. To achieve this, the 
complete protein chain in I - TASSER is divided into threading - aligned and 
unaligned regions, where the continuous fragments are excised from threading 
alignments, while the threading unaligned regions are build by  ab initio  model-
ing. The protein chain here is described by a reduced model, that is, a trace 
of alpha - carbon atoms and side chain center (SC) of mass to reduce the 
number of explicitly treated freedom and the intra - molecular interactions in 
the polypeptide chain. We will elaborately describe the whole procedure now. 

 For a given threading alignment, I - TASSER builds an initial full - length 
model by connecting the continuous secondary structure fragments ( ≥ fi ve 
residues) through a random walk of C  α   – C  α   bond vectors of variable lengths 
from 3.26    Å  to 4.35    Å . To guarantee that the last step of this random walk can 
quickly arrive at the fi rst C  α   of the next template fragment, the distance  l  
between the current C  α   and the fi rst C  α   of the next template fragment is 
checked at each step of the random walk, and only walks with  l     <    3.54 n  are 
allowed, where  n  is the number of remaining C  α   – C  α   bonds in the walk. If the 
template gap is too big to be spanned by a specifi ed number of unaligned resi-
dues, a big C  α   – C  α   bond is kept at the end of the random walk and a spring - like 
force that acts to draw sequential fragments close will be applied in subsequent 
Monte - Carlo simulations, until a physically reasonable bond length is achieved. 

 The initial full - length models are then refi ned by the parallel replica -
 exchange Monte - Carlo sampling technique  [61] . Two kinds of conformational 
updates (off - lattice and on - lattice) are implemented here: (i) Off - lattice move-
ments of the aligned regions involve rigid fragment translations and rotations 
that are controlled by the three Euler angles. The fragment length normalizes 
the movement amplitude so that the acceptance rate is approximately constant 
for fragments of different sizes. (ii) The lattice - confi ned residues are subjected 
to 2 – 6 bond movements and multi - bond sequence shifts. Overall, the tertiary 
topology varies by the rearrangement of the continuously aligned substruc-
tures, where the local conformation of the off - lattice substructures remains 
unchanged during the assembly. 

 The movements in the structure assembly and refi nement procedure are 
guided by an optimized force fi eld that is described in the next section. 

   11.2.2.1.    Force Field.     The inherent I - TASSER assembly force fi eld is similar 
to TASSER  [47] , which includes a variety of knowledge - based energy terms 
describing the predicted secondary structure propensities from PSIPRED   
 [62] , secondary structure - specifi c backbone hydrogen bonding, and a variety 

c11.indd   250c11.indd   250 8/20/2010   3:37:00 PM8/20/2010   3:37:00 PM



I-TASSER: A COMPOSITE METHOD FOR PROTEIN STRUCTURE PREDICTION   251

of statistical short - range and long - range correlation terms that are extracted 
from multiple threading alignments. Readers are recommended to read Zhang 
and Skolnick  [47,63,64]  for further details about these energy terms. 

 The new potentials terms that have been incorporated in I - TASSER include 
the predicted accessible surface area (ASA)  [35]  and sequence - based contact 
predictions  [65] . Both the energy terms have been derived and optimized using 
machine learning methods. 

 For the purpose of fast calculations of the ASA effect, the hydrophobic 
energy in I - TASSER is defi ned by

    E
x
x

y
y

z
z

P iASA
i i i= − + + −⎛

⎝⎜
⎞
⎠⎟

× ( )∑
2

0
2

2

0
2

2

0
2

2 5. ,     (2)  

where ( x i  ,  y i  ,  z i  ) is the coordinate of  i th residue at the ellipsoid Cartesian system 
of the given protein conformation and ( x  0 ,  y  0 ,  z  0 ) is the principal axes length. 
The constant parameter used for tuning the average depth of the exposed 
residues is 2.5, while  P ( i ) is the residue exposure index and is defi ned as 

  P i a j
j

( ) = ( )=∑ 1

12 , where  a j   is the two - state neural network (NN) prediction 

of exposure ( a j      =    1) or burial ( a j      =     - 1) with the  j th ASA fraction cutoff;  P ( i ) 
has a strong correlation with the real value of ASA. The overall correlation 
coeffi cient between the predicted  P ( i ) and the actual exposed area as calcu-
lated by STRIDE    [52]  on a test set of 2234 non - homologous proteins is 0.71. 
The same correlation for the widely used Hopp - Woods  [66]  and Kyte - Doolittle 
hydrophobicity indices  [67]  are 0.42 and 0.39, respectively. One of the prob-
able reasons for the higher correlation by the NN prediction is because it 
explores the sequence - profi le information, whereas the later methods are 
sequence - independent. 

 In the latest version of I - TASSER, sequence - based pairwise residue contact 
information from SVM - SEQ    [65] , SVMCON  [68] , and BETACON  [69]  are 
used to constrain the simulation search to a smaller conformational space and 
improve the minima of the landscape funnel of the overall energy function. 
Wu and Zhang recently showed that this additional information from SVM -
 SEQ can signifi cantly increase the contact prediction accuracy in hard targets 
(when no good template is identifi ed) by about 12 – 25%, compared with SVM -
 LOMETS  [65] , a template - based contact prediction method. 

 The predicted contacts from SVM - SEQ, SVMCON, and BETACON 
include contacts for C  α  , C  β  , and SC at distance cutoffs of 6    Å , 7    Å , and 8    Å . 
These predicted contacts are implemented as restraints in the I - TASSER 
simulation in the following way: if two residues  i  and  j  are predicted to be in 
contact by sequence - based methods and they come in contact in the decoys 
during the course of I - TASSER simulation, then the residue pairs are pre-
ferred to keep in contact by giving an energy bonus, which is defi ned as

    E i j acontact = − − ( ) −( )1 conf , ,     (3)  
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where conf( i ,  j ) is the confi dence score of the predicted contact pair ( i ,  j ) and 
 a  ( ∈ [0,1]) is an empirically determined score cutoff for each distance cutoff.  

   11.2.2.2.    Iterative Strategy.     The trajectories of the low - temperature repli-
cas of the fi rst - round I - TASSER simulations are clustered by SPICKER    [48] . 
The cluster centroids are obtained by averaging all the clustered structures 
after superposition and are ranked based on the structure density of the clus-
ters. However, the cluster centroids generally have a number of nonphysical 
steric clashes between C  α   atoms and can be overcompressed. Starting from 
the selected SPICKER cluster centroids, the TASSER Monte - Carlo simula-
tion  [61]  is performed again (see Fig.  11.1 ). While the inherent I - TASSER 
potential remains unchanged in the second run, external constraints are added, 
which are derived by pooling the initial high - confi dent restraints from thread-
ing alignments, the distance and contact restraints from the combination of 
the centroid structures, and the PDB structures identifi ed by the structure 
alignment program TM - align  [50]  using the cluster centroids as query struc-
tures. The conformation with the lowest energy in the second round is selected 
as the fi nal model. 

 The main purpose of this iterative strategy is to remove the steric clashes 
of the cluster centroids. On a benchmark test set of 200 proteins with  < 300 
residues it was found that the average number of steric clashes (residue pairs 
with C  α   distance  < 3.6    Å ) for the cluster centroids of the fi rst cluster dramati-
cally reduces from 79 to 0.8. As strong distance map and contact restraints are 
implemented in this step, the topology of the models also improves. In these 
test cases, the average TM - score increased from 0.5734 to 0.5801 (1.2%) and 
the C  α   - RMSD to native decreased from 6.67    Å  to 6.52    Å  compared with the 
cluster centroid of the fi rst round.   

   11.2.3.    Reconstruction of Atomic Model 

 The models generated after I - TASSER Monte - Carlo simulations  [61]  and 
SPICKER clustering  [48]  are reduced models, where each residue is repre-
sented by the C  α   atom and the SC of mass. To increase the biological useful-
ness of protein models, all atom models are generated by REMO    [49]  
simulations, which include three general steps: (i) removing steric clashes by 
moving around each of the C  α   atoms that clash with other residues; (ii) back-
bone reconstruction by scanning a backbone isomer library collected from the 
solved high - resolution structures in the PDB library; and (iii) hydrogen -
 bonding network optimization based on predicted secondary structure from 
PSIPRED  [62] . Finally, Scwrl3.0  [70]  is used to add the side chain rotamers. 

 Figure  11.4  shows the performance of REMO  [49]  on 230 non - homologous 
test proteins. Figure  11.4 a shows the number of the steric clashes (residue pairs 
with C  α   distance  < 3.6    Å ) in the cluster centroids of the test proteins after the 
fi rst round of I - TASSER simulations (average clash    =    119). After the REMO 
procedure (Fig.  11.4 b), only 15 proteins had 2 – 6 clashes, 44 proteins had one 
clash, and in the remaining all clashes had been effectively removed. 
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Remarkably, although the steric clashes had been completely removed, the 
clash - removing procedure had no side effect on the global topology of the 
initial structures. The RMSD change in most cases was  < 0.9    Å  and the average 
RMSD to the native slightly improved.   

 Figure  11.4 c shows the improvement in the hydrogen bonding (HB) score 
in REMO models over the I - TASSER models. Here, I - TASSER models refer 
to the models that had been generated by PULCHRA  [71]  for adding back-
bone atoms (N, C, O) and Scwrl3.0  [70]  to build side chain atoms. HB - score is 
defi ned as the fraction of the common hydrogen bonds between model and the 
native structure. As shown in the fi gure, the HB - score of REMO models have 
dramatically improved in more than 80% (187/230) of the test proteins. 

 REMO was also used in blind CASP8 experiment for refi ning the reduced 
models generated by I - TASSER Monte - Carlo simulations. Based on the 172 
released targets/domains, the average TM - score and GDT - score of the 
I - TASSER (as  “ Zhang Server ” ) models are higher with a signifi cant margin 
than that of other groups in the server section (see  http://zhanglab.ccmb.
med.umich.edu/casp8 ). In particular, the average HB - score of the I - TASSER, 
which partially refl ects the quality of local structures, is also higher than all 
other groups, except SAM - 08 - server  [6,72] , while in CASP7 the HB - score of 
the I - TASSER models were much lower than most of other groups  [41,42] . 
These data demonstrate a signifi cant progress in reconstructing and refi ning 
atomic models using the REMO protocol. REMO simulations are now a part 
of I - TASSER methodology for generating atomic level model. The source 
code and online server of REMO is freely available at  http://zhanglab.ccmb.
med.umich.edu/REMO .  

   11.2.4.    Function Prediction 

 One of the main impetuses for predicting the structure is to use it for structure -
 based functional annotation. To identify the functional homologs of a query 

     FIGURE 11.4     Histogram of steric clashes in (a) cluster centroids and (b) REMO 
models of 230 test proteins. (c) Comparison of HB - score of REMO models and 
I - TASSER models  (From Li and Zhang  [49] ).   
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protein, the generated models are structurally aligned by TM - align  [50]  with 
all known structures in the PDB library that have known functions. The resul-
tant structural alignment is scored based on a Fh - score (Functional homology 
score), which is defi ned as  [73] :

    Fh-score nC-score TM-score Cov ID Cov,1
1 RMSD aliali

= ∗ + ∗( ) + ∗ ∗+ 3     (4)  

where nC - score is the normalized C - score and is defi ned as 

  nC score
C score− = − + 5

7
, which stays in [0, 1] and estimates the quality of 

I - TASSER protein structure predictions; TM - score  [51]  measures the global 
structural similarity between the model and the template proteins; RMSD ali  is 
the RMSD of query model and template structure in the structurally aligned 
region; Cov represents the coverage of the structural alignment; and ID ali  is 
the sequence identity between query and template based on the alignment by 
TM - align. For every query protein, predicted functions include both the pre-
dicted enzyme commission (EC) number  [74]  and the Gene Ontology (GO) 
molecular function  [75]  terms. While EC number is a commonly used scheme 
for functional classifi cation of enzymes, GO terms provide a consistent descrip-
tion of function for both enzymatic and nonenzymatic proteins. Accordingly, 
two independent protein libraries of about 5800 nonredundant enzymatic 
proteins (pairwise sequence identity  < 90%) and about 13,500 nonredundant 
proteins (pairwise sequence identity  < 90%) with known GO terms have been 
constructed and are biweekly updated. 

 Based on a large - scale benchmark test set of 317 non - homologous proteins, 
it was found that by using the predicted structures (modeled while excluding 
all the homologous proteins with sequence identity  > 30% to query protein), 
the fi rst three digits of EC number and 50% of associated GO terms of query 
protein could be correctly identifi ed in more than 55% of the test cases from 
the best identifi ed functional homologs based on Fh - score. Moreover, the true 
and false positive predictions could be discriminated well and achieved an area 
of more than 0.80 under the receiver operating characteristic (ROC) curve for 
both the predictions. For the 196 enzymatic proteins that had another func-
tional homolog (enzymes with same fi rst three EC digits) in the library and 
having less than 30% sequence identity, Fh - score and PSI - BLAST were able 
to identify functional homologs with same fi rst three digits of EC number for 
107 and 77 proteins, respectively. These data show that the structure - based 
functional annotations using the I - TASSER models can be about 39% more 
accurate than the sequence - based approaches (such as PSI - BLAST)  [73] .   

   11.3.     A  B INITIO    PREDICTION OF  I  -  TASSER  ON SMALL PROTEINS 

 To explore the ability of I - TASSER to fold proteins for which no homologous 
templates are detected in the PDB, I - TASSER was tested on three sets of non -
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 homologous proteins. The test proteins include: (i) Benchmark - I consisting of 
16 proteins ( < 90 residues) that were used by Bradley et al. for testing ROSETTA 
 [76] ; (ii) Benchmark - II consisting of 20 proteins ( < 120 residues) that were used 
by Zhang et   al for testing TOUCHSTONE II  [64] ; and (iii) Benchmark - III 
consisting of 20 proteins ( < 120 residues) selected from PDB  [35] . 

 The I - TASSER structure assembly started from PPA threading where all 
template proteins with a sequence identity  > 20% to the query or detectable 
by PSI - BLAST with an e - value  < 0.05 were excluded. Figure  11.5  shows the 
comparison of the best of the top fi ve I - TASSER models with the initial PPA 
threading alignments in all three benchmark test sets. As seen in the fi gure, 
the global topology of the fi nal models was signifi cantly closer to the native 
structure than the threading alignments. In Benchmark - I, I - TASSER models 
have an average C  α   - RMSD of 3.8    Å , with six of them having a high - resolution 
structure with the C  α   - RMSD  < 2.5    Å . On the second set, (Benchmark - II), 
I - TASSER could fold four of them with a C  α   - RMSD  < 2.5    Å . The average 
C  α   - RMSD of the I - TASSER models in this set of test proteins was 3.9    Å . 
Average C  α   - RMSD of 3.9    Å  was obtained for the third benchmark set, with 
seven cases having a C  α   - RMSD  < 2.5    Å . Overall, the fi rst predicted models had 
an average C  α   - RMSD ranging from 4.3    Å  to 4.8    Å  and the average TM - score 
ranged from 0.59 to 0.64 for the three benchmarks. For the best models in the 
top fi ve predictions, the average C  α   - RMSD ranged from 3.8    Å  to 3.9    Å  and the 
average TM - score ranged from 0.61 to 0.65.   

 The fi rst set of proteins was also used for testing ROSETTA  [76]  and the 
best of the top fi ve models by ROSETTA had an average RMSD of 3.8    Å ; 
thus, the overall results between the two methods (ROSETTA and I - TASSER) 
are comparable, but the central processing unit (CPU) time required by 

     FIGURE 11.5     Comparison of I - TASSER models with the PPA threading alignment 
results. (a) C  α   - RMSD to native of the I - TASSER models versus C  α   - RMSD to native 
of the best threading alignment over the same aligned regions. (b) TM - score of the 
I - TASSER models versus TM - score of the best threading alignments.  (From Wu, 
Skolnick, and Zhang  [35] ).   
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I - TASSER was much shorter (150 CPU days vs. 5 CPU hours). For the second 
test, the average RMSD by TOUCHSTONE - II  [64]  is 5.9    Å . These data, 
together with the signifi cant performance of automated I - TASSER server (the 
Zhang Server) in the FM section of the CASP experiment  [40] , demonstrate 
a new progress in automated  ab initio  model generation.  

   11.4.    BLIND TEST OF  I  -  TASSER  IN  CASP  EXPERIMENTS 

 CASP  [46,77]  is a biennial world - wide protein structure prediction experi-
ment, where the organizers release a number of protein sequences for which 
structure is unknown. The participants are then asked by the organizers to 
predict the structures of these proteins and submit their predicted models 
before deadlines. Finally, the experts evaluate the predicted models by com-
paring them with the structures solved by the X - ray or nuclear magnetic 
resonance (NMR) experiments. 

 The seventh CASP experiment was held in 2006, where the performance 
of I - TASSER was tested in both the human (as  “ Zhang ” ) and the server 
section (as  “ Zhang Server ” ). The procedure in the server and human predic-
tions are essentially the same and follow the general I - TASSER methodology, 
except for that the human prediction involved domain border assignment 
based on visual inspection and used the server predictions from other groups 
for hard targets; meanwhile, the I - TASSER assembly simulations were done 
for a longer time in the human prediction. 

 Ninety - six proteins in CASP7 were split into 124 domains by the assessors. 
Depending on modeling diffi culty (whether or not a good template is present 
in PDB), these domains can be categorized for simplicity into 105 template -
 based modeling (TBM) targets and 19 free modeling (FM) targets. Figure  11.6  
shows a comparison of the fi rst I - TASSER models and the best threading 
templates for all these targets in both server and human predictions. Here, the 
best template refers to the template of the highest TM - score to the native 
structure among all the templates exploited by I - TASSER. As shown in the 
fi gure, although there is a general tendency for better templates resulting in 
better models, in most cases I - TASSER was able to consistently improve the 
fi nal model over the templates based on both RMSD and TM - score.   

 In the TBM category, I - TASSER reassembly resulted in a TM - score 
increase by  ∼ 14%, where about 10% is probably because of the topology 
reorientation of the secondary structure fragments and the rest may be due 
to the increase in the size of models when gaps are fi lled during the reassembly 
procedure. One of the major reasons for this improvement is because 
I - TASSER employs consensus spatial constraints from multiple templates 
that are usually of higher accuracy than that from individual templates. The 
second driving force for the structure improvement was the optimization of 
I - TASSER inherent potential from a collection of statistical terms from dif-
ferent resources  [35,47,63,64] . 
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 For the FM targets, I - TASSER was able to fold (RMSD    <    6.5    Å  or TM -
 score    >    0.5) seven targets (about 1/3) that were up to 155 residues long. Figure 
 11.7  shows a more detailed analysis of a typical example (target T0382) of the 
I - TASSER predictions during CASP7. T0382 was a new fold protein (PDB 
ID: 2I9C) from  Rhodopseudomonas palustris  CGA009 crystallized by the 
structure genomics project. The topology of T0382 consists of fi ve joggled  α  -
 helices. The left panel of Figure  11.7  shows the top fi ve templates hit by the 
multiple threading programs used by I - TASSER, all having correct local 
second structure elements but incorrect global topologies with the best RMSD 
of 9.3    Å  from 1xm9A1   (TM - score    =    0.28). Contact prediction program gener-
ated 148 side chain contacts with 37 correct contacts (accuracy    =    25%). The 
average error of the best predicted C  α   distances is 2.2    Å . I - TASSER cuts the 
fragments from the template alignments and reassembles the topology under 
the guide of the predicted restraints and the inherent potential, which result 
in a model of full - length RMSD 3.6    Å  and TM - score 0.66 (right panel of Figure 

     FIGURE 11.6     Comparison of the fi rst predicted models by I - TASSER in human 
( “ Zhang ” ) and server ( “ Zhang - Server ” ) sections of CASP7 with respect to the best 
exploited templates. The RMSD is calculated in the same set of aligned residues. The 
TM - score is calculated in the aligned regions for the templates and in full - length for 
the models  (From Zhang, Y. Proteins 69 (2007): 112).   
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 11.7 ). The correlation of I - TASSER energy and the RMSD of the structure 
decoys is 0.72, which demonstrates the consistency of the external restraints 
and the inherent force fi eld.    

   11.5.    CONCLUDING REMARKS 

 The protein structure prediction problem can be solved in two ways. The fi rst 
one is to fold all proteins by computationally recovering the nature ’ s protein 
folding pathway. This task does not appear to be accomplished in foreseeable 
future, unless a detailed physicochemical description of the intra - protein and 
protein - solvent interactions are developed, not to mention the delicate inter-
actions of proteins with the associated ligands and chaperones that will 
dramatically complicate the situation. The second solution is more of an 
engineering - oriented rather than scientifi c, in which a selected set of proteins 
are solved by experiments so that all proteins with unknown structure have at 
least one neighboring protein with known structure, which can be used as a 
template in CM; this has been the goal of the SG projects  [20] . On the basis 
of about 40,000 structures in the PDB library (many are redundant)  [18] , it 
is estimated that 4   million models/fold assignments can be obtained by a 
simple combination of the PSI - BLAST search and the CM technique  [78] . 
Development of more sophisticated and automated computer modeling 

     FIGURE 11.7     Structure comparisons of the threading templates, the fi nal I - TASSER 
model, and the experimental structures for the CASP7 target T0382. Blue to red runs 
from N -  to C - terminals  (From Zhang  [44] ).   (See color insert.)
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approaches will dramatically enlarge the scope of modelable proteins in the 
SG projects. 

 Despite intense efforts and considerable progress in the fi eld  [79] , the accu-
racy of protein structure prediction is still largely dictated by the evolutionary 
distance between the target and the solved proteins in the PDB library. Robust 
methods that can model proteins that have no or weak structure homologous 
templates are lacking. Nevertheless, the most effi cient approaches to model 
both homologous and non - homologous proteins are those that combine dif-
ferent algorithms of threading, fragment assembly,  ab initio  modeling, and 
structural refi nements. I - TASSER is one of the successful examples of these 
composite approaches. The exploitation of multiple threading templates and 
the optimization of the composite knowledge - based energy terms constitute 
the two major factors contributing to the success of I - TASSER in refi ning 
individual template structures closer to the native. 

 However, since I - TASSER has a resolution limitation set by its inherent 
reduced potential, high - resolution models cannot be predicted for most of 
proteins when a good template is not present. One of the ongoing efforts in 
this regard is to extend the reduced I - TASSER modeling to the atomic rep-
resentation with the goal of improving the modeling accuracy at the atomic -
 level  [44] . REMO represents part of our recent efforts to refi ne atomic models 
by optimizing the hydrogen - bonding networks. The development of new 
physics - based force fi elds in combination with the current I - TASSER 
knowledge - based potentials as well as the development of the function predic-
tion methodology will be of signifi cant importance in increasing the accuracy 
and the applicability of these approaches to genome - wide structure and func-
tion predictions.  
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