
Abstract Predicting protein 3D structures from the amino acid sequence still 
remains as an unsolved problem after five decades of efforts. If the target protein 
has a homologue already solved, the task is relatively easy and high-resolution 
models can be built by copying the framework of the solved structure. However, 
such a modelling procedure does not help answer the question of how and why a 
protein adopts its specific structure. If structure homologues (occasionally ana-
logues) do not exist, or exist but cannot be identified, models have to be constructed 
from scratch. This procedure, called ab initio modelling, is essential for a complete 
solution to the protein structure prediction problem; it can also help us understand 
the physicochemical principle of how proteins fold in nature. Currently, the accuracy 
of ab initio modelling is low and the success is limited to small proteins (<100 
residues). In this chapter, we give a review on the field of ab initio modelling. 
Focus will be put on three key factors of the modelling algorithms: energy function, 
conformational search, and model selection. Progresses and advances of a variety 
of algorithms will be discussed.

1.1 Introduction

With the tremendous success of the genome sequence projects, the number of avail-
able protein sequences is increasing exponentially. However, due to the technical 
difficulties and heavy labor and time costs of the experimental structure determina-
tion, the number of available protein structures lags far behind. By the end of 2007, 
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about 5.3 million protein sequences were deposited in the UniProtKB database 
(Bairoch et al. 2005) (http://www.ebi.ac.uk/swissprot). However, the corresponding 
number of protein structures in the Protein Data Bank (PDB) (Berman et al. 2000) 
(http://www.rcsb.org/pdb) is only about 44,000, less than 1% of the protein 
sequences. The gap is rapidly widening as indicated in Fig. 1.1. Thus, developing 
efficient computer-based algorithm to predicting 3D structures from sequences is 
probably the only avenue to fill up the gap.

Depending on whether similar proteins have been experimentally solved, protein 
structure prediction methods can be grouped into two categories. First, if proteins 
of a similar structure are identified from the PDB library, the target model can be 
constructed by copying the framework of the solved proteins (templates). The pro-
cedure is called “template-based modelling (TBM)” (Karplus et al. 1998; Jones 
1999; Shi et al. 2001; Ginalski et al. 2003b; Skolnick et al. 2004; Jaroszewski et al. 
2005; Soding 2005; Zhou and Zhou 2005; Cheng and Baldi 2006; Pieper et al. 
2006; Wu and Zhang 2008), which will be discussed in the subsequent chapters. 
Although high-resolution models can be often generated by TBM, the procedure 
cannot help us understand the physicochemical principle of protein folding.

If protein templates are not available, we have to build the 3D models from 
scratch. This procedure has been called by several names, e.g. ab initio modelling 
(Klepeis et al. 2005; Liwo et al. 2005; Wu et al. 2007), de novo modelling (Bradley 
et al. 2005), physics-based modelling (Oldziej et al. 2005), or free modelling (Jauch 
et al. 2007). In this chapter, the term ab initio modelling is uniformly used to avoid 
confusion. Unlike the template-based modelling, successful ab initio modelling 
procedure could help answer the basic questions on how and why a protein adopts 
the specific structure out of many possibilities.

Fig. 1.1 The number of available protein sequences (left ordinate) and the solved protein struc-
tures (right ordinate) are shown for the last 12 years. The ratio of sequence/structure is rapidly 
increasing. Data are taken from UniProtKB (Bairoch et al. 2005) and PDB (Berman et al. 2000) 
databases
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Typically, ab initio modelling conducts a conformational search under the guid-
ance of a designed energy function. This procedure usually generates a number of 
possible conformations (structure decoys), and final models are selected from them. 
Therefore, a successful ab initio modelling depends on three factors: (1) an accu-
rate energy function with which the native structure of a protein corresponds to the 
most thermodynamically stable state, compared to all possible decoy structures; 
(2) an efficient search method which can quickly identify the low-energy states 
through conformational search; (3) selection of native-like models from a pool of 
decoy structures.

This chapter gives a review on the current state of the art in ab initio protein 
structure prediction. This review is neither complete to include all available ab initio 
methods nor in depth to provide all backgrounds/motivations behind them. For a 
comparative study of various ab initio modelling methods, readers are recom-
mended to read a recent review by Helles (Helles 2008). The rest of the chapter is 
organized as follows. Three major issues of ab initio modelling, i.e. energy func-
tion, conformational search engine and model selection scheme, will be described 
in detail. New and promising ideas to improve the efficiency and effectiveness of 
the prediction are discussed. Finally, current progresses and challenges of ab initio 
modelling are summarized.

1.2 Energy Functions

In this section, we will discuss energy functions used for ab initio modelling. It 
should be noted that in many cases energy functions and the search procedures are 
intricately coupled to each other, and as soon as they are decoupled, the modelling 
procedure often loses its power/validity. We classify the energy into two groups: 
(a) physics-based energy functions and (b) knowledge-based energy functions, 
depending on the use of statistics from the existing protein 3D structures. A few 
promising methods from each group are selected to discuss according to their 
uniqueness and modelling accuracy. A list of ab initio modelling methods is pro-
vided in Table 1.1 along with their properties about energy functions, conforma-
tional search algorithms, model selection methods and typical running times.

1.2.1 Physics-Based Energy Functions

In a strictly-defined physics-based ab initio method, interactions between atoms 
should be based on quantum mechanics and the coulomb potential with only a few 
fundamental parameters such as the electron charge and the Planck constant; all atoms 
should be described by their atom types where only the number of electrons is relevant 
(Hagler et al. 1974; Weiner et al. 1984). However, there have not been serious attempts 
to start from quantum mechanics to predict structures of (even small) proteins, simply 
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because the computational resources required for such calculations are far beyond 
what is available now. Without quantum mechanical treatments, a practical starting 
point for ab initio protein modelling is to use a compromised force field with a large 
number of selected atom types; in each atom type, the chemical and physical  properties 
of the atoms are enough alike with the parameters calculated from crystal packing or 
quantum mechanical theory (Hagler et al. 1974; Weiner et al. 1984). Well-known 
examples of such all-atom physics-based force fields include AMBER (Weiner et al. 
1984; Cornell et al. 1995; Duan and Kollman 1998), CHARMM (Brooks et al. 1983; 
Neria et al. 1996; MacKerell Jr. et al. 1998), OPLS (Jorgensen and Tirado-Rives 1988; 
Jorgensen et al. 1996), and GROMOS96 (van Gunsteren et al. 1996). These potentials 
contain terms associated with bond lengths, angles, torsion angles, van der Waals, and 
electrostatics interactions. The major difference between them lies in the selection of 
atom types and the interaction parameters.

Table 1.1 A list of ab initio modelling algorithms reviewed in this chapter is shown along with 
their energy functions, conformational search methods, model selection schemes and typical 
CPU time per target

Algorithm & server 
address Force-field type Search method Model selection

Time cost 
per CPU

AMBER/CHARMM/
OPLS (Brooks et al. 
1983; Weiner et al. 
1984; Jorgensen and 
Tirado-Rives 1988; 
Duan and Kollman 
1998; Zagrovic et al. 
2002)

Physics-based Molecular 
dynamics 
(MD)

Lowest energy Years

UNRES (Liwo et al. 
1999, 2005; Oldziej 
et al. 2005)

Physics-based Conformational 
space anneal-
ing (CSA)

Clustering/free-
energy

Hours

ASTRO-FOLD (Klepeis 
and Floudas 2003; 
Klepeis et al. 2005)

Physics-based αBB/CSA/MD Lowest energy Months

ROSETTA (Simons et al. 
1997; Das et al. 2007) 
http://www.robetta.org

Physics- and 
knowledge-
based

Monte Carlo 
(MC)

Clustering/free-
energy

Months

TASSER/Chunk-TASSER 
(Zhang and Skolnick 
2004a; Zhou and 
Skolnick 2007) http://
cssb.biology.gatech.
edu/skolnick/webser-
vice/MetaTASSER

Knowledge-
based

MC Clustering/free-
energy

Hours

I-TASSER (Wu et al. 
2007; Zhang 2007) 
http://zhang.bioin-
formatics.ku.edu/I-
TASSER

Knowledge-
based

MC Clustering/free-
energy

Hours
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For the study of protein folding, these classical force fields were often coupled 
with molecular dynamics (MD) simulations. However, the results, from the view-
point of protein structure prediction, were not quite successful. (See Chapter 10 
for the use of MD in elucidation of protein function from known structures). The 
first milestone in such MD-based ab initio protein folding is probably the 1997 
work of Duan and Kollman who simulated the villin headpiece (a 36-mer) in 
explicit solvent for six months on parallel supercomputers. Although the authors 
did not fold the protein with high resolution, the best of their final model was 
within 4.5 Å to the native state (Duan and Kollman 1998). With Folding@Home, 
a worldwide-distributed computer system, this small protein was recently folded 
by Pande and coworkers (Zagrovic et al. 2002) to 1.7 Å with a total simulation 
time of 300 ms or approximately 1,000 CPU years. Despite these remarkable 
efforts, the all-atom physics-based MD simulation is far from being routinely used 
for structure prediction of typical-size proteins (~100–300 residues), not to men-
tion the fact that the validity/accuracy has not yet been systematically tested even 
for a number of small proteins.

Another protein structure niche where physics-based MD simulation can contrib-
ute is structure refinement. Starting from low-resolution protein models, the goal is to 
draw them closer to the native by refining the local side chain and peptide-backbone 
packing. When the starting models are not very far away from the native, the intended 
conformational change is relatively small and the simulation time would be much less 
than that required in ab initio folding. One of the early MD-based protein structure 
refinements was for the GCN4 leucine zipper (33-residue dimer) (Nilges and Brunger 
1991; Vieth et al. 1994), where a low-resolution coiled-coil dimer structure (2–3 Å) 
was first assembled by Monte Carlo (MC) simulation before the subsequent MD 
refinement. With the help of helical dihedral-angle restraints, Skolnick and coworkers 
(Vieth et al. 1994) were able to generate a refined structure of GCN4 with below 1 Å 
backbone root-mean-square deviation (RMSD) using CHARMM (Brooks et al. 
1983) and the TIP3P water model (Jorgensen et al. 1983).

Later, using AMBER 5.0 (Case et al. 1997) and TIP3P water model (Jorgensen 
et al. 1983), Lee et al. (2001) attempted to refine 360 low-resolution models gener-
ated by ROSETTA (Simons et al. 1997) for 12 small proteins (<75 residues); but 
they concluded that no systematic structure improvement is achieved (Lee et al. 
2001). Fan and Mark (2004) tried to refine 60 ROSETTA models for 11 small pro-
teins (<85 residues) using GROMACS 3.0 (Lindahl et al. 2001) with explicit water 
(Berendsen et al. 1981) and they reported that 11/60 models were improved by 10% 
in RMSD, but 18/60 got worse in RMSD after refinement. Recently, Chen and 
Brooks (2007) used CHARMM22 (MacKerell Jr. et al. 1998) to refine five CASP6 
CM targets (70–144 residues). In four cases, refinements with up to 1 Å RMSD 
reduction were achieved. In this work, an implicit solvent model based on the gen-
eralized Born (GB) approximation (Im et al. 2003) was used, which significantly 
speeded up the computation. In addition, the spatial restraints extracted from the 
initial models are used to guide the refinement procedure (Chen and Brooks 2007).

A noteworthy observation is recently made by Summa and Levitt (2007) who 
exploited various molecular mechanics (MM) potentials (AMBER99 (Wang et al. 
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2000; Sorin and Pande 2005), OPLS-AA (Kaminski et al. 2001), GROMOS96 
(van Gunsteren et al. 1996), and ENCAD (Levitt et al. 1995) ) to refine 75 pro-
teins by in vacuo energy minimization. They found that a knowledge-based 
atomic contact potential outperforms the MM potentials by moving almost all test 
proteins closer to their native states, while the MM potentials, except for 
AMBER99, essentially drove decoys further away from their native structures. 
The vacuum simulation without solvation may be partly the reason for the failure 
of the MM potentials. This observation demonstrates the possibility of combining 
knowledge-based potentials with physics-based force fields for more successful 
protein structure refinement.

While the physics-based potential driven by MD simulations was not particu-
larly successful in structure prediction, fast search methods (such as Monte Carlo 
simulations and genetic algorithms) based on physics-based potentials have shown 
to be promising in both structure prediction and structure refinement. One example 
is the ongoing project by Scheraga and coworkers (Liwo et al. 1999, 2005; Oldziej 
et al. 2005) who have been developing a physics-based protein structure prediction 
method solely based on the thermodynamic hypothesis. The method combines the 
coarse grained potential of UNRES with the global optimization algorithm called 
conformational space annealing (Oldziej et al. 2005). In UNRES, each residue is 
described by two interacting off-lattice united atoms, Cα and the side chain centre. 
This effectively reduces the number of atoms by 10, enabling one to handle 
polypeptide chains of larger than 100 residues. The resulting prediction time for 
small proteins can be then reduced to 2–10 h. The UNRES energy function (Liwo 
et al. 1993) consists of pair wise interactions between all interacting parties and 
additional terms such as local energy and correlation energy. The low energy 
UNRES models are then converted into all-atom representations based on ECEPP/3 
(Nemethy et al. 1992). Although many of the parameters of the energy function are 
calculated by quantum-mechanical methods, some of them are derived from the 
distributions and correlation functions calculated from the PDB library. For this 
reason, one might question the authenticity of the true ab initio nature of their 
approach. Nevertheless, this method is probably the most faithful ab initio method 
available (in terms of the application of a thorough global optimization to a physics-
based energy function) and it has been systematically applied to many CASP tar-
gets since 1998. The most notable prediction success by this approach is for T061 
from CASP3, for which a model of 4.2 Å RMSD to the native for a 95-residue α-
helical protein was generated with an accuracy gap from the rest of models by oth-
ers. It is shown, for the first time in a clear-cut fashion that the ab initio method can 
provide better models for the targets where the template-based methods fail. In 
CASP6, a structure genomics target of TM0487 (T0230, 102 residues) was folded 
to 7.3 Å by this approach. However, it seems that the scarcity and the best-but-still-
low accuracy of such models by a pure ab initio modelling failed to draw much 
attention from the protein science community, where accurate protein models are 
in great demand.

Another example of the physics-based modelling approaches is the multi-
stage hierarchical algorithm ASTRO-FOLD, proposed by Floudas and coworkers 
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(Klepeis and Floudas 2003; Klepeis et al. 2005). First, secondary structure elements 
(α-helices and β-strands) are predicted by calculating a free energy function of 
overlapping oligopeptides (typically pentapeptides) and all possible contacts 
between two hydrophobic residues. The free energy terms used include entropic, 
cavity formation, polarization, and ionization contributions for each oligopeptide. 
After transforming the calculated secondary structure propensity into the upper and 
lower bounds of backbone dihedral angles and the distant restraints between Cα 
atoms, the final tertiary structure of the full length protein is modeled by globally 
minimizing the ECEPP/3 all-atom force field. This approach was successfully 
applied to an α-helical protein of 102 residues in a double-blind fashion (but not in 
an open community-wide way for relative performance comparison to other meth-
ods). The Cα RMSD of the predicted model was 4.94 Å away from the experimental 
structure. The global optimization method used in this approach is a combination 
of α branch and bound (αBB), conformational space annealing, and MD simula-
tions (Klepeis and Floudas 2003; Klepeis et al. 2005). The relative performance of 
this method for a number of proteins is yet to be seen in the future.

Taylor and coworkers (2008) recently proposed a novel approach which con-
structs protein structural models by enumerating possible topologies in a coarse-
grained form, given the secondary structure assignments and the physical 
connection constraints of the secondary structure elements. The top scoring confor-
mations, based on the structural compactness and element exposure, are then 
selected for further refinement (Jonassen et al. 2006). The authors successfully fold 
a set of five αβ sandwich proteins with length up to 150 residues with the first 
model within 4–6 Å RMSD of the native structure. Again, although appealing in 
methodology, the performance of the approach in the open blind experiments and 
on the proteins of various fold-types is yet to be seen.

In the recent development of ROSETTA (Bradley et al. 2005; Das et al. 2007), 
a physics-based atomic potential is used in the second stage of Monte Carlo struc-
ture refinement following the low-resolution fragment assembly (Simons et al. 
1997), which we will discuss in the next section.

1.2.2  Knowledge-Based Energy Function Combined 
with Fragments

Knowledge-based potential refers to the empirical energy terms derived from the 
statistics of the solved structures in deposited PDB, which can be divided into two 
types as described by Skolnick (2006). The first one covers generic and sequence-
independent terms such as the hydrogen bonding and the local backbone stiffness 
of a polypeptide chain (Zhang et al. 2003). The second contains amino-acid or pro-
tein-sequence dependent terms, e.g. pair wise residue contact potential (Skolnick et 
al. 1997), distance dependent atomic contact potential (Samudrala and Moult 1998; 
Lu and Skolnick 2001; Zhou and Zhou 2002; Shen and Sali 2006), and secondary 
structure propensities (Zhang et al. 2003, 2006; Zhang and Skolnick 2005a).
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Although most knowledge-based force fields contain secondary structure pro-
pensity propensities, it may be that local protein structures are rather difficult to 
reproduce in the reduced modelling. That is, in nature a variety of protein sequences 
prefer either helical or extended structures depending on the subtle differences in 
their local and global sequence environment, yet we have not yet found force fields 
that can reproduce this subtlety properly. One way to circumvent this problem is to 
use secondary structure fragments, obtained from sequence or profile alignments, 
directly into 3D model assembly. Another advantage of this approach is that the use 
of excised secondary structure fragment can significantly reduce the entropy of the 
conformational search.

Here, we introduce two prediction methods utilizing knowledge-based energy 
functions, which are proved to be the most successful in ab initio protein structure 
prediction (Simons et al. 1997; Zhang and Skolnick 2004a).

One of the best-known ideas for ab initio modelling is probably the one pio-
neered by Bowie and Eisenberg, who generated protein models by assembling 
small fragments (mainly 9-mers) taken from the PDB library (Bowie and Eisenberg 
1994). Based on a similar idea, Baker and coworkers developed ROSETTA (Simons 
et al. 1997), which was extremely successful for the free modelling (FM) targets in 
CASP experiments and made the fragment assembly approach popular in the field. 
In the recent developments of ROSETTA (Bradley et al. 2005; Das et al. 2007), the 
authors first generated models in a reduced form with conformations specified with 
heavy backbone and Cβ atoms. In the second phase, a set of selected low-resolution 
models were subject to all-atom refinement procedure using an all-atom physics-
based energy function, which includes van der Waals interactions, pair wise solva-
tion free energy, and an orientation-dependent hydrogen-bonding potential. The 
flowchart of the two-phase modelling is shown in Fig. 1.2 and details on the energy 
functions can be found in references (Bradley et al. 2005; Das et al. 2007). For the 
conformational search, multiple rounds of Monte Carlo minimization (Li and 
Scheraga 1987) are carried out. The most notable example for this two-step proto-
col is the blind prediction of an ab initio target (T0281 from CASP6, 70 residues), 
whose Cα RMSD from its crystal structure is 1.6 Å (Bradley et al. 2005). In CASP7, 
a very extensive sampling was carried out using the distributed computing network 
of Rosetta@home allowing about 500,000 CPU hours for each target domain. 
There was one target, T0283, which was a template-based modelling (TBM) target 
but was modeled by the ROSETTA ab initio protocol. It generated a model of 
RMSD = 1.8 Å over 92 residues out of the 112 residues (Fig. 1.3, left panel). 
Despite the significant success, the computational cost of the procedure is rather 
expensive for routine use.

Partially because of the notable success of the ROSETTA algorithm, as well as 
the limited availability of its energy functions to others, several groups initiated 
developments of their own energy functions following the idea of ROSETTA. 
Derivatives of ROSETTA include Simfold (Fujitsuka et al. 2006) and Profesy (Lee 
et al. 2004); their energy terms include van der Waals interactions, backbone dihe-
dral angle potentials, hydrophobic interactions, backbone hydrogen-bonding poten-
tial, rotamer potential, pair wise contact energies, beta-strand pairing, and a term 
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controlling the protein radius of gyration. However, their prediction seems to be 
only partially successful in comparison to ROSETTA.

Another successful free modelling approach, TASSER by Zhang and Skolnick 
(2004a), constructs 3D models based on a purely knowledge-based approach. The 
target sequence is first threaded through a set of representative protein structures to 
search for possible folds. Contiguous fragments (>5 residues) are then excised from 
the threaded aligned regions and used to reassemble full-length models, while una-
ligned regions are built by ab initio modelling (Zhang et al. 2003). The protein 
conformation in TASSER is represented by a trace of Cα atoms and side chain centres 
of mass, and the reassembly process is conducted by parallel Monte Carlo simula-
tions (Zhang et al. 2002). The energy terms of TASSER include information about 
predicted secondary structure propensities, backbone hydrogen bonds, a variety of 
short- and long-range correlations and hydrophobic energy based on the structural 

Fig. 1.2 Flowchart of the ROSETTA protocol
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statistics from the PDB library. Weights of knowledge-based energy terms are opti-
mized using a large-scale structure decoy set (Zhang et al. 2003) which coordinates 
the complicated correlations between various interaction terms.

There are several new developments of TASSER. One is Chunk-TASSER (Zhou 
and Skolnick 2007) in Skolnick’s group, which first splits the target sequences into 
subunits (or “chunks”), each containing three consecutive regular secondary struc-
ture elements (helix and strand). These chunks are then folded separately. Finally, 
the spatial restraints are extracted from the chunk models and used for the subse-
quent TASSER simulations.

Another development is I-TASSER by Wu et al. (2007), which refines TASSER 
cluster centroids by iterative Monte Carlo simulations. The spatial restraints are 
extracted from the first round TASSER models and the template structures searched 
by TM-align (Zhang and Skolnick 2005b) from the PDB library, which are exploited 
in the second round simulations. The purpose is to remove the steric clashes from 
the first round models and refine the topology. The flowchart of I-TASSER is 
shown in Fig. 1.4. Although the procedure uses structural fragments and spatial 
restraints from threading templates, it often constructs models of correct topology 
even when topologies of constituting templates are incorrect. In CASP7, out of 19 
FM and FM/TBM targets, I-TASSER built models with correct topology (~3–5 Å) 
for seven cases with sequences up to 155 residues long. Figure 1.3 (right panel) 
shows the example of T0382 (123 residues) where all initial templates were of 

Fig. 1.3 Two examples of successful free modelling from CASP7 are shown. T0283 (left panel) 
is a TBM target (from Bacillus halodurans) of 112 residues; the model was generated by all-atom 
ROSETTA (a hybrid knowledge- and physics-based approach) (Das et al. 2007) based on free 
modelling, which gives a TM-score 0.74 (Zhang and Skolnick 2004b) and a RMSD 1.8 Å over the 
first 92 residues (13.8 Å overall RMSD is due to the wrong orientation of the C-terminal helix). 
T0382 (right panel) is a FM/TBM target (from Rhodopseudomonas palustris CGA009) of 123 
residues; the model was generated by I-TASSER (a purely knowledge-based approach) (Zhang 
2007) with a TM-score 0.66 and a RMSD 3.6 Å. Blue and red represent the model and the crystal 
structures, respectively
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wrong topology (>9 Å) but the final model is 3.6 Å away from the X-ray structure. 
Recently, Helles carried out a comparative study on 18 ab initio prediction algo-
rithms and concluded that I-TASSER is about the best method in term of the modelling 
accuracy and CPU cost per target (Helles 2008).

1.3 Conformational Search Methods

Successful ab initio modelling of protein structures depends on the availability of 
a powerful conformation search method which can efficiently find the global 
minimum energy structure for a given energy function with complicated energy 
landscape. Historically, Monte Carlo and molecular dynamics are two popular 
simulation methods to explore the conformational space of macromolecules such 
as proteins. For complicated systems like proteins, canonical MD/MC methods 
usually require a huge amount of computational resources for a complete explora-
tion of the conformational space. The record for direct application of MD to 
obtain the protein native structure is not so impressive. One explanation for the 
failure could be that the simulation time required to fold a small protein takes as 
long as milliseconds, 1012 times longer than the usual incremental time step of 
femtoseconds (10−15 s). The technical difficulty of MC simulations mainly comes 
from that the energy landscape of protein conformational space is typically quite 

Fig. 1.4 Flowchart of I-TASSER protein structure modelling
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rugged containing many energy barriers, which may easily trap the MC simulation 
procedures.

In this section we discuss recent development in conformational search methods 
to overcome these problems. We intend to illustrate the key ideas of conformational 
search methods used in various ab initio and related protein modelling procedures. 
Readers are recommended to read appropriate references for details. Unlike various 
energy functions used in ab initio modelling, the search methods should be, in 
principle, transferable between protein modelling methods, as well as other 
problems in science and technology. Currently, there exist no single omni-powerful 
search method that outperforms the others for all cases, and the investigation and 
systematic benchmarking on the performance of various search methods has yet to 
be carried out.

1.3.1 Monte Carlo Simulations

Simulated annealing (SA) (Kirkpatrick et al. 1983) is probably the most popular 
conformational search method. SA is general in that it is easy and straightforward 
to apply to any kind of optimization problem. In SA, one typically performs 
Metropolis MC algorithm to generate a series of conformational states following 
the canonical Boltzmann energy distribution for a given temperature. SA initially 
executes high temperature MC simulation, followed by a series of simulations sub-
ject to a temperature-lowering schedule, hence the name simulated annealing. As 
much as SA is simple, its conformational search efficiency is not so impressive 
compared to other more sophisticated methods discussed below.

When the energy landscape of the system under investigation is rugged (due to 
numerous energy barriers), MC simulations are prone to get stuck in meta-stable 
states that will distort the distribution of sampled states by breaking the ergodicity 
of sampling. To avoid this malfunction, many simulation techniques have been 
developed, and one of the most successful approaches is based on the generalized 
ensemble approach in contrast to the usual canonical ensemble. This kind of 
method was initially called by different names including multi-canonical ensemble 
(Berg and Neuhaus 1992) and entropic ensemble (Lee 1993). The underlying idea 
is to expedite the transition between states separated by energy barriers by modify-
ing the transition probability so that the final energy distribution of sampling 
becomes more or less flat rather than bell-shaped. A popular method similar in this 
spirit is the replica exchange MC method (REM) (Kihara et al. 2001) where a set 
of many canonical MC simulations with temperatures distributed in a selected 
range are simultaneously carried out. From time to time one attempts to exchange 
structures (or equivalently temperatures) from neighboring simulations to sample 
states in a wide range of energy spectrum as the means to overcome energy barriers. 
Parallel hyperbolic sampling (PHS) (Zhang et al. 2002) further extends the REM 
by dynamically deforming energy using an inverse hyperbolic sine function to 
lower the energy barrier.
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Monte Carlo with minimization (MCM), originally developed by Li and 
Scheraga (Li and Scheraga 1987), was successfully applied to the conformational 
search of ROSETTA’s high-resolution energy function. In MCM, one performs MC 
moves between local energy minima after local energy minimization of each per-
turbed protein structure. For a given local energy minimum structure A, a trial 
structure B is generated by random perturbation of A and is subsequently subject 
to local energy minimization. The usual Metropolis algorithm is used to determine 
the acceptance of B over A by calculating the energy difference between the two.

1.3.2 Molecular Dynamics

MD simulation (discussed in detail in Chapter 10) solves Newton’s equations of 
motion at each step of atom movement, which is probably the most faithful method 
depicting atomistically what is occurring in proteins. The method is therefore most-
often used for the study of protein folding pathways (Duan and Kollman 1998). The 
long simulation time is one of the major issues of this method, since the incremen-
tal time scale is usually in the order of femtoseconds (10−15 s) while the fastest 
folding time of a small protein (less than 100 residues) is in the millisecond range 
in nature. Currently no serious all-atom MD simulations are attempted for protein 
structure prediction starting from either an extended or a random initial structure. 
When a low resolution model is available, MD simulations are often carried out for 
structure refinement since the conformational changes are assumed to be small. 
One notable approach is the recent work of Scheraga and his coworkers, who have 
implemented torsion space MD simulation with the coarse-grained energy function 
UNRES (see the discussion above).

1.3.3 Genetic Algorithm

Conformational space annealing (CSA) (Lee et al. 1998) is one of the most success-
ful genetic algorithms. By utilizing a local energy minimizer as in MCM and the 
concept of annealing in conformational space, it searches the whole conformational 
space of local minima in its early stages and then narrows the search to smaller 
regions with low energy as the distance cutoff is reduced. Here the distance cutoff 
is defined as the similarity between two conformations, and it controls the diversity 
of the conformational population. The distance cutoff plays the role of temperature 
in the usual SA, and initially its value is set to a large number in order to force con-
formational diversity. The value is gradually reduced as the search progresses. CSA 
has been successfully applied to various global optimization problems including 
protein structure prediction separately combined with ab initio modelling in 
UNRES (Oldziej et al. 2005) and ASTRO-FOLD (Klepeis and Floudas 2003; 
Klepeis et al. 2005), and with fragment assembly in Profesy (Lee et al. 2004).
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1.3.4 Mathematical Optimization

The search approach by Floudas and coworkers, α branch and bound (αBB) 
(Klepeis and Floudas 2003; Klepeis et al. 2005), is unique in the sense that the 
method is mathematically rigorous, while all the others discussed here are stochas-
tic and heuristic methods. The search space is successively cut into two halves 
while the lower and upper bounds of the global minimum (LB and UB) for each 
branched phase space are estimated. The estimate for the UB is simply the best 
currently obtained local minimum energy, and the estimate for the LB comes from 
the modified energy function augmented by a quadratic term of the dissecting vari-
ables with the coefficient α (hence the name αBB). With a sufficiently large value 
of α, the modified energy contains only one energy minimum, whose value serves 
as the lower bound. While performing successive dissection of the phase space 
accompanied by estimates of LB and UB for each dissected phase space, phase 
spaces with LB higher than the global UB can be eliminated from the search. The 
procedure continues until one identifies the global minimum by locating a dissected 
phase space where LB becomes identical to the global UB. Once the solution is 
found, the result is mathematically rigorous, but large proteins with many degrees 
of freedom are yet to be addressed by this method.

1.4 Model Selection

Ab initio modelling methods typically generate lots of decoy structures during the 
simulation. How to select appropriate models structurally close to the native state 
is an important issue. The selection of protein models has been emerged as a new 
field called Model Quality Assessment Programs (MQAP) (Fischer 2006). In gen-
eral, modelling selection approaches can be classified into two types, i.e. the energy 
based and the free-energy based. In the energy based methods, one designs a variety 
of specific potentials and identifies the lowest-energy state as the final prediction. 
In the free-energy based approaches, the free-energy of a given conformation R can 
be written as

  (1)

where Z(R) is the restricted partition function which is proportional to the number 
of occurrences of the structures in the neighborhood of R during the simulation. 
This can be estimated by the clustering procedure at a given RMSD cutoff (Zhang 
and Skolnick 2004c).

For the energy-based model selection methods, we will discuss three energy/
scoring functions: (1) physics-based energy function; (2) knowledge-based energy 
function; (3) scoring function describing the compatibility between the target 
sequence and model structures. In MQAP, there is another popular method which 
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takes the consensus conformation from the predictions generated by different algo-
rithms (Wallner and Elofsson 2007), which has also called meta-server approaches 
(Ginalski et al. 2003a; Wu and Zhang 2007). The essence of this method is similar 
to the clustering approach since both assume the most frequently occurring state as 
the near-native ones. This approach has been mainly used for selecting models 
generated by threading-servers (Ginalski et al. 2003; Wallner and Elofsson 2007; 
Wu and Zhang 2007).

1.4.1 Physics-Based Energy Function

For the development of all-atom physics-based energy functions, Lazaridis and 
Karplus (1999a) exploited CHARMM19 (Neria et al. 1996) and EEF1 (Lazaridis 
and Karplus 1999b) solvation potential to discriminate the native structure from 
decoys that are generated by threading on other protein structures. They found the 
energy of the native state is lower than those of decoys in most cases. Later, Petrey 
and Honig (2000) used CHARMM and a continuum treatment of the solvent, 
Brooks and coworkers (Dominy and Brooks 2002; Feig and Brooks 2002) used 
CHARMM plus GB solvation, Felts et al. (2002) used OPLS plus GB, Lee and 
Duan (2004) used AMBER plus GB, and (Hsieh and Luo 2004) used AMBER plus 
Poisson-Boltzmann solvation potential on a number of structure decoy sets (includ-
ing the Park-Levitt decoy set (Park and Levitt 1996), Baker decoy set (Tsai et al. 
2003), Skolnick decoy set (Kihara et al. 2001; Skolnick et al. 2003), and CASP 
decoys set (Moult et al. 2001) ). All these authors obtained similar results, i.e. the 
native structures have lower energy than decoys in their potentials. The claimed 
success of model discrimination of the physics-based potentials seems contradicted 
by other less successful physics-based structure prediction results. Recently, 
Wroblewska and Skolnick (2007) showed that the AMBER plus GB potential can 
only discriminate the native structure from roughly minimized TASSER decoys 
(Zhang and Skolnick 2004a). After a 2-ns MD simulation on the decoys, none of 
the native structures were lower in energy than the lowest energy decoy, and the 
energy-RMSD correlation was close to zero. This result partially explains the dis-
crepancy between the widely-reported decoy discrimination ability of physics-
based potentials and the less successful folding/refinement results.

1.4.2 Knowledge-Based Energy Function

Sippl developed a pair wise residue-distance based potential (Sippl 1990) using the 
statistics of known PDB structures in 1990 (its newest version is PROSA II (Sippl 
1993; Wiederstein and Sippl 2007) ). Since then, a variety of knowledge-based 
potentials have been proposed, which include atomic interaction potential,  solvation 
potential, hydrogen bond potential, torsion angle potential, etc. In coarse-grained 
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potentials, each residue is represented either by a single atom or by a few atoms, 
e.g., Cα-based potentials (Melo et al. 2002), Cβ-based potentials (Hendlich et al. 
1990), side chain centre-based potentials (Bryant and Lawrence 1993; Kocher 
et al. 1994; Thomas and Dill 1996; Skolnick et al. 1997; Zhang and Kim 2000; 
Zhang et al. 2004), side chain and Cα-based potentials (Berrera et al. 2003). One of 
the most widely-used knowledge-based potentials is a residue-specific, all-atom, 
distance-dependent potential, which was first formulated by Samudrala and Moult 
(RAPDF) (Samudrala and Moult 1998); it counts the distances between 167 amino 
acid specific pseudo-atoms. Following this, several atomic potentials with various 
reference states have been proposed, including those by Lu and Skolnick (KBP) 
(Lu and Skolnick 2001), Zhou and Zhou (DFIRE) (Zhou and Zhou 2002), Wang 
et al. (self-RAPDF) (Wang et al. 2004), Tostto (victor/FRST) (Tosatto 2005), and 
Shen and Sali (DOPE) (Shen and Sali 2006). All these potentials claimed that 
native structures can be distinguished from decoy structures in their tests. However, 
the task of selecting the near native models out of many decoys remains as a chal-
lenge for these potentials (Skolnick 2006); this is actually more important than 
native structure recognition because in reality there are no native structures availa-
ble from computer simulations. Based on the CAFASP4-MQAP experiment in 
2004 (Fischer 2006), the best-performing energy functions are Victor/FRST 
(Tosatto 2005) which incorporates an all-atom pair wise interaction potential, sol-
vation potential and hydrogen bond potential, and MODCHECK (Pettitt et al. 
2005) which includes Cβ atom interaction potential and solvation potential. From 
CASP7-MQAP in 2006, Pcons developed by Elofsson group based on structure 
consensus performed best (Wallner and Elofsson 2007).

1.4.3 Sequence-Structure Compatibility Function

In the third type of MQAPs, best models are selected not purely based on energy 
functions. They are selected based on the compatibility of target sequences to model 
structures. The earliest and still successful example is that by Luthy et al. (1992), 
who used threading scores to evaluate structures. Colovos and Yeates (1993) later 
used a quadratic error function to describe the non-covalently bonded interactions 
among CC, CN, CO, NN, NO and OO, where near-native structures have fewer 
errors than other decoys. Verify3D (Eisenberg et al. 1997) improves the method of 
Luthy et al. (1992) by considering local threading scores in a 21-residue window. 
Jones developed GenThreader (Jones 1999) and used neural networks to classify 
native and non-native structures. The inputs of GenThreader include pairwise con-
tact energy, solvation energy, alignment score, alignment length, and sequence and 
structure lengths. Similarly, based on neural networks, Wallner and Ellofsson built 
ProQ (Wallner and Elofsson 2003) for quality prediction of decoy structures. The 
inputs of ProQ include contacts, solvent accessible area, protein shape, secondary 
structure, structural alignment score between decoys and  templates, and the fraction 
of protein regions to be modeled from templates. Recently, McGuffin developed a 
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consensus MQAP (McGuffin 2007) called ModFold that includes ProQ (Wallner 
and Elofsson 2003), MODCHECK (Pettitt et al. 2005) and ModSSEA. The author 
showed that ModFold outperforms its component MQAP programs.

1.4.4 Clustering of Decoy Structures

For the purpose of identifying the lowest free-energy state, structure clustering 
techniques were adopted by many ab initio modelling approaches. In the work by 
Shortle et al. (1998), for all 12 cases tested, the cluster-centre conformation of the 
largest cluster was closer to native structures than the majority of decoys. Cluster-
centre structures were ranked as the top 1–5% closest to their native structures.

Zhang and Skolnick developed an iterative structure clustering method, called 
SPICKER (Zhang and Skolnick 2004c). Based on the 1,489 representative bench-
mark proteins each with up to 280,000 structure decoys, the best of the top five 
models was ranked as top 1.4% among all decoys. For 78% of the 1,489 proteins, 
the RMSD difference between the best of the top five models and the most native-
like decoy structure was less than 1 Å.

In ROSETTA ab initio modelling (Bradley et al. 2005), structure decoys are 
clustered to select low-resolution models and these models are further refined by 
all-atom simulations to obtain final models. In the case of TASSER/I-TASSER 
(Zhang and Skolnick 2004a; Wu et al. 2007), thousands of decoy models from MC 
simulations are clustered by SPICKER (Zhang and Skolnick 2004c) to generate 
cluster centroids as final models. In the approach by Scheraga and coworkers 
(Oldziej et al. 2005), decoys are clustered and the lowest-energy structures among 
the clustered structures are selected.

1.5 Remarks and Discussions

Successful ab initio modelling from amino acid sequence alone is considered as 
the “Holy Grail” of protein structure prediction (Zhang 2008), since this will mark 
an eventual and complete solution to the problem. Except for the generation of 3D 
structures, ab initio modelling can also help us understand the underlying princi-
ples on how proteins fold in nature; this could not be done by the template-based 
modelling approaches which build 3D models by copying the framework of other 
solved structures.

An ideal approach to ab initio modelling would be to treat atoms in a protein as 
interacting particles according to an accurate physics-based potential, and fold the pro-
tein by solving Newton’s equations of motion in each step of movements. A number of 
molecular dynamics simulations were carried out along this line of approach by 
 exploiting the classic CHARMM and AMBER force fields. Although the MD based 
simulation is extremely important for the study of protein folding, the success in the 
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viewpoint of structure prediction is quite limited. One reason is the prohibitive comput-
ing demand for a normal size protein. On the other hand, knowledge-based (or hybrid 
knowledge- and physics-based) approaches appear to be progressing rapidly, producing 
many examples of successful low-to-medium accuracy models often with correct topol-
ogy for proteins of up to 100 residues. Although very rare, successful higher resolution 
models (<2 Å of Cα atoms) have also been reported (Bradley et al. 2005).

The current state-of-the-art ab initio protein structure prediction methods often 
utilize as much as possible knowledge-based information from known structures, 
which is multi-purpose. First, the employment of local structure fragments directly 
excised from the PDB structures helps reduce the degrees of freedom and the 
entropy of conformational search and yet keep the fidelity of the native protein 
structures. Second, the knowledge-based potential derived from the statistics of a 
large number of solved structures can appropriately grasp the subtle balance of the 
complicated correlations between different sources of energy terms (Summa and 
Levitt 2007). With the carefully parameterized knowledge-based potential terms 
aided by various advances in the conformational search methods, the accuracy of 
ab initio modelling for proteins up to 100–120 residues has been significantly 
improved in the last decade.

For further improvement, parallel developments of accurate potential energy 
functions and efficient optimization methods are both necessary. That is, separate 
examination/development of potential energy functions is important; meanwhile, 
systematic benchmarking of various conformational search methods should be per-
formed, so that the advantages as well as limitations of available search methods 
can be explored separately.

It is important to acknowledge that ab initio prediction methods solely based on 
the physicochemical principles of interaction are currently far behind, in terms of 
their modelling speed and accuracy, compared with the methods utilizing bioinfor-
matics and knowledge-based information. However, the physics-based atomic 
potentials have proven to be useful in refining the detailed packing of the side chain 
atoms and the peptide backbones. Thus, developing composite methods using both 
knowledge-based and physics-based energy terms may represent a promising 
approach to the problem of ab initio modelling.
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