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INTRODUCTION

When will computers beat humans in protein structure

prediction? Or are there still any human insights that can-

not be reproduced in automated approaches? During the

CASP experiments, several groups1–3 demonstrated that

intervention by human experts, who made use of biochem-

ical information (function, family characteristics, mutagen-

esis, catalytic residues, etc.), can indeed help with template

recognition, structural assembly, and final model selection.

Nevertheless, fully automated algorithms have an advantage

in genome-wide structure prediction4–6; they also allow

non-experts to generate structural models on their own or

through internet services.7–9 Undoubtedly, with the rapid

accumulation of genome-wide sequences, the development

of fully automated computer-based structure prediction

methods becomes unprecedentedly demanded.10

Recent years have witnessed significant progress in auto-

mated structure prediction.6,11 In CASP7, for example, it

was stated in the assessors’ reports12–14 that ‘‘the best pre-

diction server (Zhang-Server) was ranked third overall, that

is, it outperformed all but two of the human participating

groups.’’ Actually, in the current framework of CASP, it is

difficult to have an entirely fair assessment of the perform-

ance of automated versus human prediction because
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ABSTRACT

The I-TASSER algorithm for 3D protein structure predic-

tion was tested in CASP8, with the procedure fully auto-

mated in both the Server and Human sections. The quality

of the server models is close to that of human ones but

the human predictions incorporate more diverse templates

from other servers which improve the human predictions

in some of the distant homology targets. For the first time,

the sequence-based contact predictions from machine

learning techniques are found helpful for both template-

based modeling (TBM) and template-free modeling (FM).

In TBM, although the accuracy of the sequence based con-

tact predictions is on average lower than that from tem-

plate-based ones, the novel contacts in the sequence-based

predictions, which are complementary to the threading

templates in the weakly or unaligned regions, are impor-

tant to improve the global and local packing in these

regions. Moreover, the newly developed atomic structural

refinement algorithm was tested in CASP8 and found to

improve the hydrogen-bonding networks and the overall

TM-score, which is mainly due to its ability of removing

steric clashes so that the models can be generated from

cluster centroids. Nevertheless, one of the major issues of

the I-TASSER pipeline is the model selection where the

best models could not be appropriately recognized when

the correct templates are detected only by the minority of

the threading algorithms. There are also problems related

with domain-splitting and mirror image recognition which

mainly influences the performance of I-TASSER modeling

in the FM-based structure predictions.
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human predictors can use all the models generated by

servers and therefore have a better pool of initial tem-

plates to start with.

In CASP8, we participated in both human (as

‘‘Zhang’’) and server (as ‘‘Zhang-Server’’) predictions.

For the purpose of the development and testing of auto-

mated structure prediction approaches, both Zhang and

Zhang-Server used identical I-TASSER approaches.15

Compared with CASP7, new developments in I-TASSER

include the employment of de novo sequence-based con-

tact predictions16 and atomic-level hydrogen-bonding

(H-bond) optimization.17 Because the only difference

between Zhang and Zhang-Server is that the ‘‘human’’

prediction uses more templates (including those gener-

ated by other groups in the Server section), the difference

between their performances may be viewed as a measure

of the effect due to the different template pools used in

human and server predictions.

RESULTS AND DISCUSSION

A total of 164 domains from 121 protein targets were

eventually assessed in the Server Section, and 71 domains

in the Human Section. Among the 164 domains, 50 are

high-accuracy (HA), 102 are template-based modeling

(TBM), and only 12 are free-modeling (FM, including

TBM/FM) targets. Because more targets were tested in

the server section and the methods used in our server

and human predictions are essentially identical, our

report will mainly focus on the server predictions. In

particular, we summarize what went right and what were

the major problems with our approach.

What went right?

I-TASSER pulls templates closer to the
native conformation

As observed in both benchmark tests15 and previous

CASP experiments,18 one of the most important advan-

tages of I-TASSER is that the fragment assembly proce-

dure can consistently drive the initial template structures

closer to their native states. In Figure 1(a), we present

the RMSD of the first I-TASSER server models versus the

RMSD of the best threading templates used in I-TASSER

for all 164 domains, with both the RMSDs calculated for

the aligned regions of threading alignments. Although

FM targets are supposed to have no appropriate tem-

plates, we show them in the plot because the I-TASSER

procedure always starts from the top scoring templates

obtained by threading no matter how weak the alignment

scores are. In fact, even when the global topology of the

templates is incorrect, the super-secondary structure

segments are useful as structural building blocks. Appa-

rently, I-TASSER simulations improve the template struc-

ture in the majority of test cases as measured by RMSD.

For 139 out of 164 domains, the RMSD of the final

models is lower than that of the templates. In the

remaining 22 (and 3) cases, the RMSD of the I-TASSER

models is higher than (and equal to) that of the tem-

plates. Overall, the average RMSD of the best threading

template is 5.54 Å for the aligned regions with an average

alignment coverage of 91%; this RMSD is reduced to

4.24 Å by I-TASSER.

Because some threading alignments are very short and

may consist of only a small piece of structure, a TM-

score comparison should reflect more appropriately the

improvement by I-TASSER in full-chain model construc-

tion from the templates. Figure 1(b) is a comparison of

final models versus the best threading templates in terms

of TM-score. Now, 150 targets have a final model with a

higher TM-score than the templates, and 10 (4) have a

final model with a lower (equal) TM-score than the tem-

plates. Noticeably, there are two domains, T0472_2 and

T0474, where the first submitted models are significantly

worse than the best templates. T0472 has a duplicated

b3a two-domain structure with its closest structural tem-

plate, 3bid, being a domain-swapped dimer. Because our

threading library includes only single-chain proteins,

most of the whole-chain threading templates have only

the N-terminal domain aligned. The first submitted

model by our I-TASSER server is based on the whole-

chain modeling and has a reasonably good quality for

the N-terminal domain (RMSD 5 1.54 Å and TM-score

5 0.731) but a low-quality C-terminal domain (TM-

score 5 0.605 for T0472_2). The second submitted

model by the server for T0472 was built by modeling the

domains separately, followed by domain docking as

described in Methods; it has a TM-score of 0.767 for

T0472_2, slightly higher than that of the template

(TM-score 5 0.755).

T0474 is a small protein of 80 residues solved by

Structural Genomics Consortium and has a very

extended structure (85.3Å from N to C terminus). All

the three closest templates (2ay0, 2bj1, 2hza) are dimers,

with the ‘‘necks’’ of the chains intertwined with each

other. The individual chains are apparently unstable on

their own, but our server attempted to fold the chain as

an individual compact domain; this resulted in a much

less extended structural model with a TM-score 5 0.560.

The second submitted model has a more extended struc-

ture with a TM-score 5 0.683, which is still lower than

the best template with TM-score 5 0.726.

As threading algorithms usually generate substantial

alignment errors, in Figure 1(c,d), we compare I-TASSER

models with the best threading templates as used in

Figure 1(a,b) but the alignments are regenerated by

structurally aligning the templates to the native structures

by TM-align.19 Because the native structure information

is used, the structural alignment is more accurate than

the threading, with the average RMSD reduced from 5.54

to 2.42 Å and the average TM-score increased from 0.633
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to 0.709. In 47 (or 99) cases, the I-TASSER models have

a lower RMSD (or a higher TM-score) than the TM-

align alignments. Although the overall quality of the final

I-TASSER models is still worse than the best structural

alignments in terms of RMSD, the data shows that at

least for part of the cases the model can be drawn by I-

TASSER closer to the native than the best aligned

template structures; these improvements come from the

fragment rearrangement rather than from refining the

threading alignments.

Restraints from multiple templates cover a larger
portion of the structure than those from the best
single templates

One of the major driving forces of the structure refine-

ment in I-TASSER is the high-quality consensus restraints

taken from multiple templates by MUSTER20 or

LOMETS.21 Five types of template-based restraints are

used in I-TASSER: (1) side-chain contact restraints taken

from the top N templates (N 5 20 for easy targets, 30

for medium and 50 for hard targets); (2) Ca contact

restraints from the top N templates; (3) short-range Ca
distance-map for separation |i 2 j| � 6 with the average

distance from the top N templates; (4) Ca distance-map

for separation >6 from the top four templates (i.e., each

residue pair having up to four different distance

restraints); and (5) pair-wise contact potential based on

the frequency of the side-chain contacts appearing in the

top N templates.22

Although there has been a long-time belief that con-

sensus restraints should have a better accuracy than those

from single templates, there is no systematic comparison

of the two based on the same set of templates in litera-

Figure 1
Comparison of the best templates with the first model predicted by the I-TASSER server. The alignments in (a) and (b) are from threading
algorithms which have been used as input of I-TASSER simulations; the alignments in (c) and (d) are generated by structurally aligning the

templates to the native by TM-align. RMSD for models is calculated in the same aligned region as the alignments in templates. The highlights in

(b) are two domains where I-TASSER deteriorates the best templates.

Y. Zhang

102 PROTEINS



ture. In Table S1 in Supporting Information, we present

a detailed list of the accuracy and coverage of four

restraint types taken either from multiple templates or

from the best single threading template that has the high-

est TM-score to the native in the top N templates. Table

I is a summary of Supporting Information Table S1 with

an average accuracy of the restraints listed in each cate-

gory of targets. In all categories of targets (i.e., HA,

TMB, and FM), the consensus contact predictions have a

higher coverage, that is, more correct contacts are pre-

dicted. However, somewhat contrary to expectation, the

accuracy of the contacts based on single templates is

slightly higher than that of the consensus ones, which is

probably due to the fact that we are using the best indi-

vidual template from threading. In fact, if we use the first

template (as ranked by threading rather than TM-score),

the accuracy of the contact prediction is similar to that

of consensus contacts, but the coverage is lower than

when the best threading template (i.e., with the highest

TM-score) is used. Here, we compare consensus

restraints to the best templates because we try to high-

light the possible reason that I-TASSER improves the

quality of the best templates as shown in Figure 1. Over-

all, the average accuracy/coverage for side-chain and Ca
contact predictions are 0.34/0.55 and 0.59/0.55 from the

best single template, compared to 0.31/0.64 and 0.56/0.64

from multiple templates. One reason for the apparently

higher accuracy of Ca contacts in comparison with side-

chain contacts is that side-chain contacts are more vari-

able due to rotamer conformations, and are therefore

more difficult to predict.

The eigth and ninth columns of Table I and Support-

ing Information Table S1 show the errors of short- and

long-range Ca distance predictions, respectively. For

short-range distance prediction, single-template-based

prediction has a slightly smaller average error than the

multiple-template-based one. But for the long-range

distance prediction, the distance error from multiple

templates is much smaller than that from the best single

template. Here, each residue pair has four distance pre-

dictions collected from the first four MUSTER/LOMETS

templates and we report the best of the four predictions

in the tables. Moreover, as the major advantage of using

multiple templates, multiple-template-based predictions

cover again a larger portion of the structure. Overall, the

multiple-template based prediction produces on average

1302/2563 short/long-range distance predictions while

single-template prediction produces only 1099/2243

short/long-range predictions.

Interestingly, there are some targets for which the

accuracy and coverage of contact predictions is appa-

rently high, but the quality of the final models is still

poor. For example, two FM targets (T0476_1 and

T0482_1) have Ca contact predictions with both accu-

racy and coverage >0.5 (see Table S1 in Supporting

Information). However, all 11 correctly predicted con-

tacts in T0476_1 are concentrated in two b-hairpins (one
at the tail and another in the middle, both being short-

range), and are actually not helpful for assembling the

global topology. On the contrary, the side-chain contact

predictions have a lower accuracy but cover a larger por-

tion of the structure. A similar situation is seen with

T0482_1 as well. In fact, the correlation coefficient (cal-

culated for all 164 domains) between the TM-score of

the final models and the product of accuracy and cover-

age of side-chain contacts is 0.87, while the same quan-

tity for Ca contacts is 0.79, which indicates that side-

chain contact predictions are more important for the

structure assembly.

Sequence-based contact predictions help both FM
and TBM modeling

In addition to the consensus restraints from multiple

templates, the second important contribution to the I-

TASSER template structural refinement is the sequence-

based contact prediction from SVMSEQ.16 Our original

purpose when developing SVMSEQ was to improve the

I-TASSER structure assembly only for FM targets,

because for TBM/HA targets, the overall accuracy of

Table I
Comparison of Spatial Restraints Taken from Multiple Templates and from the Single Best Threading Template (the Latter Shown in Parentheses).

A Detailed List is Shown in Table S1 in Supporting Information

Side-chain contact restraints Ca contact restraints

Short distanced Long distancee RMf TMgNa Accb Covc Na Accb Covc

HA 128.0 0.39 (0.45) 0.87 (0.79) 97.3 0.70 (0.79) 0.86 (0.77) 0.45 (0.41) 0.65 (0.92) 1.6 0.895
TBM 132.0 0.29 (0.31) 0.58 (0.48) 99.1 0.53 (0.55) 0.59 (0.50) 0.87 (0.84) 1.72 (2.66) 5.7 0.668
FM 60.0 0.17 (0.10) 0.11 (0.06) 40.2 0.26 (0.05) 0.13 (0.05) 1.32 (1.40) 3.14 (7.34) 9.0 0.380
All 125.5 0.31 (0.34) 0.64 (0.55) 94.2 0.56 (0.59) 0.64 (0.55) 0.77 (0.75) 1.50 (2.47) 4.7 0.712

aNumber of contacts appearing in the native structure.
bAccuracy of contact predictions: the number of correctly predicted contacts divided by the total number of contact predictions.
cCoverage of contact predictions: the number of correctly predicted contacts divided by the number of contacts in the native structure.
dError of short-range distance predictions (|i-j| � 6) relative to the native structure.
eError of medium- and long-range distance predictions (|i-j| > 6) relative to the native structure.
fRMSD (Å) of the first submitted model by Zhang-Server (best in top 5 shown for FM).
gTM-score of the first submitted model by Zhang-Server (best in top 5 shown for FM).
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SVMSEQ is lower than that of the template-based con-

tact prediction.16 However, we found that the SVMSEQ

prediction also improves the quality of models for the

TBM targets.

In Table II, we present a summary of the SVMSEQ

contact prediction for both side-chain and Ca contacts.

As expected, the sequence-based contact predictions have

the highest impact on FM targets. For these targets, the

average accuracy of the side-chain contacts by LOMETS

is only 17%, covering 11% of all native contacts. But the

SVMSEQ prediction on side-chain contacts (with a 8 Å

cutoff distance) has an accuracy of 38.1%, with a cover-

age of 29.9% of all contacts in the native structure; out

of this coverage, 21.8% are newly predicted contacts that

are not generated by LOMETS. If we look at Ca contacts,

the average accuracy of SVMSEQ predictions is 44.8%,

compared with 26% by LOMETS. This covers 35.3% of

all native contacts, with 29.3% being new. The Cb pre-

dictions have similar results to Ca. These sequence-based

‘‘de novo’’ predictions are of great value for I-TASSER in

the case of FM target predictions.

In Figure 2, we show one example of successful model-

ing by the I-TASSER server on an FM target, T0416_2.

I-TASSER first runs LOMETS on the whole chain (332 res-

idues), which yields alignments dominated by 3crmA and

2qgnA. However, there is a middle region spanning 87 resi-

dues (L112-T198) that has no alignment with any of the

top 20 templates. The server then automatically defines

this region as a new domain and runs LOMETS again on

the domain, which results in a number of weakly scoring

hits. Although none of these templates for the small do-

main has a correct fold, some have close fragments, which

provides building blocks for I-TASSER assembly (Row 3 of

Fig. 2). Out of the top 29 side-chain contact predictions by

SVMSEQ, 13 (45%) are correct, covering 46% of all native

contacts (Row 4 of Fig. 2). Under the guidance of these

restraints, I-TASSER finally assembles a model for

T0416_2 (S124-K180, as defined by the assessors) with a

RMSD 5 3.4 Å and a TM-score5 0.53.

The accuracy of SVMSEQ predictions for HA/TBM

targets is similar to that for FM targets. However, the

coverage and accuracy of the contacts by LOMETS are

much higher than SVMSEQ predictions for these targets.

Nevertheless, SVMSEQ still generates a considerable

number of correct contacts which cannot be generated by

template-based predictions. The SVMSEQ-based Ca con-

tact predictions with a 8 Å cutoff, for example, provide

14.4 and 16.3% of new true-positive contact predictions

for HA and TBM targets, respectively. These restraints

are useful in modeling the regions lacking threading

Table II
Summary of Sequence-Based Contact Predictions (by SVMSEQ) Compared with the Template-Based Contact Predictions (by LOMETS)

Side-chain contacts Ca contacts Cb contacts

Tema S6b S7c S8d Tema S6b S7c S8d S6a S7b S8c Come

HA NPf 114.9 15.2 21.9 28.3 84.7 17.6 28.6 35.5 11.2 22.4 31.9 10.8
ACCg 0.39 0.219 0.32 0.403 0.7 0.26 0.397 0.475 0.162 0.328 0.442 0.228
COVh 0.87 0.136 0.199 0.25 0.86 0.162 0.265 0.333 0.099 0.202 0.292 0.381
NNi 0.7 1.8 5.4 1.1 9 15.6 0.7 7.2 14.4 4.7
CONj 0.007 0.017 0.049 0.013 0.082 0.144 0.007 0.062 0.129 0.153

TBM NPf 78.5 15.5 22.7 28.6 61.8 20.4 33.3 42.1 14.5 26.5 36.9 20.3
ACCg 0.29 0.216 0.322 0.389 0.53 0.274 0.419 0.494 0.209 0.366 0.472 0.325
COVh 0.58 0.135 0.203 0.247 0.59 0.167 0.276 0.352 0.128 0.225 0.307 0.253
NNi 2.7 4.8 8.5 3.6 11.9 19.1 2.5 9.5 16.6 8.4
CONj 0.024 0.045 0.072 0.033 0.102 0.163 0.024 0.082 0.143 0.105

FM NPf 6.2 9 13 15.9 5.8 9.9 15.1 18.8 7.8 13.3 17.8 14.5
ACCg 0.17 0.211 0.312 0.381 0.26 0.238 0.363 0.448 0.199 0.32 0.422 0.448
COVh 0.11 0.164 0.245 0.299 0.13 0.179 0.277 0.353 0.151 0.24 0.332 0.267
NNi 6.8 9.5 11.5 7.6 11.8 15.5 5.3 10.1 14.5 10.2
CONj 0.124 0.176 0.218 0.133 0.215 0.293 0.101 0.178 0.271 0.187

AAll NPf 84.3 15 21.8 27.6 64.7 18.8 30.5 38.4 13 24.3 34 17
ACCg 0.31 0.216 0.321 0.392 0.56 0.267 0.408 0.485 0.194 0.351 0.459 0.305
COVh 0.64 0.138 0.205 0.252 0.64 0.167 0.273 0.347 0.121 0.219 0.304 0.311
NNi 2.4 4.2 7.8 3.1 11 17.8 2.2 8.9 15.7 7.4
CONj 0.026 0.046 0.075 0.034 0.104 0.167 0.024 0.083 0.148 0.132

aContact predictions from multiple threading templates by LOMETS20.
bContact prediction from SVMSEQ16 with a cutoff of 6 Å.
cContact prediction from SVMSEQ with a cutoff of 7 Å.
dContact prediction from SVMSEQ with a cutoff of 8 Å.
eContact prediction by taking consensus of predictions from CASP8 servers.
fTotal number of predictions.
gAccuracy of contact predictions: the number of correctly predicted contacts divided by the total number of contact predictions.
hCoverage of contact predictions: the number of correctly predicted contacts divided by the number of contacts in the native structure.
iNumber of true-positive predictions which are not generated by the template-based predictions.
jCoverage of novel predictions: NN divided by the number of contacts in the native structure.
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Figure 2
The procedure of the I-TASSER server in modeling a FM target of T0416_2. The upper part shows the top 20 alignments by LOMETS21 for the

whole-chain sequence followed by the subsequent threading on the domain which was missed in the whole-chain threading. The examples of 4

templates closest to the target are shown in the third row. The fourth row shows the native backbone structure with inter-residue lines indicating

the side-chain contact predictions by SVMSEQ16 (red solid lines are true-positive and green dashed lines are false-positive predictions). The

domain modeling was done in the sequence (L112-T198) but the tails (L112-E125 and F192-T198 shown as backbones in the final models) are

trimmed during docking with other parts of the structures. The superposition is made on S124-K180 according to the assessor’s definition of
T0416_2. The image is generated by MVP.23
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alignments as well as improving the global topology. It is

worth mentioning that when we use the SVMSEQ-pre-

dicted contacts in the I-TASSER assembly, a large per-

centage of them are false positive. However, these false

positive predictions do not necessarily affect the model-

ing of the regions with good templates because the con-

sensus restraints from LOMETS are strong and dominat-

ing in those regions compared with the weak noise from

SVMSEQ predictions. For the weakly aligned regions,

however, the false-positive rate of SVMSEQ is lower than

that of LOMETS, and therefore becomes helpful.

Figure 3 is one such example of a TBM-HA target,

T0437_1, demonstrating the positive contribution of

SVMSEQ to homology-based modeling. The LOMETS

threading alignments are dominated by the template

2jz5A, which has a sequence identity of 32% to the tar-

get. The best threading alignment generated by

HHsearch24 has an RMSD 5 2.30 Å and TM-score 5
0.778. If we structurally align 2jz5A to the experimental

structure by TM-align,19 the RMSD is 1.34 Å with TM-

score 5 0.838 [Fig. 3(a)]. Although the global topology

of 2jz5A matches the target well, there is a major

mismatch in the region V49-T60 [the lower part of the

second b-sheet, Fig. 3(a)]. Correspondingly, there is no

correct contact prediction from LOMETS in this region

[Fig. 3(b)]. The sequence-based SVMSEQ contact predic-

tion, however, generates 10 correct Ca contact predic-

tions in this region [two others are false positive, Fig.

3(c)]. These restraints help I-TASSER generate models

with a correct b-sheet structure in this region. The

RMSD of the overall model is 1.13 Å, which is even

closer than the best structural alignment [Fig. 3(d)]. In

this example, although the overall accuracy of the

SVMSEQ prediction is still lower than LOMETS, the

novel contacts from the sequence-based prediction

improve the quality of local structures. In other regions

(e.g., the N-terminal b-sheet), SVMSEQ generates a

number of false positive contact predictions. As the

LOMETS predictions provide strong consensus restraints,

these weak false-positive predictions did not reduce the

modeling accuracy in those regions.

In the last column of Table II, we also list a consensus

prediction taken from 6 CASP8 servers including LEE-

SERVER, MULTICON-CMFR, MUProt, SAM-T08-2stage,

RR_FANG_1, and Parings. A consensus contact is col-

lected if it is predicted by more than half of the servers.

These contacts were used in our human predictions.

Somewhat unexpectedly, the consensus prediction from

multiple servers does not outperform the prediction

from the single program SVMSEQ. For FM targets, the

consensus prediction has a slightly higher accuracy than

SVMSEQ but a lower coverage. The overall accuracy of

consensus contact prediction for all targets is lower than

SVMSEQ but the coverage is similar. The SVMSEQ

server also participated in CASP8 contact prediction,25

but it submitted predictions obtained by combining

Figure 3
SVMSEQ contact predictions improve the modeling of T0437_1. (a) Structural superposition of the target (thin backbone) on the best template

2jz5A (thick backbone) with structural alignment generated by TM-align19 (RMSD 5 1.34Å, TM-score 5 0.838). (b) Backbone structure of the

native with lines between residues indicating Ca contact prediction from LOMETS.21 Red solid lines are true-positive and green dashed ones are

false-positive. There is no true-positive contact in the lower part of the second b-hairpin. (c) Same as (b) but contacts are from SVMSEQ16 with

10 true-positive predictions in the lower part of the second b-hairpin. (d) Superposition of the I-TASSER server model on the native with a RMSD

5 1.13 Å and a TM-score 5 0.885. The image is generated by MVP.23
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results from SVMSEQ and LOMETS. Although this com-

bination helps increase the accuracy for TBM/HA targets,

it substantially decreases the accuracy of the original

SVMSEQ predictions for FM targets; the FM targets was

eventually assessed in the contact prediction section of

CASP8.

Atomic-level structure refinement improves
hydrogen-bonding networks

The SPICKER program26 clusters the structure decoys

from I-TASSER and generates two types of reduced mod-

els: the cluster centroid (as ‘‘combo’’) obtained by averag-

ing the coordinates of all clustered decoys and the decoy

closest to the centroid (as ‘‘closc’’). Combo structures are

usually closer to the native but have more structural

clashes than the closc models. When constructing the

full-atomic models, REMO17 has the advantage to

eliminate clashes from combo and optimize the

hydrogen-bonding network, over a number of other simi-

lar algorithms.27–29

In Table III, we compare the REMO models of 149

domains (corresponding to 117 targets) with the full-

atom models regenerated by Pulchra27 based on the

same set of closc and combo models. The models of

these 149 domains have been generated by the I-TASSER

server without domain splitting, and we selected them

for these comparisons so that we can eliminate the possi-

ble influence of the domain docking procedure. Clearly,

the models by Pulchra based on combo have a better

TM-score and HBscore compared with that on closc.

However, Pulchra could not remove the steric clashes in

the combo models. Here, HBscore is defined as the num-

ber of H-bonds appearing in both model and native di-

vided by that in the native structure, with H-bonds

defined by HBPLUS3.0.30 The final models generated by

REMO have on average a better TM-score and HBscore

than both the Pulchra models. The average number of

steric clashes of the REMO models is 1.6, which is close

to the average in the experimental structures in the

PDB.17

Human and automated server predictions are consistent

Figure 4 is a head-to-head comparison of Zhang-

Server and Zhang in terms of TM-score and RMSD for

the first models of 71 domains that have been tested in

both the Server and the Human sections. There are

slightly more targets with the human model having a

higher TM-score than the server prediction, which results

in a 1.8% overall increase in TM-score. Because the strat-

egies of human and server predictions are identical, this

difference reflects the gain from using multiple threading

Table III
Comparison of REMO17 and Pulchra27 on 149 Domains

RMSD (�)
TM-
score

HBscore
(all-atom)

HBscore
(backbone) Nclash

REMO 1 combo 4.50 0.725 0.496 0.643 1.6
Pulchra 1 closc 4.75 0.708 0.380 0.520 3.5
Pulchra 1 combo 4.51 0.716 0.390 0.531 34.3

Figure 4
Comparison of the first models predicted by human (as ‘‘Zhang’’) and server (as ‘‘Zhang-Server’’) for all 164 domains.
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programs from other servers in addition to LOMETS.

However, the ‘‘human-won’’ targets are mainly in the

TBM and FM categories. For HA targets, the average

TM-score of the server models is actually 0.6% higher

than that of human-predicted models. This shows that at

least for the easy targets, human interventions are not

necessary.

What went wrong?

I-TASSER fails to select non-consensus correct folds

To help highlight the problems of the I-TASSER struc-

ture modeling and especially to identify the targets which

I-TASSER failed to generate good models for, we use the

best model generated by the servers in CASP8 other than

Zhang-Server as the reference. All models were down-

loaded from http://predictioncenter.gc.ucdavis.edu/down-

load_area/CASP8/server_predictions. In Figure 5(a), we

compare, for each target, the TM-score of the first model

predicted by the I-TASSER server with that of the best

model generated by other servers. Although there are

several targets where I-TASSER generates better models

than all others, the I-TASSER models are worse than the

best models from other servers for most targets in the

TBM/FM categories. The average TM-score of the I-

TASSER models, calculated for all 164 domains, is 0.712

versus 0.765 for the best of other servers.

In Figure 5(b), we list the best (by TM-score) of the

top 100 (as ranked by SPICKER) models generated by

the I-TASSER simulations with reference to the best

models from other servers. These models were generated

by I-TASSER but many of them were ranked low by

SPICKER and not selected for submission. The average

TM-score of these models is 0.765, equal to that of the

best models by other servers. This data on one hand

demonstrates that most of the good quality structures

have been already generated in the I-TASSER simulations;

on the other hand, the difference highlights a major

problem of the I-TASSER pipeline: the model selection.

The top 100 I-TASSER models for each target are avail-

able at http://zhang.bioinformatics.ku.edu/casp8/decoys;

these will serve as a benchmark set for the next stage of

model selection development.

Figure 5
TM-score of the I-TASSER server prediction (stars) in control with the best model (solid spheres) predicted by other servers in CASP8. (a) The first

model by I-TASSER. (b) The best in top 100 models in I-TASSER simulation.
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I-TASSER builds models as guided by the consensus

restraints from multiple threading templates. The consen-

sus information is reinforced in the final step when the

structures are clustered by SPICKER. These procedures

are based on the assumption that a consensus template

structure, ranked high by different scores of multiple

threading programs, should be of better quality than

those hit only by individual threading algorithms because

there are much more ways for a threading program to

pick up a wrong alignment than a right one.6 For some

targets, this assumption does not hold, and the selection

based on consensus fails to select the correct fold. This

turns out to be the major reason for the failure of I-

TASSER model selection, especially for most of the cases

highlighted in Figure 5(a).

For example, T0498_1 is a designed protein which was

designed to have a high sequence similarity (95%) with

T0499_1, but to have a different fold, that is, T0498_1

has a 3a-fold while T0499_1 has an ab-fold.31 Among

all LOMETS programs, only MUSTER20 has a correct

but weakly scoring hit on the template 2fs1A with a 3a
conformation and a TM-score 5 0.67. However, because

of the high sequence and profile similarity, the majority

of the high-scoring alignments are with the ab-fold tem-

plates from 2igd, 1zxhA, 1mhxA, and 2i2yA. Thus,

although I-TASSER did generate models with TM-score

>0.70 in this case, the correct 3a-fold was ranked low,

and the selection preferred the incorrect ab-fold.
While T0498_1 is a special challenge for modeling and

ranking which probably occurs very rarely in nature,

T0504_1 is another example of a similar ranking prob-

lem. T0504 is a three-domain protein but I-TASSER

modeled T0504_1 and T0504_2 together because these

regions were aligned simultaneously. T0504_3 was suc-

cessfully modeled, with the first model having an RMSD

5 1.77Å. The best template for T0504_1 and T0504_2 is

2g3r which is hit only by HHsearch,24 with a low rank.

The majority of LOMETS programs detect 2gf7A as a

template, which has a similar architecture of two

domains, both having a two-b-hairpin wound structure

[Fig. 6(b)]. Interestingly, domains in 2gf7A swap one

b-hairpin with each other, which results in a different to-

pology from T0504 [Fig. 6(a)]. This situation is similar

to oligomer domain swapping32 but the swap here

occurs within a single protein chain. This may reflect a

new evolutionary mechanism where oligomer domain

swapping is followed by gene fusion. Correspondingly,

the first I-TASSER model has a similar architecture to

the target [Fig. 6(c)] but the TM-scores of both T0504_1

and T0504_2 are low because of the different orientation

of the b-hairpins.
T0514_1 is another type of inaccurate I-TASSER rank-

ing. The difference from T0499_1 and T0504_1 is that

LOMETS has no strong hit on any of the templates. I-

TASSER is usually good at assembling fragments from

multiple weakly hit templates.15 However, in this example,

the I-TASSER server failed to rank the best model as the

first. The third submitted model has a TM-score 5 0.490

while the first model is a mirror image of the third model

and has a TM-score 5 0.316 (see discussion below).

Problem in domain splitting

Inappropriate domain assignment is the second major

reason for the failure of I-TASSER modeling. This can

happen in two scenarios. The first is when each individ-

ual domain has good templates from different proteins

Figure 6
Structural modeling for T0504. (a) The experimental structure of the

first two domains of T0504. (b) The template structure of 2gf7A

detected by LOMETS which has the b-hairpin swapped and may reflect

a new evolutionary mechanism from the target. (c) Superposition of the

native on the I-TASSER model (white backbone). The native structures

of T0504_1 and T0504_2 are in blue and red. The architecture of

the model and the native is similar but with different orientation of
b-hairpins.
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but the threading programs fail to detect them when

whole-chain sequences are used. The difficulty in this

scenario is that we do not have an efficient algorithm for

domain prediction. One such case is T0429, which is a

two-domain protein. The first domain T0429_1 has an

alignment with template 2f5kA hit by HHsearch with a

TM-score 5 0.85, and the second domain T0429_2 has a

hit from 1oi1A by MUSTER with a TM-score 5 0.47.

However, because of the failure of domain splitting, I-

TASSER attempted to fold the target based on ab initio

modeling, which resulted in models significantly worse

than the best model by other servers which was based on

the correct templates (Figure 5a).

The second scenario occurs when one of multiple

domains has no strong alignment while other domains

have strong templates. If we model the target as a whole

chain, the final clustering will be dominated by the well-

aligned regions, which will result in the weakly-aligned

domains having insufficient sampling because the struc-

tures of those domains are more diverse. One such exam-

ple is T0487 which is a 685-residue target consisting of

five domains. The sequences of all five domains are

strongly aligned with the template 1yvuA, except for

T0487_4 which is a 87-residue domain (S178-V264) with

no correct alignment with 1yvuA. Because the target is

big, I-TASSER does not have sufficient sampling in this

region, and the SPICKER clustering is dominated by the

other well-aligned regions. As a result, the model of

T0487_4 has a much worse quality than the best of other

servers which obviously split the target into domains and

hit the correct templates (1r4kA and 1si2A) for this do-

main (information obtained from the head of the mod-

els). This problem was noticed in the CASP7 experi-

ment18 and we have attempted to split the sequence into

domains and model the domains separately. However,

this does not always work better than folding the whole-

chain sequence because the corresponding chain connec-

tivity restraints and interactions with partner domains

are lost in the individual domain modeling. One solution

to the problem may be to fold the easy domains first and

then fold the remaining domains while keeping the struc-

tures of the other domains frozen.

Potential function fails to recognize mirror image fold
for FM targets

The predicted distance map and contact restraints have

no ability to distinguish mirror image structures because

both the right model and the mirror can satisfy the

restraints equally well. This is one of the problems of I-

TASSER in free modeling when the models are generated

from scratch and no template can be used to guide the

model selection. T0405_1 is one such example, which is

the first domain (N2-E73) of a two-domain target T0405

(see Figure 7). The I-TASSER server correctly recognized

the target as having two domains but incorrectly split the

first domain as M1-L101. As expected, the accuracy of

the contact predictions from LOMETS is low (11% for

side-chain and 0% for Ca contacts, see Table S1); but

SVMSEQ predictions have an accuracy of 25% for side-

chain contacts and 20% for Ca contacts. The I-TASSER

server generated two types of models for T0405_1 which

are mirror images of each other with a distance-RMSD

5 2.1 Å [Fig. 7(b,c)]. However, the incorrect mirror

image was finally picked up by SPICKER [Fig. 7(c)].

There are several other big, hard targets where the mirror

image structure was also ranked higher than the correct

one. For example, in the above-mentioned target T0514,

which is a 154-residue protein with a b-sandwich topol-

ogy, I-TASSER ranks the mirror image structure as the

first model and the one with the correct image as the

third.

MATERIALS AND METHODS

The I-TASSER prediction pipeline includes four gen-

eral steps: template identification, structure reassembly,

atomic model construction, and final model selection.

Template identification

Target sequences are threaded through a non-redun-

dant PDB structure library for identifying appropriate

global-structure templates (for TBM targets) or local

fragments (for FM targets). Threading is done by MUS-

TER,20 which uses an extended sequence profile-profile

alignment algorithm with the alignment score enhanced

by secondary structure match, fragment structure profile,

solvent accessibility, backbone torsion angle, and hydro-

phobic scoring matrix. The fragment structure profile

refers to a frequency matrix of the template proteins

which are calculated from a set of nine-residue fragments

that have a similar local structure and depth to the tem-

plates.20,33 For hard targets, additional templates are

Figure 7
The I-TASSER modeling for T0405_1 (a), where the mirror image

structure (c) is ranked higher than the correct model (b).
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used that are identified by LOMETS,21 a local meta-

threading server including FUGUE,34 HHSEARCH,24

PROSPECT,35 PPA,15 and SP3.33 In human prediction,

we include additionally the models generated by other

groups in the Server Section in the template pool.

Having more threading templates is the only source of

differences between Zhang and Zhang-Server predictions.

Structure assembly

Continuous fragments excised from the threading tem-

plates are used to assemble full-length models15,36 with

unaligned loop regions built by ab initio modeling in a

lattice system.37 The structure assembly process consists

of two sets of simulations.15 The first set uses the

threading templates as initial structures. In the second

set, the simulations start from the cluster centroids gen-

erated by SPICKER26 which clusters all the trajectories

from the first set of simulations. Spatial restraints, which

are collected from the PDB structures hit by TM-align19

using the cluster centroids as query structures, are also

incorporated in the I-TASSER simulations. The purpose

of the second stage is to refine the local geometry as well

as the global topology of the SPICKER centroids.

Energy force field

The structure assembly simulations (for both the

threading-aligned and the ab initio modeled regions) are

guided by a unified knowledge-based force field, which

includes three components: (1) general knowledge-based

statistics terms from the PDB (Ca/side-chain correla-

tions,37 H-bonds38 and hydrophobicity39) (2) spatial

restraints from threading templates,21 and (3) sequence-

based contact predictions from SVMSEQ.16

The last energy term is relatively new in comparison

with the force field used in the previous CASP experi-

ment.18 SVMSEQ is a support-vector-machine (SVM)-

based residue–residue contact predictor that only uses

sequence information.16 It was trained using local win-

dow features (position-specific scoring matrices, second-

ary structure, and solvent accessibility predictions) and

in-between segment features (residue separations, second-

ary structure of the contacting residues, and state distri-

butions of the contacting residues). Nine sets of contact

predictions are generated, which are based on three atom

types (Ca, Cb, and side-chain center); each atom type

has three types of contact cutoffs (6, 7, and 8 Å). All

nine predictions are used in I-TASSER simulation as

restraints with weights proportional to their confidence.

Atomic model construction

The SPICKER cluster centroids from I-TASSER are

reduced models with each residue represented by its Ca
and side-chain center. The full-atomic models are built

by REMO,17 a new protocol we developed for construct-

ing full-atomic models from C-alpha traces by optimizing

the H-bond networks. The basic backbone fragments

(Ca, C, N, O) are matched from a secondary structure

specific backbone isomer library which consist of a total

of 68,206 non-redundant isomers from high-resolution

PDB structures. The driving force in the REMO refine-

ment protocol includes H-bonding, clash/break-amend-

ment, I-TASSER restraints, and the CHARMM22 poten-

tial. On the basis of a test set of 230 nonhomologous

proteins, REMO has the ability of removing steric clashes

while retaining a topology score (e.g., TM-score) similar

to that of cluster centroids. Moreover, the H-bond net-

work was improved in more than 80% (187/230) of test

proteins by REMO.17

Model selection

The reduced models from I-TASSER are ranked based

on the structure density in SPICKER clusters.26 For each

reduced model, atomic models from REMO are selected

based on an empirical scoring function, which is equal to

the sum of the number of H-bonds divided by the target

length, the TM-score40 of the model with the SPICKER

cluster centroid, and the average TM-score of the model

with the initial templates (used for easy target only). The

weights of the empirical score have been trained in

benchmark tests. The highest scoring models are finally

submitted.

Multiple-domain proteins

The procedure to deal with multiple-domain proteins

is similar to what we used in CASP7.18 If a segment of

the target sequence with >80 residues has no aligned res-

idues in the top two threading templates, the target is

treated as a multiple domain protein, and domain boun-

daries are automatically assigned based on the boundaries

of the large gaps. The I-TASSER simulations are run for

the full chain as well as the separate domains. The final

full-length models are generated by docking the models

of all domains together through a quick Metropolis

Monte Carlo simulation, where the simulation energy is

defined as the RMSD of the domain models to the full-

chain models plus the reciprocal of the number of inter-

domain steric clashes. This procedure is only applied to

proteins that have some domains not aligned in the top-

scoring templates. If multiple-domain templates are avail-

able with all domains aligned, the whole-chain will be

modeled in I-TASSER simultaneously.

CONCLUSIONS

The I-TASSER pipeline was tested in the CASP8

experiment. The success mainly comes from the fact that

the algorithm manages to make use of information from

multiple templates to assemble models with an optimized
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knowledge-based potential37 to accommodate the global

and local structural packing. The multiple template infor-

mation is represented in I-TASSER as consensus spatial

restraints and rigid structural fragments. The consensus

restraints have a similar accuracy to those from the top

individual templates but cover a larger portion of the

structure and a larger fraction of native contacts. The

rigid structure fragments excised from the PDB template

structures help reduce the entropy of the conformational

search and increase the fidelity of local structures.

Encouragingly, the procedure has been made fully

automated and generates models with a quality close to

the human predictions for at least the close homology

modeling.

For the first time, the sequence-based contact predic-

tions from machine-learning techniques16 are found help-

ful in both TBM and FM 3D structure assembly. In TBM,

although the overall accuracy is most desirable, the key

factor that determines the usefulness of the de novo con-

tact predictions is the complementarity to the template-

based predictions, that is, only those contacts that are

novel relative to the templates are essential. The false-posi-

tive predictions in the well-aligned regions are mostly neu-

tralized by the strong template-based restraints. However,

special treatment of the false-positive predictions, for

example, removing the sequence-based contacts involving

the well-aligned regions while keeping those in weakly

aligned or unaligned regions, may further eliminate possi-

ble side effects of the de novo contact predictions in

TBM. Progress has also been made in atomic-level struc-

tural refinement which optimizes the hydrogen-bonding

network and improves local structural packing.17

Nevertheless, one of the major issues of the current

I-TASSER approach lies in the selection of correct mod-

els. This is especially the case when the best templates

are hit only by a minority of threading algorithms and

ranked low in the scoring function. External statistical

and physics-based atomic potentials may be borrowed

to deal with this issue in combination with the I-

TASSER potentials and SPICKER clustering. Another

related issue is the mirror image recognition for free

modeling, for which chirality-dependent energy terms

need to be introduced in I-TASSER. Finally, incorrect

domain splitting turns out to be the major issue influ-

encing the quality of the I-TASSER models for multi-

ple-domain targets. As both separate domain modeling

and simultaneous modeling of multiple domains have

defects, that is, individual domain modeling misses the

restraint information from partners while simultaneous

modeling suffers from insufficient sampling for small

and weakly aligned domains, one solution may be to

model the domain structures in a sequential order while

keeping the other domains frozen. All these issues high-

lighted in the CASP8 experiment will be of high prior-

ity in the development of the next generation of I-

TASSER.
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