
Protein Homology Analysis for Function 
Prediction with Parallel Sub-Graph 

Isomorphism 
 

Alper Küçükural1,2, Andras Szilagyi1, O. Uğur Sezerman2, Yang 
Zhang1* 

 
1Center for Bioinformatics and Department of Molecular Bioscience, 

University of Kansas, Lawrence, KS, 66047 USA 
2Faculty of Engineering and Natural Sciences, Sabanci University, 

Orhanli, Tuzla, Istanbul, Turkey 
 

*Correspondence should be addressed to yzhang@ku.edu 
 

ABSTRACT 
To annotate the biological function of a protein molecule, it is essential to 
have information on its 3D structure. Many successful methods for function 
prediction are based on determining structurally conserved regions because 
the functional residues are proved to be more conservative than others in 
protein evolution. Since the 3D conformation of a protein can be represented 
by a contact map graph, graph matching algorithms are often employed to 
identify the conserved residues in weakly homologous protein pairs. 
However, the general graph matching algorithm is computationally expensive 
because graph similarity searching is essentially a NP-hard problem. Parallel 
implementations of the graph matching are often exploited to speed up the 
process. In this chapter, we review theoretical and computational approaches 
of graph theory and the recently developed graph matching algorithms for 
protein function prediction. 
 
INTRODUCTION 
Computational assignment of protein function from the 3D protein structure 
is one of the important open problems in structural proteomics. Currently, 
many proteins deposited in the Protein Data Bank (PDB) have limited or no 
biological function annotation. Protein functions are usually derived from 
evolutionarily related proteins. Evolutionary association can be determined 
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from sequence and structural similarities. The methods using sequence 
information are based on the detection of functional motifs (Huang and 
Brutlag, 2001; Hulo, et al., 2006; Stark and Russell, 2003), global sequence 
similarity search (Conesa, et al., 2005; Hawkins, et al., 2006; Martin, et al., 
2004), determination of similar loci (Hawkins, et al., 2006), and similarities in 
phylogeny (Engelhardt, et al., 2005; Storm and Sonnhammer, 2002). 
However, only around 30% of the protein pairs with less than 50% sequence 
identity have a similar function. Therefore, sequence similarity itself is not 
sufficient to develop a robust function prediction (Rost, 2002). In addition, 
several studies indicate that the inclusion of structural information increases 
the accuracy of predictions (Devos and Valencia, 2000; Thornton, et al., 2000; 
Wilson, et al., 2000), because structural features are usually more conserved 
than sequence. 

Similarities between protein structures can be identified by structural 
alignment methods such as DALI (Holm, et al., 2008), CE (Shindyalov and 
Bourne, 1998), and TM-align (Zhang and Skolnick, 2005). Several function 
prediction methods employ structural alignment programs to identify the 
structurally closest proteins and transfer the functional annotation to the target 
protein. However, the correlation between function and overall protein fold is 
weak (Martin, et al., 1998). This can in part be explained by the fact that 
global structural alignment methods do not always capture locally conserved 
regions, and the biochemical function of a protein is usually determined by 
the local structure of a few active residues. Therefore, algorithms that aim to 
extract local structural information should achieve more robust function 
prediction (Laskowski, et al., 2005; Weinhold, et al., 2008).  

The structures and sequences of remotely homologous protein pairs may 
have diverged during evolution while local structures involved in protein 
function may have been preserved. The aim of searching for local structural 
similarities is to detect these preserved, functionally important structural 
patterns. To discover local structural motifs, the following methods have been 
described in the literature. In a method based on 3D templates (Laskowski, et 
al., 2005), the specific 3D conformations of sets of 2-5 residues were 
extracted from the structures of functionally significant units. This template 
set was manually compiled to include four types of templates: the enzyme 
active site, ligand-binding residues, DNA-binding residues, and reverse 
templates. Given a target protein, the template set is searched for structures 
locally matching some part of the target protein, within spheres of a 10 Å 
radius. The matches are ranked using the SiteSeer scoring function. The 
degree of overlap between target and template residues is calculated, and the 
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algorithm maximizes the sum of the overlap scores of the matched residues in 
all possible configurations. The method was tested on various distantly related 
protein pairs with widely divergent sequences. Significant functional matches 
were found, e.g. two TIM-barrel proteins with very low sequence identity 
were found to have a high SiteSeer score, and their functional sites were 
correctly matched. Moreover, some of the predictions for newly released 
structures with unknown function have later been experimentally verified. In 
another study, the combination of sequence and structural features were 
employed to identify functional similarities, based on the assumption that the 
preserved amino acids at key sites in similar local structures hint at a 
functional similarity as well (Friedberg, 2006).   

Conserved local regions may contain residues that are not adjacent in 
sequence. Structurally adjacent residues, however, are preserved in most 
cases. These structurally conserved patterns have been explored by various 
tools such as JESS (Barker and Thornton, 2003), PINTS (Stark and Russell, 
2003), PDBSiteScan (Ivanisenko, et al., 2004), and PAR-3D (Goyal, et al., 
2007). Local structural similarities can be detected with search algorithms 
based on contact map networks. The algorithms can be described in terms of 
three major characteristics: representation, scoring, and searching. The contact 
maps are searched for similar regions with graph matching algorithms. 
However, the possible mutations, insertions and deletions in the protein 
structures yield very different contact maps. To discover similarities in the 
presence of such conformational differences, inexact sub-graph matching 
algorithms are necessary. Because the problem is NP-hard, parallel computing 
implementations are often used to speed up the process.  

In this chapter, we will review the current status in the field of local 
structure based function annotation. The topics include contact maps for 
representation, distance functions with graph theoretical properties for 
scoring, and parallel inexact sub-graph matching algorithms for local 
structural similarity search. 
 
REPRESENTATION SCHEME 
There are a number of different ways to represent 3D protein structures as a 
linear string as a simplification. Pattern search and motif discovery algorithms 
that use sequential information are then utilized with this representation 
scheme (Barker and Thornton, 2003; Lo, et al., 2007; Matsuda, et al., 1997). 
Contact maps constitute a different type of representation method, and can 
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incorporate more information than linear strings. They are extracted from the 
PDB files using the coordinates of alpha carbon atoms. 
 
Graph Representations of Protein Structure 
Protein structures can be converted into a graph where the nodes represent the 
Cα atoms and the links represent interactions (or contacts) between the 
corresponding residues (Albert and Barabási, 2002; Strogatz, 2001).  

The two most commonly used graph representations of protein structures 
are contact maps and the Delaunay tessellated graphs (Atilgan, et al., 2004; 
Taylor and Vaisman, 2006). Both types of graphs can be described as an N×N 
matrix S for a protein with N residues. The definition of a contact differs 
between the two types. In a contact map, if the distance between Cα atoms of 
two residues is smaller than a certain cut-off, they are considered to be in 
contact (Atilgan, et al., 2004). 

Delaunay tessellated graphs consist of points connected by edges defined 
in a special way. A point corresponds to an atom for each residue in the 
protein. For example, α carbon, β carbon, or the center of mass of the side 
chain can be used to represent each residue. There is a certain way to connect 
these points by edges so as to have the Delaunay simplices which form non-
overlapping tetrahedra (Taylor and Vaisman, 2006). A Delaunay tessellated 
graph contains the neighborhood (contact) information of the residues 
represented by its vertices (Barber, et al., 1996). 

Contact maps have been widely used as a representation method of 
protein structures in the literature (Fariselli and Casadio, 1999; Gupta, et al., 
2005; Huan, et al., 2004; Vassura, et al., 2008; Vendruscolo, et al., 2002). 
This is a convenient way to capture the actual neighborhood information of 
each residue because the contacting residues are determined on the basis of a 
distance cut-off. An example of the contact map extraction is illustrated in 
Figure 1. In the Delaunay tessellation, the neighbors of a residue are defined 
by the Delaunay tetrahedra. However, these neighbors may be quite far away 
especially if the residue is on the surface. Using the Delaunay tessellated 
graphs to represent protein structures does not offer definite advantages 
compared to contact maps (Huan, et al., 2004; Küçükural, et al., 2008). 

In many studies, small molecules (ligands) that bind to the proteins are 
also represented by graphs. This representation serves as a basis for the 
construction of a metric for the classification of these small molecules, and is 
a popular area in chemoinformatics, with many challenges (Schietgat, et al., 
2008). This classification can help reduce the time to find ligands similar to a 
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given ligand in chemical compound databases, e.g. the Chemical Abstract 
Service Registry containing 40 million compounds. The graph representations 
of ligand molecules and proteins differ from each other in how the vertices 
and edges are defined. In the graph representation of the 3D structure of a 
protein, vertices represent Cα atoms and edges are defined between 
neighboring Cα atoms (i.e. those close to each other in space) (Fariselli and 
Casadio, 1999), whereas in the graph representation of a small molecule, all 
the atoms are represented by vertices, and chemical bonds between the atoms 
define the edges (Schietgat, et al., 2008). Here, we only use graphs to 
represent proteins and their binding sites; we do not use the ligand molecules 
themselves for our purposes. Our goal is to identify binding sites based on the 
detection of similar and conserved regions in proteins that are weakly 
homologous to each other.  

 

 

Figure 1. a) An illustration of contact map extraction from a protein 
structure. The distance between residue 18 (methionine) and residue 15 
(asparagine) is 5.5 Å.  b) If the distance between two residues is below a 
certain cut-off, the residue pair is represented by a value 1 in the 2D contact 
map matrix (1s are shown here as grey dots). The elements of the matrix are 
indexed by the residue numbers of the protein. 
 
SCORING FUNCTION WITH NETWORK PROPERTIES 
Defining a suitable scoring function and tuning its parameters are vital to the 
success of sub-graph matching algorithms. The graph representation of the 
proteins also provides some features that can be used in matching operations. 
These properties include intrinsic information about the contribution of each 
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residue to the stability or the function of the protein. Structurally similar parts 
in two proteins can be found using a target function based on network 
properties.  
 
Graph Theoretical (Network) Properties 
A variety of graph theoretical properties are defined in the literature. This 
chapter presents nine of them. The first property, defined for each vertex of 
the graph, is the degree (k), which is the number of edges incident to the 
vertex, i.e. for a graph describing a protein, the number of neighbors of each 
residue (Taylor and Vaisman, 2006). The next measure is the number of 
second neighbors, k2, which is a measure of the compactness of the graph. 
Even though k2 is highly correlated to the degree k, it still provides additional 
information. For example, if the structure is a single globular unit rather than 
a number of distinct, small domains, most residues will have a high k2 value 
(Küçükural, et al., 2008). The third network property is the clustering 
coefficient, also known as cliquishness, which measures how well the 
neighbors of a node are connected to each other. The clustering coefficient for 
each node is calculated as  
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where En is the number of edges connecting the neighbors of the residue n, 
and k is its degree (Taylor and Vaisman, 2006; Vendruscolo, et al., 2002).  

The characteristic path length L of the network, i.e. the average of the 
minimum paths between all node pairs, is also one of the most commonly 
used network properties (Bagler and Sinha, 2005; Taylor and Vaisman, 2006). 
Globular proteins yield smaller L values, whereas fibrous proteins yield larger 
ones. The characteristic path length Ln for residue n is calculated by the 
average of the shortest paths from the residue to all the other residues given as 
in (2); 
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where σnj is the shortest path length between nodes n and j, and N is the 
number of residues (Taylor and Vaisman, 2006). The only difference between 
L and the weighted characteristic path length wL is that weighted edges are 
used in the calculation of the latter. Contact potentials can be used to assign a 
weight for each contact (Liang and Dill, 2001; Miyazawa and Jernigan, 1996). 
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Several more graph theoretical properties can be calculated. The centrality 
of a node can be described by various measures. Many different centrality 
measures have been defined in the literature; here we present four of them. 
Firstly, betweenness measures to what extent a node i lies in between other 
nodes (Freeman, 1977):  
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where σst is the number of shortest paths between nodes s and t, and σst(i) is 
the number of shortest paths between nodes s and t that pass through the node 
i (V denotes the set of all nodes). 

The stress centrality measures the total number of shortest paths that pass 
through a node i (Shimbel, 1953): 
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The closeness centrality is defined as a measure that shows how long the 
information takes to spread from a given node to other reachable nodes  
(Sabidussi, 1966): 
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where dG (i, t) is the length of the shortest path from node i to node t. 
Lastly, graph centrality measures the length of the shortest path to reach 

the node farthest away from the given node (Hage and Harary, 1995):   
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Centrality measures aim to quantify the “importance” of the individual 
nodes in the network (Brandes, 2001; Newman, 2003). If a node is central to a 
network representing a protein structure, this node may have an important role 
in the stability of the protein or in the transduction of signals from one part of 
the structure to another. A summary of the graph theoretical properties is 
given in Table 1. 

 
Table 1.Summary of the graph theoretical properties. 
# Abreviation Graph Theoretical Property 
1 k Degree 
2 k2 Second Neighbors 
3 C Clustering Coefficient 
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4 L Characteristic Path Length 
5 wL Weighted Characteristic Path Length 
6 Cb Betweenness 
7 Cs Stress Centrality 
8 Cc Clossness Centrality 
9 Cg Graph Centrality 

 
Significance of Network Properties in Protein Structure 
Characterization 
Several recent studies have explored the potential uses of graph theoretical 
properties calculated from protein structures (Huan, et al., 2004; Küçükural, et 
al., 2008). Graph theoretical properties, including the average degree, 
clustering coefficient, and number of second neighbors, have been used to 
discriminate the native protein structure from artificially created near-native 
decoys (Taylor and Vaisman, 2006). Besides the average of the properties, 
moment of their distributions, i.e. standard deviation, skewness, and kurtosis 
were also used. These features were fed as input vectors to several 
classification methods implemented in the Pattern Recognition Tools 
(PRTools) package (Heijden, et al., 2004).  

The method was validated on three data sets using five-fold cross 
validation. The first data set employed was from the PISCES database (Wang 
and Dunbrack, 2003), and contained 1364 non-homologous proteins with an 
X-ray structure resolution < 2.2 Å, crystallographic R factor < 0.23, and a 
maximum pairwise sequence identity < 30%. The second data set consisted of 
1364 artificially generated and well-designed decoy set, and the third set 
contained 101 artificially generated straight helices. Decoy sets were 
generated by randomly placing Cα atoms at ~3.83Ǻ distance from each other 
while avoiding their self-intersection, and keeping the globular structure 
approximately at the size and shape of an average protein (Taylor and 
Vaisman, 2006). Further details of the decoy generation stage can be found in 
Wang et al. (Wang, et al., 2004). 

First, the graph representation method was tested on the three data sets. 
The contact map had a better classification accuracy than the tessellated graph 
representation, which can be attributed to the fact that it captures better the 
actual compactness of the protein structure. In some cases, tessellated graphs 
may incorrectly connect spatially distant residues, leading to a lower 
classification accuracy.  
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Second, the discriminatory power of graph theoretical properties was 
evaluated. When degree, clustering coefficient, number of second neighbors, 
and contact potential score were used together, the classification accuracy was 
99%. Even without the contact potential score, the method had a 98.13% 
prediction accuracy after the exclusion of outliers. 

The degree (k) had the highest discriminatory power; using only the degree 
distribution, we could distinguish the native and non-native structures with an 
accuracy of 96.74%. Addition of the number of second neighbors did not 
improve the accuracy much (96.93%). Cliquishness (C) along with degree (k) 
yielded a classification accuracy of 98.72% (Küçükural, et al., 2008).  

The intrinsic power of graph theoretical properties to distinguish between 
native and non-native proteins is also exploited in another application: to align 
protein structures using dynamic programming. The idea behind the approach 
is that similar structures yield similar contact maps and other network 
properties derived from contact maps. This similarity is used for the alignment 
of protein structures (Küçükural and Sezerman, 2009).  

  
Scoring Function 
For the problem of inexact sub-graph matching, a suitable scoring function is 
needed. The scoring function measures the distance or the similarity of nodes, 
and transforms the problem of inexact sub-graph matching into an 
optimization problem.  

Before a scoring function can be applied, it is advantageous to normalize 
the input variables, in order to have the data in a defined range (usually 0 to 
1). The normalizing constant may be calculated as the difference between the 
maximum and minimum values of the given property over a representative set 
of proteins. Then, the normalized property n(i) of node i can be written as 

minmax
min)()(

−
−

=
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where v(i) denotes the value before normalization. The distance between 
corresponding nodes i and j can then be calculated using an appropriate metric 
applied to the property vectors. For example, the Manhattan distance, 
normalized to the [0,1] interval, can be used:   
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where N is the number of features and nf(i) is the normalized value of feature f 
for the node i. A measure of similarity can be introduced as. 
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Matching nodes can then be identified based on a cut-off value applied on 
the distance or the similarity. Figure 2 shows an illustrative example of sub-
graphs in two proteins, with a pair of matching nodes. The nodes n1 and n2 are 
very similar to each other by their network properties, which are reflected by 
their high similarity score. 
  

 
Figure 2. Contact maps of two proteins and network property vectors for two 
matching nodes (n1, n2). 
 
SEARCH ALGORITHM 
Several methods can be designed for local structural similarity search by 
adapting one of the known computational search algorithms. Graph matching 
(Kreher and Stinson, 1998) and parallel graph matching algorithms (Marek 
and Wojciech, 1998) are the preferred search methods when the structures are 
represented by graphs. 
 
Attributed Relational Graphs (ARG) and Graph Matching 
An attributed relational graph (ARG) G = (V, E, A) is composed of a set of 
vertices (nodes) V = {v1, v2, …, vn}, a set of edges E = {e1, e2, …, em}, and a 
set of attributes A = {a1, a2,…,an} that contain additional information on the 
nodes and/or the edges. Thus, an ARG contains both syntactic and semantic 
information: Syntactic information specifies the topological properties of the 
graph (nodes and edges), while semantic information is contained by 
attributes assigned to each node in the graph (Cordella, et al., 1998). For 
protein contact maps, the nodes represent residues and edges represent the 

n1(5, 0.4, ... ) 

n2(5, 0.33, ... ) 

Protein B 

Protein A 
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neighborhood information on the residues. The attributes can be any 
additional properties calculated for the residues. 

Two varieties of the graph matching problem exist depending on whether 
errors are allowed: exact and inexact graph matching. Exact matching is 
equivalent to identifying isomorphous graphs. The exact matching of the two 
graphs G1 = {V1, E1, A1} and G2 = {V2, E2, A2} yields a mapping between the 
nodes of G1 and the nodes of G2 such as 

2121 )),((),(:: EvvfEvvVVf jiji ∈∃∈∀→                (10) 

The mapping f yields a set of matched pairs (vi, vj) where vi is from V1 and vj 
from V2 (Cordella, et al., 1998). 

Matching whole graphs is rarely needed in real-world problems. The sizes 
of the graphs to be matched are often different, and isomorphous subgraphs 
are sought.  
 
Graph Matching Algorithms 
Since graph matching algorithms are computationally expensive, developing 
more efficient graph matching algorithms is an open and challenging area. 
The aim is to reduce memory consumption and processing time. Obviously, 
the brute-force method is very slow and inefficient. In 1974, Ullmann 
proposed an algorithm based on elimination of successor nodes in tree search 
(Ullmann, 1976). Today, the most useful and effective algorithms are VF 
algorithms (named after the inventors of the original algorithm, M. Vento and 
P. Foggia), in terms of both time requirement and memory consumption. 
There are various types of exact matching algorithms depending on whether 
the goal is to find a monomorphism, an isomorphism or a graph-subgraph 
isomorphism (Cordella, et al., 1999; Cordella, et al., 2001). The VF algorithm 
was compared with Ullmann’s algorithm in a study by Cordella et al. The 
running time of Ullmann’s algorithm is Θ(N3) in the best case, where N 
denotes the size of the graph, while that of the VF algorithm is Θ(N2). In the 
worst case, the running time of Ullmann’s algorithm is Θ(N!N3), and that of 
the VF algorithm is Θ(N!N). The memory consumption of the two methods 
also differs: the memory needed by the VF algorithm is uniformly Θ(N2), 
while Ullmann’s algorithm needs Θ(N3) (Cordella, et al., 1999). The VF 
algorithm was improved by Cordella et al., resulting in VF2, which has a 
reduced memory usage can handle large graphs more efficiently (Cordella, et 
al., 2001).  
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Figure 2. Pseudo-code of the beam search algorithm.  
  

For large systems, beam search algorithms are preferred, due to their low 
memory consumption. Beam search is an iterative, heuristic search algorithm 
that keeps the N best solutions in each iteration, and discards the rest of the 
matches ranked by a predefined scoring function (Yuehua and Alan, 2007). 
The algorithm uses two lists, named parentLists and childLists. The solutions 
obtained in the previous iteration are kept in parentLists, and the possible 
matches at the current iteration are held in childLists. After pruning and 
constraint checks specific to the matching operation, approved matches in the 
childLists are transferred into parentLists. The matching operation starts with 
a node that is chosen from heavily connected nodes and walks on neighboring 
nodes that are ranked by their degrees. The pseudo-code of the beam search 
algorithm is shown in Figure 2. 

Numerous graph matching algorithms have been produced in the last three 
decades. Some of these algorithms are capable of reducing computational 
complexity and memory by using constraints and restrictions (Yuehua and 
Alan, 2007). When the task is to match a sample graph against a large set of 
prototypes, computationally efficient algorithms have an increasing memory 
consumption (Cordella, et al., 2001). For that reason, scientists have 

    Select the most heavily connected node to start with 
    while there are more heavily connected nodes in G1 

           if it is a new inital  node 
              for all the comparable nodes 

       find a matching pair 
                  for each match in the parentList 
                        if the matching pair is not already included 
                            newSolutionSet = new matching pair 
                            insertChildList(newSolutionSet) 
            else  

 for all the solutionSets in the parentList 
                   if the solutionSet contains any neighbors of currentNode 

         Locate the neighbor and its match pair 
                        for all the neighbors of the match pair in G2 

              compare neighbor with currentNode 
                            if matches 
                                solutionSet = solutionSet + new pair 
                                insertChildList(solutionSet) 
           for all solutionSets in childList 
 rank solutionSets 
              prune according to scoring function and check constraints 
              add the solutions in the childList to parentList  
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attempted to solve this problem by using parallelizable algorithms such as 
divide and conquer (Marek and Wojciech, 1998). 
 
Parallel Graph Matching Algorithms 
Biological systems can often be described by extremely large graphs. Parallel 
graph matching algorithms reduce processing time by performing a parallel 
search on graph trees. Sheng et al. (Sheng, et al., 2003) developed an 
algorithm for parallel computers, especially those with distributed memory. 
The implementation uses an asynchronous parallel algorithm, and the 
processing time was found to be inversely proportional to the number of 
processors. The main algorithm consists of three steps. In the first step, the 
master processor broadcasts the two graphs to be matched to all other 
processors. In the second step, each processor starts to search for matches 
between subgraphs assigned to it. If any of the processors finds isomorphous 
subgraphs, it informs the other processors of the match. In the third step, when 
all the processors have completed their jobs, the search operation for the 
original graphs can be completed. 

Subgraph isomorphism is defined as an exact match between a subgraph 
from the first graph and a subgraph from the second graph. However, in real-
world applications, we are often interested in subgraphs that are similar but 
not necessarily isomorphous. For example, homologous proteins have the 
same overall structure but mutations, insertions and deletions result in small 
differences between the conformations. To find such similarities, graph 
matching algorithms allowing for errors, i.e. inexact subgraph matching 
algorithms are needed (Küçükural and Sezerman, 2009). 
 
A Parallel Inexact Graph Matching Algorithm 
The beam search algorithm (Yuehua and Alan, 2007) can be to parallelized 
and adapted to allow for errors. For each process, the initiation nodes are 
selected from the most heavily connected nodes in the first graph.  

Attributed relational graphs describing proteins can be represented as 
binding residue matrices (BRM) containing both structural neighborhood 
information and attributes of residues such as cliquishness, degree, and 
centrality. These matrices constitute the input to the algorithm. 

Master and child processes are designed with different responsibilities. 
The master process manages the child processes, monitors their states, and 
sends them the necessary data whenever they need it (Sheng, et al., 2003). 
The master process itself does not perform any matching operations. 
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Matching is done by the child processes which report their state to the master. 
Initially, the master process sends the BRM to all child processes, and then 
each process receives the number of the node with which it should start the 
matching operation. 

Once the initiation nodes have been distributed among child processes, the 
graph matching operations are run until all the heavily connected nodes have 
been processed. When the matching operation for a node is finished, the child 
process sends a signal to the master process to report this event. This process 
can then accept new initial nodes to start a new matching operation. When all 
the heavily connected nodes have been processed, the master sends a stop 
signal to the child processes to close their connections. Each child process 
employs a beam search algorithm for matching (see Figure 2). To reduce the 
computation time, problem-specific constraints are used (Küçükural and 
Sezerman, 2009). 
 
Problem Specific Constraints 
Graph matching operations are generally very complex, and their computation 
time scales at least as Θ(N2) (Cordella, et al., 1999). Therefore, some 
constraints are used to reduce computational complexity.  

One of the most important constraints prunes the childList. For example, a 
child list is not allowed to contain more than ten matches. Each residue has at 
most 15 neighbors for an average protein. When a match between two nodes 
is found, their neighbors are examined for potential new matches. However, 
constraints derived from the parent match are applied. For example, let Xi be a 
residue number from the first protein and Yj a residue number from the second 
protein, and let us suppose that a match has been found between Xi and Yj. 
Then new potential match such as between Xi+1 and Yj+1 will have the first 
match as parent. The following constraint can be introduced for the residue 
numbers of the parent and child matches: 

11 ++ ≥⇒≥ jiji YXYX                   (11) 
For a child match, this constraint has to be met for each parent match leading 
up to the child, in order to prevent “cross matches”. 

Another constraint, designed to speed up the algorithm is not to examine 
matches had been already found by other processes (otherwise, because the 
algorithm walks the graph following the edges, the same pair of residues 
could be repeatedly examined for a potential match) (Küçükural and 
Sezerman, 2009). 
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Function Prediction Using Sub Graph Matching Algorithms 
With appropriate search parameters, the graph matching algorithm finds the 
most similar parts of two graphs rather than trying to match most of the nodes 
even though the attributes do not show a significant similarity. Therefore, the 
graph matching algorithm can detect functional similarity in cases when the 
global alignment algorithm fails. 

When two proteins are compared, all possible structurally similar regions 
are generated using the inexact sub-graph matching algorithm, the results are 
ranked by the scoring function given in (9). When the function of a target 
protein is to be predicted, the target protein is compared with all the proteins 
in a database. The function of a protein is then predicted on the basis of the 
functions of the closest protein structures.  

A preliminary test of the methodology was performed on a set of 88 
proteins (enzymes) with a pairwise sequence identity <30%. The function of 
each enzyme is described by its EC number. EC (Enzyme Commission) 
numbers provide a hierarchical classification of enzymes and have four digits 
(e.g. EC a.b.c.d) (Moss, 2006). The success of a function prediction is judged 
by counting common EC number digits. If all four EC digits of the predicted 
function equal the actual function, the prediction is exact. If the first three 
digits match, the function is still correctly predicted but the enzyme acts on a 
different ligand than the one hit by the search procedure. The accuracy of the 
method was evaluated by counting correct predictions based on matching EC 
numbers. For each protein in the data set, there was a single other enzyme 
with the same function. During the test, each protein was used as a target, and 
the remaining structures were scanned for local structural similarities with the 
target; the function of the target was predicted based on the best hit. When 
matching first three digits were required for correct prediction, the accuracy 
was found to be 61.2%, which increased to 76.43% when the best hit in the 
top 5 hits was considered. When all four EC digits were required to match, the 
accuracy was 55.28% with the top hit, and 72.87% with the best hit in the top 
5 hits considered.  

The scores and the ranking depend on the definition of the scoring function 
and its parameters; therefore, detailed tuning is necessary to obtain optimum 
results. 
 
CONCLUSION 
In this chapter, we have reviewed the use of graph theoretical properties and 
parallel inexact sub-graph matching algorithms for the prediction of protein 



16   

function based on finding local structural similarities between the target 
protein and proteins with known function. Structure representation, scoring, 
and searching are addressed with contact maps, network properties, and 
inexact sub-graph matching algorithms, respectively. These representations 
and scoring functions are less dependent on the actual coordinates, and 
therefore more robust than other methods; they also allow for more flexibility. 
Other methods are highly dependent on the actual coordinates of the protein, 
and are therefore dependent on the accuracy of the experimental procedure 
used to determine the structure. 

Graph theoretical attribute sets have been used to find better matches 
between two graphs. Although nine specific network properties are presented 
in this chapter, other features can be added, weighted according to their 
contribution to the similarity. The inclusion of these properties into the 
scoring function has been shown to significantly improve the discovery of 
similar regions in proteins. The conserved structural patterns that are most 
informative for function annotation can be extracted using this approach. 
Moreover, since the matching procedure is based on the preservation of 
contacts, one can determine the network of contacts that are crucial for the 
functionality of the given protein. This is the type of information that the 
experimentalist would be interested in. The conserved network of contacts 
within a family can be detected via this method, and the functional importance 
of each contact can then be verified by experiment. 

One potential application of this method is to determine the conserved 
contact networks and the key residues in potential drug targets. This 
information may be helpful for the design of drug molecules targeting the key 
residues, which could be a new strategy of drug development. Future 
development may include adding various amino acid properties, side chain 
information, exposed surface areas and other features to the scoring function 
in order to find even better matches between regions. In addition, fuzzy 
contact maps and more versatile contact definitions may be introduced, 
allowing for a higher structural flexibility in the represented proteins. 
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