Chapter 11
Protein Structure Prediction

Sitao Wu and Yang Zhang

11.1 Introduction

Owing to significant efforts in genome sequencing over nearly three decades
(McPherson et al. 2001; Venter et al. 2001), gene sequences from many organisms
have been deduced. Over 100 million nucleotide sequences from over 300 thousand
different organisms have been deposited in the major DNA databases, DDBJ/
EMBL/GenBank (Benson et al. 2003; Miyazaki et al. 2003; Kulikova et al. 2004),
totaling almost 200 billion nucleotide bases (about the number of stars in the Milky
Way). Over 5 million of these nucleotide sequences have been translated into amino
acid sequences and deposited in the UniProtKB database (Release 12.8) (Bairoch
et al. 2005). The protein sequences in UniParc triple this number. However, the
protein sequences themselves are usually insufficient for determining protein func-
tion as the biological function of proteins is intrinsically linked to three dimensional
protein structure (Skolnick et al. 2000).

The most accurate structural characterization of proteins is provided by X-ray
crystallography and NMR spectroscopy. Owing to the technical difficulties and
labor intensiveness of these methods, the number of protein structures solved by
experimental methods lags far behind the accumulation of protein sequences. By
the end of 2007, there were 44,272 protein structures deposited in the Protein Data
Bank (PDB) (www.rcsb.org) (Berman et al. 2000) — accounting for just one percent
of sequences in the UniProtKB database (http://www.ebi.ac.uk/swissprot).
Moreover, the gap between the number of protein sequences and the number of
structures has been increasing as indicated in Fig. 11.1.

One of the major efforts in protein structure determination in recent years is the
structural genomics (SG) project initiated at the end of last century (Sali 1998; Terwilliger
et al. 1998; Burley et al. 1999; Smaglik 2000; Stevens et al. 2001). The SG project aims
to obtain 3D models of all proteins by an optimized combination of experimental
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Fig. 11.1 Determination of amino acid sequences (left-hand scale) is outpacing that of 3D struc-
tures (right-hand scale) by a factor of 100. Data are taken from PDB (Berman et al. 2000) and
UniProtKB (Bairoch et al. 2005)

structure determination and comparative model (CM) building (Pieper et al. 2006).
One of the key aspects of the SG project is the selection of key target proteins for
structure determination, so that the majority of sequences can be within a CM dis-
tance to solved structures. Using a sequence identity of 30% with 80% alignment
coverage as the CM distance cutoff, Vitkup et al. (2001) estimated that at least
16,000 new structures need to be determined by experiments to ensure that the CM
represents 90% of protein domain families. Without optimal coordination of target
selection, as many as 50,000 structure determinations may be required.

Currently, 36% of Pfam families (Bateman et al. 2004) contain at least one
member with the solved structure, allowing comparative modeling of other family
members. According to Chandonia and Brenner (Chandonia and Brenner 20006),
the SG project solved 1,887 protein structures between 2000 and 2005, 294 of
which are the first solved structures in their respective Pfam families. During 2004,
around half of the PDB structures with new Pfam family annotations were because
of the efforts of the SG centers (Chandonia and Brenner 2006). Determination of
these new Pfam structures has dramatically extended the range of computer-based
predictions using Comparative Model (CM) techniques (Sali 1998; Pieper et al.
2006). For example, based on 53 newly solved proteins from SG projects, Sali and
coworkers (Pieper et al. 2004) built reliable models for domains in 24,113 sequences
from the UniProtKB database with their CM tool MODELLER (Sali and Blundell
1993). These models have been deposited in a comprehensive CM model database,
MODBase (http://salilab.org/modbase). In February 2008, MODBase contained
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around 4.3 million models or fold assignments for domains from 1.34 million
sequences. In this study, the structure assignments were based on an all-against-all
search of the amino acid sequences in UniProtKB using the solved protein struc-
tures in PDB (Berman et al. 2000). Structural genomics can also benefit from
improvements in high-resolution structure prediction algorithms. Vitkup et al.
(2001) estimated that “a 10% decrease in the threshold needed for accurate model-
ing, from 30 to 20% sequence identity, would reduce the number of experimental
structures required by more than a factor of two”.

There are two critical problems in the field of protein structure prediction. The
first problem is related to the template-based modeling: How to identify the most
suitable templates from known protein structures in the PDB library? Furthermore,
following template structure identification, how can the template structures be
refined to better approximate the native structure? The second major problem is
related to free modeling for the target sequences without appropriate templates:
How can a correct topology for the target proteins be constructed from scratch?
Progress made in these areas has been assessed in recent CASP7 experiments
(Moult et al. 2007) under the categories of template based modeling (TBM) and
free modeling (FM), respectively.

In the following sections, current protein structure prediction methods will be
reviewed for both template-based modeling and free modeling. The basic ideas and
advances of these directions will be discussed in detail.

11.2 Template-Based Predictions

For a given target sequence, template-based prediction methods build 3D structures
based on a set of solved 3D protein structures, termed the template library. The
canonical procedure of template-based modeling consists of four steps: (1) finding
known structures (templates) related to the sequence to be modeled (target); (2)
aligning the target sequence on the template structures; (3) building the structural
framework by copying the aligned regions, or by satisfying spatial restraints from
templates; (4) constructing the unaligned loop regions and adding side-chain atoms.
The first two steps are usually performed as a single procedure because the correct
selection of templates relies on their accurate alignment with the target. Similarly,
the last two steps are also performed simultaneously since the atoms of the core and
loop regions interact closely.

Historically, template-based methods can be categorized into two types: (1)
comparative modeling (CM) and (2) threading. CM builds models based on evolu-
tionary information between target and template sequences, while threading is
designed to match target sequences directly onto 3D structures of templates with
the goal to detect target-template pairs even without evolutionary relationships. The
schematic overview of CM and threading is depicted in the upper part of Fig. 11.2.
In recent years, as a general trend in the field, the borders between CM and threading
are becoming increasingly blurred since both comparative modeling and threading
methods rely on evolutionary relationships, e.g. both use sequence profile-based
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Fig. 11.2 Schematic overview of the methodologies employed in template-based and free
modeling

alignments (Marti-Renom et al. 2000; Skolnick et al. 2004; Zhou and Zhou 2005;
Wu and Zhang 2008). In this chapter, we put them in the same category of template-
based modeling without explicitly distinguishing them unless necessary.
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11.2.1 Completeness of the PDB Template Library

The existence of similar structures to the target in the PDB is a precondition for
successful template-based modeling. An important concern is thus the completeness
of the current PDB structure library. Figure 11.3 shows a distribution of the best
templates found by the structural alignment (Zhang and Skolnick 2005b) for 1,413
representative single-domain proteins between 80 and 200 residues.

Remarkably, even excluding the homologous templates of sequence identity,
>20%, all the proteins have at least one structural analog in the PDB with a C_root-
mean-squared deviation (RMSD) to the target <6 A covering >70% of regions.
The average RMSD and coverage are 2.96 A and 86% respectively. Zhang and
Skolnick (2005a,b) recently showed that high quality full-length models can be
built for all the single-domain proteins with an average RMSD of 2.25A when
using the best possible templates in the PDB. These data demonstrate that the struc-
tural universe of the current PDB library is likely to be complete for solving the
protein structure for at least single-domain proteins. However, most of the target-
template pairs have only around 15% sequence identity, which are difficult to
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Fig. 11.3 Structural superposition results of 1,413 representative single-domain proteins on their
structural analogs in the PDB library. The structural analogs are found using a sequence-independent
structural-alignment tool, TM-align (Zhang and Skolnick 2005b), and ranked by a TM-score
(a structural similarity measure balancing RMSD and coverage) (Zhang and Skolnick 2004b). All
structural analogs with a sequence identity >20% to the target are excluded. If the analog with the
highest TM-score has a coverage below 70%, the first structural analog with the coverage >70%
is presented. As a result, all the structural analogs have a root-mean-squared deviation (RMSD)
<6A; 80% have a RMSD <4 A with >75% of regions covered
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recover by current threading approaches. In fact, after excluding templates with a
sequence identity >30%, current threading techniques could only assign templates
with correct topologies (average RMSD ~4 A) to 2/3 of the proteins (Skolnick et al.
2004). Here, the role of structural genomics is to bridge the target-template gap for
the remaining 1/3 proteins as well as improve the alignment accuracy of the 2/3
proteins by providing evolutionarily closer template proteins.

11.2.2 Template Structure Identification Using Threading Programs

Since its first application in the early 1990s (Bowie et al. 1991; Jones et al. 1992),
threading has become one of the most active areas in proteins structure prediction.
Numerous algorithms have been developed during the previous 15 years for the
purpose of identifying structure templates from the PDB. Threading techniques
include sequence profile—profile alignments (Ginalski et al. 2003; Skolnick et al.
2004; Jaroszewski et al. 2005; Zhou and Zhou 2005), structural profile alignments
(Shi et al. 2001), hidden Markov models (HMM) (Karplus et al. 1998; Soding
2005), and machine learning (Jones 1999; Cheng and Baldi 2006) among others.

The sequence profile—profile alignment (PPA) is probably the most often-used and
robust threading approach. Instead of matching the single sequences of target and
template, PPA aligns a target multiple sequence alignment (MSA) with a template
MSA. The alignment score in the PPA is usually calculated as a product of the amino-acid
frequency at each position of the target MSA with the log-odds of the matching amino-
acid in the template MSA, though there are also alternative methods for calculating the
profile—profile alignment scores (Sadreyev and Grishin 2003). Profile—profile align-
ment based methods demonstrated advantages in several recent blind tests (Fischer
et al. 2003; Rychlewski and Fischer 2005; Battey et al. 2007). In LiveBench-8
(Rychlewski and Fischer 2005), for example, the top four servers (BASD/MASP/
MBAS, SFST/STMP, FFAS03, and ORF2/OREFES) are all based on sequence profile—
profile alignment. In CAFASP (Fischer et al. 2003) and the recent CASP Server
Section (Battey et al. 2007), several sequence profile based methods were ranked at the
top of single threading servers. Wu and Zhang (2008) recently showed that the accu-
racy of the sequence profile—profile alignments can be further improved by about
5-6% by incorporating a variety of additional structural information.

In CASP7, HHsearch (Soding 2005), a HMM-HMM alignment method, was
distinguished as the best single threading server. The principles of the HMM-HMM
alignments and the profile—profile alignments are similar in that both attempt
pair-wise alignments of the target MSA with the template MSA. Instead of
representing the MSAs by sequence profiles, HHsearch uses profile HMMs which
can generate the sequences with certain probabilities determined by the product of
the amino acid emission and insertion/deletion probabilities. HHsearch aligns the
target and template HMMs by maximizing the probability that two models co-emit
the same amino acid sequence. In this way, amino acid frequencies and insertions/
deletions of both HMMs are matched in an optimum way (Soding 2005).
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11.2.3 Consensus of Various Threading Programs: Meta-Servers

Although average performance differs among threading algorithms, there is no
single threading program which outperforms all others on every target. This natu-
rally leads to the popularity of the meta-server (Fischer 2003; Wu and Zhang 2007),
which collects and combines results from a set of existing threading programs.
There are two ways to generate predictions in meta-servers. One is to build a hybrid
model by cutting and pasting the selected structure fragments from the templates
identified by threading programs (Fischer 2003). The combined model has on
average larger coverage and better topology than any single template. One defect is
that the hybrid models often have non-physical local clashes. The second approach
is to select the best models based on a variety of scoring functions or machine-
learning techniques. This approach has emerged as a new research area called
Model Quality Assessment Programs (MQAP) (Fischer 2006). Despite consider-
able efforts in developing various MQAP scores, the most robust score turns out to
be the one based on the structure consensus, i.e. the best models are those simulta-
neously hit by different threading algorithms. The idea behind the consensus
approach is simple: there are more ways for a threading program to select a wrong
template than a right one. Therefore, the chance for multiple threading programs
working collectively to make a commonly wrong selection is lower than the chance
to make a commonly correct selection.

The meta-server predictors have dominated the server predictions in previous
experiments (e.g. CAFASP4, Livebench8, and CASP6). However, in the recent
CASP7 experiment (Battey et al. 2007) Zhang-Server (an automated server based
on profile—profile threading and I-TASSER structure refinement (Wu et al. 2007,
Zhang 2007)) clearly outperforms others (including the meta-servers which
included it as an input (Wallner and Elofsson 2007)). A list of the top ten automated
servers in the CASP7 experiment is shown in Table 11.1. This data, highlights the
challenge of the MQAP methods in correctly ranking and selecting the best models;
while the success of the composite threading plus refinement servers (as Zhang-
Server, ROBETTA, and MetaTasser) demonstrates the advantage of the structure
refinement in the TBM prediction, which is discussed in the next section.

11.2.4 Template Structure Assembly/Refinement

The goal of protein structure assembly/refinement is to draw the templates closer
to the native structure. This has proven to be a non-trivial task. Until only a few
years ago, most of the TBM procedures either kept the templates unchanged or
drove the templates away from the native structures.

Early efforts on template structure refinement have relied on molecular dynamics
(MD) based atomic-level simulations; these attempt to refine low-resolution models
using classic MD programs such as AMBER and CHARMM. However, with the
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Table 11.1 Top 10 servers in CASP7 as ranked by the accumulative GDT-TS score. Multiple servers
from the same lab are represented by the highest rank one

Servers #of targets GDT-TS  Server type and URL address

Zhang-Server 124 76.04 Threading, refinement and free modeling http://
zhang.bioinformatics.ku.edu/I-TASSER

HHpred2 124 71.94 HMM-HMM alignment (single threading server)
http://toolkit.tuebingen.mpg.de/hhpred

Pmodeller6 124 71.69 Meta threading server http://pcons.net

CIRCLE 124 71.09 Meta threading server http://www.pharm.
kitasato-u.ac.jp/fams/fams.html

ROBETTA 123 70.87 Threading, refinement and free modeling http://
robetta.org/submit.jsp

MetaTasser 124 70.77 Threading, refinement and free modeling http://
cssb.biology.gatech.edu/skolnick/webservice/
MetaTASSER

RAPTOR-ACE 124 69.70 Meta threading server http://ttic.uchicago.
edu/~jinbo/RAPTOR_form.htm

SP3 124 69.38 Profile—profile alignment (single threading server)

http://sparks.informatics.iupui.edu/hzhou/
anonymous-fold-sp3.html

beautshot 124 69.26 Meta threading server http://inub.cse.buffalo.edu/
form.html
UNI-EID-expm 121 69.13 Profile—profile alignment (single threading server)

(not available)

exception of some isolated instances, this approach has not achieved systematic
improvements.

Encouraging template refinements have been achieved by combining the knowledge-
and physics-based potentials with spatial restraints from templates (Zhang and
Skolnick 2005a; Misura et al. 2006; Chen and Brooks 2007). Misura et al. (2006) first
built low-resolution models with ROSETTA (Simons et al. 1997) using a fragment
library enriched by the query-template alignment. The C-contact restraints are used
to guide the assembly procedure, and the low-resolution models are then refined by a
physics-based atomic potential. As a result, in 22 out of 39 test cases, the ten lowest-
energy models were found closer to the native structure than the template.

A more comprehensive test of the template refinement procedure, based on
TASSER simulation combined with consensus spatial restraints from multiple
templates, was reported by Zhang and Skolnick (2004a,b, 2005a,b). For 1,489 test
cases, TASSER reduced the RMSD of the templates in the majority of cases, with
an average RMSD reduction from 6.7 A to 4.4 A over the threading-aligned regions.
Even starting from the best templates identified by the structural alignment,
TASSER refines the models from 2.5A to 1.88A in the aligned regions. Here,
TASSER built the structures based on a reduced model (specified by C_ and side-
chain center of mass) with a purely knowledge-based force field. One of the major
contributions to these refinements is the use of multiple threading templates, where
the consensus restraint is more accurate than that from the individual template.
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In addition, the composite knowledge-based energy terms have been extensively
optimized using large-scale structure decoys (Zhang et al. 2003) which helps coor-
dinate the complicated correlations of different interaction terms.

The recent CASP7 experiment assessed the progress of threading template
refinements. The assessment team compared the predicted models with the best
possible structural template (or “virtual predictor group”) and commented that
“The best group in this respect (24, Zhang) managed to achieve a higher GDT-TS
score than the virtual group in more than half the assessment units and a higher
GDT-HA score in approximately one-third of cases.” (Kopp et al. 2007) This com-
parison may not entirely reflect the template refinement ability of the algorithms
because the predictors actually start from threading templates rather than the best
structural alignments; the latter requests the information of the native structures,
which were not available when the predictions were made. On the other hand, a
global GDT score comparison may favor the full-length model because the
template alignment has a shorter length than the model. In a direct comparison of
the RMSD over the same aligned regions, we found that the first -TASSER model
is closer to the native than the best initial template in 86 out of 105 TBM cases,
while the other 13 (6) cases are worse than (or equal to) the template. The average
RMSD is 4.9 A and 3.8 A for the templates and models, respectively, over the same
aligned regions (Zhang 2007).

11.3 Free Modeling

When structural analogs do not exist in the PDB library or could not be detected
by threading (which is more often the case as demonstrated by the data shown in
Fig. 11.3), the structure prediction has to be generated from scratch. This type of
prediction has been termed ab initio or de novo modeling, a term that may be
easily understood as modeling “from first principle”. Since CASP7, it is termed
free modeling, which more appropriately reflects the status of the field, since the
most efficient methods in this category still consider hybrid approaches including
both knowledge-based and physics-based potentials. Evolutionary information is
often used in generating sparse spatial restraints or identifying local structural
building blocks.

11.3.1 Physics-Based Free Modeling

Compared to template-based approaches, the purely physics-based ab initio
methods — all-atom potential functions, like AMBER (Weiner et al. 1984), CHARMM
(Brooks et al. 1983) and OPLS (Jorgensen and Tirado-Rives 1988), combined with
molecular dynamics (MD) conformational sampling — have been less successful in
protein structure prediction. Significant efforts have been made on the purely
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physics-based protein folding. The first widely recognized milestone of successful
ab initio protein folding is the 1997 work of Duan and Kollman, who folded the
villin headpiece (a 36-mer). This work used MD simulations in explicit solvent for
2 months on parallel supercomputers with models up to 4.5 A (Duan and Kollman
1998). With the help of the worldwide-distributed computers, this small protein was
recently folded by Pande and coworkers (Zagrovic et al. 2002) to 1.7 A with a total
simulation time of 300 ps or approximately 1,000 CPU years. Despite this
remarkable effort, physics-based folding is far from routine for general protein
structure prediction of normal size proteins, mainly because of the prohibitive
computing demand.

Another niche for physics-based simulation is protein-structure refinement. This
approach starts from low-resolution structures with the goal to draw the initial
models closer to the native structure. Because the starting models are usually not
far away from the native, the conformational change is relatively small and the
simulation time is much less than in ab initio folding. One of the earliest MD-based
protein structure refinements was for the GCN4 leucine zipper (a 33 residue dimer)
(Nilges and Brunger 1991; Vieth et al. 1994). In that work, a low resolution coiled-
coil dimer structure (2~3/°%) was first assembled using Monte Carlo simulation.
With the help of the helical dihedral-angle restraints, Skolnick and coworkers
(Vieth et al. 1994) refined the GCN4 structure with a backbone RMSD below 1A
using CHARMM (Brooks et al. 1983) with the TIP3P water model (Jorgensen et al.
1983). Using AMBER 5.0 (Case et al. 1997) and the same explicit water model
(Jorgensen et al. 1983), Lee et al. (2001) attempted to refine 360 low-resolution
models generated using ROSETTA (Simons et al. 1997) for 12 small proteins (<75
residues), but concluded that there was no systematic structure improvement (Lee
et al. 2001). Later, Fan and Mark (2004) tried to refine 60 ROSETTA models for
11 small proteins (<85 residues) using GROMACS 3.0 (Lindahl et al. 2001) with
explicit water (Berendsen et al. 1981) and reported that 11/60 models had 10%
RMSD reduction and 18/60 had increased RMSD after refinement. Recently, Chen
and Brooks (2007) used CHARMM?22 (MacKerell et al. 1998) to refine five CASP6
CM targets with lengths in the 70-144 residue range. In four cases, considerable
refinements with up to 1 A RMSD reduction were achieved. One of the major
differences of this work is that an implicit solvent force field based on the general-
ized Born (GB) approximation (Im et al. 2003) was exploited, which significantly
speeds up the MD simulations, while the spatial restraints extracted from the initial
models are used to guide the refinement procedure (Chen and Brooks 2007).
A particularly noteworthy observation was recently made by Summa and Levitt
(Summa and Levitt 2007) who exploited different molecular mechanics (MM)
potentials (AMBER99 (Wang et al. 2000; Sorin and Pande 2005), OPLS-AA
(Kaminski et al. 2001), GROMOS96 (van Gunsteren et al. 1996), and ENCAD
(Levitt et al. 1995)) on the refinement of 75 proteins by in vacuo energy minimization.
The authors found that a knowledge-based atomic contact potential outperforms all
the traditional MM potentials in moving almost all the test proteins closer to the
native state, while all the MM potentials, except for AMBER99, essentially drive
the decoys away from the native. The vacuum simulation without solvation may
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be part of the reason for the failure of the MM potentials. But this observation
demonstrates the potential of combining knowledge-based potentials with physics-
based force field in protein structure refinement.

Another use of the physics-based potential is in the discrimination of the native/
near-native structures from structure decoys. For example, Lazaridis and Karplus (1999)
exploited CHARMMI19 (Neria et al. 1996) and EEF1 (Lazaridis and Karplus
1999) solvation potential to discriminate the native structure from the decoys gen-
erated by threading the native sequences on other protein structures. They found the
energy of the native states is lower than that of the decoys in most cases. Later,
Dominy and Brooks (2002), and Feig and Brooks (2002) used CHARMM plus GB,
Felts et al. (2002) used OPLS plus GB, Lee and Duan (2004) used AMBER plus
GB, and Hsieh and Luo (2004) used AMBER plus Poisson—Boltzmann solvation
potential on the Park—Levitt decoy set (Park and Levitt 1996), Baker decoy set (Tsai
et al. 2003), Skolnick decoy set (Kihara et al. 2001; Zhang et al. 2003), and CASP
decoys set (Moult et al. 2001). Similar results were obtained by all the authors, i.e.
the native structure can be distinguished from non-native decoys by the physics-
based potentials. Recently, however, Wroblewska and Skolnick (2007) showed that
the AMBER plus GB potential can only discriminate the native structure from
roughly minimized TASSER decoys (Zhang and Skolnick 2004a). After a 2-ns MD
simulation, none of the native structures have lower energy than decoys, and the
energy-RMSD correlation was close to zero. This result partially explains the
widely-reported discrepancy between the decoy-discrimination ability of the
physics-based potentials and less-successful folding/refinement results (Wroblewska
and Skolnick 2007).

In contrast, fast Monte Carlo simulations on the physics-based potentials have
enjoyed considerable success in both protein structure prediction and refinement.
For example, Scheraga and coworkers (Liwo et al. 1999) successfully built models
of 4.2 A for a fragment of 61 residues based on the MC optimization of a physics-
based united-residue force field (Liwo et al. 1993) combined with the atomic
ECEPP potential (Nemethy et al. 1992). Using ASTRO-FOLD (Klepeis and
Floudas 2003) on the ECEPP optimization, Floudas and coworkers (Klepeis et al.
2005) constructed a model of 5.2 A for a four-helical bundle protein of 102 residues.
In the recent development of ROSSETA (Bradley et al. 2005; Das et al. 2007), the
authors also cooperated the physics-based atomic potential in the final stage of
Monte Carlo structure refinement, which is discussed in the next section.

11.3.2 Knowledge-Based Free Modeling

Probably the most well-known approach for efficient free-modeling was pioneered
by Bowie and Eisenberg, who assembled new tertiary structures using small fragments
(mainly 9-mers) cut from other PDB proteins (Bowie and Eisenberg 1994). Based
on this idea, Baker and coworkers later developed ROSETTA (Simons et al. 1997),
which works extremely well for free modeling in the CASP experiments, and
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popularized the fragment assembly approach in the field. In new developments with
ROSETTA (Das et al. 2007), the authors first assemble structures in a reduced
knowledge-based model with conformations specified by the heavy backbone
atoms and CB' In the second stage, Monte Carlo simulations with an all-atom
physics-based potential are performed to refine the details of the low-resolution
models. An exciting achievement was demonstrated in CASP6 by generating a
model for a small hard target T0281 (70 residues) that is 1.6A away from the
crystal structure. In CASP7, the atomic ROSETTA built a model for T0283 (112
residues) with RMSD =1.8 A over 92 residues (see Fig. 11.4). Despite significant
success, the computer cost of the procedure (~150 CPU days for a small protein
<100 residues) is still too expensive for routine use.

Another successful free modeling approach, called TASSER by Zhang and
Skolnick (2004a,b), constructs 3D models based on a purely knowledge-based
approach. Continuous fragments with various sizes are excised from threading
alignments and used to reassemble protein structures in an on-and-off lattice
system. A newer version of I-TASSER was recently developed by Wu et al. (2007),
which refines the TASSER cluster centroids by iterative Monte Carlo simulations.
Although the procedure uses structural fragments and spatial restraints from threading

T0283 T0382

Fig. 11.4 Representative examples of free modeling in CASP7 generated by two different
approaches. T0283 (left panel) is a TBM target (from Bacillus halodurans) of 112 residues; but
the model is generated by all-atom ROSETTA (a hybrid knowledge- and physics-based approach)
(Das et al. 2007) based on free modeling, which gives a TM-score 0.74 and a RMSD 1.8 A over
the first 92 residues (the overall RMSD is 13.8 A mainly because of the misorientation of
C-terminal). T0382 (right panel) is a FM/TBM target (from Rhodopseudomonas palustris
CGAO009) of 123 residues; the model is generated by I-TASSER (a purely knowledge-based
approach) (Zhang 2007) with a TM-score 0.66 and a RMSD 3.6 A. Blue and red represent the
model and the crystal structure representatively
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templates, it often constructs models of correct topology even when the topologies
of individual templates are incorrect. In CASP7 (Zhang 2007), among 19 FM and
FM/TBM targets, I-TASSER builds correct topology (~3—5A) for 7 cases with
sequences up to 155 residues long. In the right panel of Fig. 11.4, we show an
example of TO382 (123 residues), where all initial templates have incorrect topologies
(>9A); but the final model by I-TASSER is 3.6 A away from the X-ray structure.
Recently, Helles made a comparative study of 18 different ab initio prediction
algorithms in the literature and concluded that I-TASSER is currently the best
method in the balance of modeling accuracy and CPU cost (Helles 2008). However,
as indicated by the fact that no high-resolution model has been predicted in the
CASP7 New Fold category (Jauch et al. 2007), I-TASSER modeling has a resolution
limit by the inherent reduced potential. One of the on-going efforts is to extend the
reduced I-TASSER modeling to the atomic representation with the goal to improve
the modeling accuracy in the atomic-level (Zhang 2007).

11.4 Conclusion

Since a detailed physicochemical description of protein folding principles does not
yet exist, the most accurate structure predictions are generated based on evolution-
ary relationships between the target and solved structures in the PDB library.
For the proteins with close templates, full-length models can be constructed by
copying the template framework. Recent studies show that using the best possible
template structures in PDB, the state-of-the-art modeling algorithms could build
high-quality full-length models for almost all single-domain proteins with an aver-
age RMSD ~2.3 A. This suggests that the current PDB structure universe is essen-
tially complete for solving protein structure prediction problem (Zhang and
Skolnick 2005a). However, most of the target-template pairs are evolutionarily too
distant to be detected with current threading approaches.

The development of efficient threading algorithms to detect weakly/distant
structure templates has been a central theme in the field and may persist as a
principal direction; the gap between threading and the best structural alignment is
obvious and tempting. However, progress in reducing this gap progresses slowly.
As mentioned above, there is no single threading method that outperforms all others
on every target. Consequently, meta-servers and MQAP have been used to generate
predictions by collecting and selecting models from a set of different threading
programs. In contrast, the template structure refinement has enjoyed promising
progress. In the recent CASP7 experiment (Battey et al. 2007), automated threading
plus structure refinement servers outperform the threading and MQAP based meta-
servers by a noticeable margin. Nevertheless, template refinement mainly occurs at
the topology level. The demand for atomic-level models, which can generate
models of real use for new drug screening and biochemical function inference, is
keener than ever as more template structures become available through the structure
genomics and traditional structural biology.
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Free modeling is the ‘Holy Grail’ of protein structure prediction because its suc-
cess would mark the eventual solution to a problem manifested at genome scales.
Although a purely physics-based ab initio simulation has the advantage in revealing
the pathway of protein folding, the best current free-modeling results come from those
which combine both knowledge-based and physics-based approaches. While there
are consistent successes in building correct topologies (3~6A) for small proteins,
the more exciting high-resolution free modeling (<2 A) is much rarer and computa-
tionally more expensive. There is evidence that the current atomic potentials
have the lowest energy near the native state, and the bottleneck of high-resolution
folding seems to be insufficient conformational sampling (Bradley et al. 2005).
However, a golf-hole-like energy landscape without middle range funnel is far from
the one taken in nature and this can be a deeper reason for failures in conforma-
tional searches. Thus, the bottleneck for free modeling comes from the lack of both
funnel-like force fields and efficient space searching methods, especially for pro-
teins of larger sizes.
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