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Because the molecular function of a protein depends on its three dimensional 
structure, which is often unknown, protein structure prediction is an essential tool 
in proteomics. The state of the art of protein structure prediction is reviewed with 
emphasis on knowledge-based comparative modeling/threading approaches that 
exploit the observation that the protein data bank (PDB) is complete for low-
resolution, single domain proteins. The recently developed TASSER structure 
prediction algorithm is described; its ability to produce structures closer to the 
native state than to the initial template structure demonstrated, along with 
encouraging results for membrane protein tertiary structure prediction and its 
ability to predict NMR quality structures in 1/5 of the cases. The quality of 
predicted structures required for the inference of biochemical function and 
describe structure-based approaches to predict protein-protein interactions is also 
examined. Applications to a number of proteomes are presented. The weaknesses 
and strengths of existing approaches are summarized with an emphasis on the 
importance of large scale benchmarking. Finally, the outlook for future progress is 
reviewed. 
 
INTRODUCTION  
Over the past decade, the success of genome sequence efforts has brought about a 
paradigm shift in biology [1]. There is increasing emphasis on the large-scale, high-
throughput examination of all genes and gene products of an organism, with the 
aim of assigning their functions[2]. Of course, biological function is multifaceted, 
ranging from molecular/biochemical to cellular or physiological to phenotypical 
[3]. In practice, knowledge of the DNA sequence of an organism and the 
identification of its open reading frames (ORFs) does not directly provide 
functional insight. Here, the focus is on the proteins in a genome, viz. the 
proteome, but recognize that proteins are only a subset of all biologically 
important molecules and address aspects of molecular/biochemical function and 
protein-protein interactions. At present, evolutionary based approaches can 
provide insights into some features of the biological function of about 40-60% of 
the ORFs in a given proteome [4]. However, pure evolutionary based approaches 
increasingly fail as the protein families become more distant [5], and predicting the 
functions of the unassigned ORFs in a genome remains an important challenge. 
Because the biochemical function of a protein is ultimately determined by both the 
identity of the functionally important residues and the three dimensional structure 
of the functional site, protein structures represent an essential tool in annotating 
genomes [6-11]. The recognition of the role that structure can play in elucidating 
function is one impetus for structural genomics that aims for high-throughput 
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protein structure determination [12]. Another is to provide a complete library of 
solved protein structures so that an arbitrary sequence is within modeling distance 
of an already known structure[13]. Then, the protein folding problem, viz. the 
prediction of a protein’s structure from its amino acid sequence, could be solved 
by enumeration. In practice, the ability to generate accurate models from distantly 
related templates will dictate the number of protein folds that need to be 
determined experimentally [14-16]. Protein-protein interactions, which are involved 
in virtually all cellular processes [17], represent another arena where protein 
structure prediction could play an important role. This area is in ferment, with 
considerable concern about the accuracy and consistency of high throughput 
experimental methods [18]. 

In what follows, an overview of areas that comprise the focus of this chapter 
is presented. First, the state-of-the-art of protein structure prediction is discussed. 
Then, the status of approaches to biochemical function prediction based on both 
protein sequence and structure is reviewed, and followed by a review of the status 
of approaches for determining protein-protein interactions. Then, some recent 
promising advances in these areas are described. In the conclusion section, the 
status of the field and the directions for future research are summarized. 

 
BACKGROUND 
Historically, protein structure prediction approaches are divided into the three 
general categories, Comparative Modeling (CM)[19], threading[20] and New Fold 
methods or ab initio folding[21-23], that are schematically depicted in Figure 1. In 
CM, the protein’s structure is predicted by aligning the target protein’s sequence to 
an evolutionarily related template sequence with a solved structure in the PDB [24]; 
i.e. two homologous sequences are aligned, and a three dimensional model built 
based on this alignment [25]. In threading, the goal is to match the target sequence 
whose structure is unknown to a template that adopts a known structure, whether 
or not the target and template are evolutionarily related [26]. It should identify 
analogous folds viz. where they adopt a similar fold without an apparent 
evolutionary relationship [27-29]. Note that the distinction between these approaches 
is becoming increasingly blurred [29-31]. Certainly, the general approach of CM and 
threading is the same: Identify a structurally related template, identify an 
alignment between the target sequence and the template structure, build a 
continuous, full length model, and then refine the resulting structure [26]. Ab initio 
folding usually refers to approaches that model protein structures on the basis of 
physicochemical principles. However, many recently developed New Fold/ab 
initio approaches often exploit evolutionary and threading information [30] (e.g. 
predicted secondary structure or contacts), although some versions are more 
physics-based [32], perhaps such approaches such be referred to as semi-first 
principles. Indeed, a number of groups have developed approaches that span the 
range from CM to ab initio [29, 30] folding that performed reasonably well in 
CASP5, the fifth biannual community wide experiment to assess the status of the 
field of protein structure prediction[33]. 
 
COMPARATIVE MODELING 



Comparative modeling can be used to predict the structure of those proteins whose 
sequence identity is above 30% with a template protein sequence [34], although 
progress has been reported at lower sequence identity [26]. An obvious limitation is 
that it requires a homologous protein, the template, whose structure is known. 
When proteins have more than 50% sequence identity to their templates, in models 
built by CM techniques, the backbone atoms [19] can have up to a 1 Å root-mean-
square-deviation (RMSD) from native; this is comparable to experimental 
accuracy [9]. For target proteins with 30% to 50% sequence identity to their 
templates, the backbone atoms often have about 85% of their core regions within a 
RMSD of 3.5 Å from native, with errors mainly in the loops [19]. When the 
sequence identity drops below 30%, the model accuracy by CM sharply decreases 
because of the lack of significant template hits and substantial alignment errors. 
The sequence identity <30% is usually termed the  “twilight” zone for sequence-
based alignment and more than half of genome sequences are at these distances to 
known proteins in PDB. For all sequence identity ranges, the predicted structures 
are generally closer to the template on which they are based rather than to their 
native conformation[34]. This was true in the recent CASP5 protein structure 
prediction experiment [35]. Another issue is the accurate construction of the loops. 
While progress has been made for short loops [36], for longer loops, significant 
problems remain [35]. Therefore, it is essential to develop an automated technology 
that can deal with proteins in the twilight zone of sequence identity, then build 
models that are closer to the native structure than to the template on which they are 
based [37, 38]. Many recent developed threading algorithms start to be able to 
identify structural analogs in the twilight zone. But little progress has been 
reported with regard to the template refinements. 

Despite these limitations, CM has been applied to predict the tertiary structure 
of the ORFS in a number of proteomes [39]. At present, about 40-50% of all 
sequences have a homologous protein of known structure, with CM results 
compiled in the PEDANT [40], GTOP [41], MODBASE [42], and FAMS [41] databases. 
This percentage is slowly increasing as new structures are being solved at an 
increasing rate. Interestingly, most newly solved structures exhibit an already 
known fold [16], an issue examined below. 

THREADING 
The formulation of a threading algorithm involves three choices: First, the 
interaction sites must be chosen. Due to computational complexity, these are taken 
to be a subset of the protein’s heavy atoms and can be the Cαs [43], Cβs [44], side-
chain centers of mass [45], specially defined interaction centers [46], or any side-
chain atom[47]. Second, the functional form of the energy is chosen, with examples 
ranging from contact [47] to continuous distance-dependent potentials [44]. The 
energy can include predicted secondary structure preferences [48] or burial patterns 
[49]. To improve both template recognition ability and the quality of the alignment, 
most successful threading approaches combine both sequence and structural 
information [27, 48, 50]. Third, given an energy function, the optimal alignment of the 
target sequence to each structural template must be found. If the “energy” terms 
are local (e.g. secondary structure propensities and/or sequence profiles), then 
dynamic programming [51] is best. If pair interactions are considered (which use a 



non local scoring function), the interactions in the template structure must be 
updated to reflect the target sequence. Some approaches employ dynamic 
programming with a frozen environment (with interaction partners taken from the 
template protein)[20], followed by iterative updating[47]; others employ double 
dynamic programming that updates some interactions recognized as being the 
most important in the first pass of dynamic programming [52]. Other 
computationally more intensive variants include the actual partners in the target 
sequence and use Monte Carlo [53] or branch-and-bound search strategies [54]. A 
reasonably successful and faster alternative uses a sequence profile to align the 
target sequence to the template structure; then, the partners in the target sequence 
are used to evaluate the pair interactions [45, 50]. These approaches suffer from the 
disadvantages that the template structure never adjusts to reflect modifications due 
to differences in the target and template sequences, and one cannot do better than 
the best structural alignment between the template and target structures [16 , 55, 56]. 

As demonstrated in CASP5 [29, 30, 57-60], there are now a number of threading 
methods that significantly outperform sequence-only approaches such as PSI-
BLAST[58]. Examples include PROSPECT II [27], GENTHREADER [48] and 
PROSPECTOR [50]. These algorithms found some analogous[29] structural 
templates for targets in the fold recognition/analogous (FR/A) category [5]. 
However, threading had many outstanding issues in common with CM: the need to 
improve aligned regions and move them closer to the native structure than the 
initial template alignment and the need to have a good loop building algorithm that 
fills in the gapped region and generates statistically significant loop predictions. 
Furthermore, selection of the best model was often problematic [29]. 

METAPREDICTOR BASED APPROACHES 
CASP5/CAFASP3 demonstrated the power of Metapredictors (defined as 
automated predictors that combine consensus information from a variety of 
threading and sequence based servers to make more accurate consensus structural 
predictions) such as 3-D SHOTGUN [59], PCONS [60] and ROBETTA [61] that gave 
results competitive with the best human predictors [59]. 3D-SHOTGUN and PCONS 
[60] do not simply select a model from the input models, but generate more 
complete and accurate hybrid models by splicing fragments from the individual 
models; however, these can have steric clashes, sometimes making the 
construction of physically realistic models impossible. Nonetheless, based on EVA 
[62] and LiveBench [63] results, Metapredictors are quite promising. For example, in 
large scale testing, 3D-SHOTGUN produced models up to 28% higher Maxsub 
score than any of the individual methods and had 17% higher specificity than any 
individual method. Here, the specificity is defined as the number of correct 
predictions with confidence score higher than the first false prediction. These 
results illustrate the potential power of the Metaprediction approach. However, the 
ultimate success of Metaprediction lies in the underlying accuracy of the 
individual contributing servers.  

COMPLETENESS OF THE PDB  



CM/threading approaches cannot succeed if a structure related to the target 
sequence is not already solved. Therefore, the key issue for their applicability is 
the completeness of the PDB [24]. One way to explore this issue is to use structural 
alignment algorithms (which find the best structural match between a pair of 
proteins where the labeling of residues to be matched is not fixed in advance) to 
establish the structural relationship between newly solved protein structures and 
those already in the PDB. Indeed, the best alignment between a pair of protein 
structures that CM/threading can exploit is obtained from a structural alignment. 
One class of structural alignment algorithms employs dynamic programming [55] 
whose advantage is speed, but global optimality is not guaranteed. DALI [64] 
compares the intra-structural residue-residue distances in a pair of structures. 
Others [65, 66] compare spatial arrangements of secondary structure elements. 
Nussinov et al. [67] employ geometric hashing, while an incremental combinatorial 
extension (CE) method that combines structurally similar fragments was employed 
by Shindyalov & Bourne [68]. Kedem [69] defines the unit-vector RMS to detect 
chain segment similarities, and MAMMOTH[70] employs a heuristic algorithm to 
align low resolution structures and assigns their significance via an extreme value 
distribution. 

Several authors compared a set of representative structures in the PDB [71] and 
emphasized the discreteness of structural space on the domain level of protein 
structures. On the other hand, using their CE method, Shindyalov & Bourne [72] 
recently pointed out that substructures obtained from an all-against-all structure 
comparison sometimes distribute among protein domains transgressing their 
respective fold types. These substructures are around 130 residue long, continuous 
chains, much longer than the conventional concept of supersecondary structure [73]. 
Harrison et al. also concluded that fold space is a continuum for some topology 
types in the β or α/β secondary structure class[74]. These studies suggest that there 
are rather large structure motifs of significant length that occur in many other 
folds. Yang & Honig[75] also showed that their structure comparison program 
detects structural similarity between different folds in the SCOP database[76]. This 
indicates that some regions of protein fold space are not as distinct as once 
thought.  

Recently, using a more sensitive structure alignment algorithm, SAL, Kihara 
and Skolnick demonstrated that for low-to-moderate resolution structures, the PDB 
is essentially complete for single domain proteins [16]. That is, the global fold of 
essentially all single domain proteins can be found among the already solved 
structures in the PDB. Furthermore, protein structure space is very dense. The 
problem is to develop a threading algorithm that can find these related template 
structures/good alignments and build a model useful for functional annotation [77]. 
As shown below, there has been significant progress in this direction, but 
additional work needs to be done before the protein structure prediction problem 
can be viewed as being solved, at least by enumeration.  

INFERENCE OF BIOCHEMICAL FUNCTION FROM 
STRUCTURE  



Currently, most methods that assign the molecular/biochemical function of 
proteins are based on finding protein sequence homology [78] or conserved protein 
sequence or structural motifs [79-82] between the uncharacterized protein and a 
protein of known biochemical function. However, such methods often fail as the 
sequence identity drops below 40%. Because the global fold of a protein family is 
more conserved than its sequence, protein biochemical function prediction should 
benefit by the inclusion of structural information [38]. However, divergent and 
convergent evolution gives a non-unique relationship between function and fold. 
In general, fold type by itself is not sufficient for correct function prediction [83, 84], 
and additional information is required to infer biochemical function from structure. 
Several methods are based on three-dimensional descriptors of biologically 
relevant sites [7, 85-90]. In addition to active site descriptors characterizing the 
geometric features of catalytic residues [87], a number of approaches that describe 
binding sites focus on the conservation of geometrical arrangements of residues [90-

93], the physicochemical properties of functional residues [90, 94], and/or ligand-
cavity shape complementarity [95]. Many methods were specifically designed to 
recognize a particular type of ligand, e.g., adenylate [88], calcium [92] or DNA [94]; 
with more general methods only tested for a few ligand types [90, 91]. Of interest is 
the recently available PINTS (Patterns in Non-homologous Tertiary Structures) [31] 
approach designed to perform database searches against a collection of ligand-
binding sites taken directly from PDB files [96].  

Methods based on structural templates have been reasonably successful when 
applied to high-resolution structures. The question is what happens when predicted 
models of lower resolution are used? Given recent improvements in the 
performance of protein structure prediction algorithms [29, 77, 97], a structure-based 
method for protein function prediction that does not require high-resolution 
structures could be of practical value. The essential issue is to establish the quality 
of a predicted structure required to transfer a given biochemical function at a 
specified level of accuracy. In practice, the ability to detect functional sites in low-
to-moderate resolution predicted structures had until recently only been tested for a 
few specific active site descriptors [92, 98]. Recently, Arakaki et al. have developed a 
method that automatically generates a structural library of 3D descriptors of 
enzyme active sites [77] (automated functional templates or AFTs; 593 in total for 
162 different enzymes) based on functional and structural information extracted 
from public databases. The applicability to predicted structures was investigated 
by analyzing varying quality decoys derived from enzyme native structures. For 
35% of decoys having a 3 to 4 Å backbone RMSD from the native structure, the 
AFT based method correctly identifies the active site and transfers the first three 
EC indices. A key challenge is to routinely generate predicted structures of at least 
this quality so that they can be used for biochemical function inference.  

Approaches for determining protein-protein 
interactions 
 
Given their biological importance[17], the development of efficient methods to 
detect and characterize protein-protein interactions and assemblies is a major 



theme of functional genomics and proteomics efforts [99]. Currently, two main 
types of experimental methods are used: (1). Yeast two-hybrid screening(Y2H) 
[100], which is mainly limited to binary interaction detection; and (2). The 
combination of large-scale affinity purification with Mass Spectrometry to detect 
and characterize multi-protein complexes [101]. First applied to yeast [102], these 
methods revealed the dense network of interactions linking proteins in the cell, but 
their error rate is high [18]. The coverage of Y2H screens seems incomplete, with 
many false negatives and false positives as evidenced by the limited overlap 
between sets of interacting proteins identified by different groups [103] and between 
those identified by Y2H and other approaches [104]. This discrepancy among 
experimental methods prompted keen interest in the development of computational 
methods for inferring protein-protein interactions [105-107]. Many consider protein-
protein interactions in the most general context and often refer to “functionally 
interacting proteins” [106], implying that the proteins cooperate to carry out a given 
task without actually (or necessarily) engaging in physical contact. These methods 
exploit the fact that the genes of such cooperating proteins tend to be associated 
within genomes [107]. The earliest methods considered gene fusion [107, 108], 
conservation of gene order [109], and co-occurrence of genes in different genomes 
[107] as a means of inferring functional interactions. Subsequent methods frequently 
use protein sequence information and are based on the idea of gene co-evolution, 
which assumes that the genes of proteins that interact tend to evolve together [110]. 
Approaches based on the co-evolution model include phylogenetic tree topology 
comparison [111], gene preservation correlation, and correlated mutation approaches 
[110]. These methods offer several advantages - the idea of correlated evolution is a 
priori and fits basic biological principles. But their downside is their low signal-to-
noise ratio [112]. Furthermore, methods based on a co-evolution model rely on the 
knowledge of the phylogenetic trees of the corresponding sets of proteins [113]. 
Given that the exact evolutionary path of a specific protein is unknown, one must 
infer phylogeny via a careful analysis of related proteins from different organisms, 
the so-called orthologs, whose identification is not straightforward [113]. 
Phylogenetic tree reconstruction is NP-complete [114]. Existing measures for 
assessing co-evolution (such as the Pearson correlation coefficient) attempt to 
avoid this problem by considering all protein homolog pairs. They are effective 
when the signal is strong, and often it is not. 

A conceptually different set of methods uses information from protein 
quaternary structure, and deals more directly with the actual physical interactions 
between proteins. It is in this sense that protein-protein interactions are considered 
in what follows. These approaches not only suggest which two proteins interact, 
but also provide a quaternary structure. Salient examples of this class of 
approaches include promising extensions of homology modeling and threading 
techniques [115, 116] and neural net based approaches [117]. Below one promising 
extension of threading to treat predict protein-protein interactions is described [118, 

119]. 
 

RECENT ADVANCES  



CAN THE PROTEIN STRUCTURE PREDICTION PROBLEM 
BE SOLVED IN PRINCIPLE USING THE CURRENT PDB 
LIBRARY? 

In recent studies, Skolnick et al constructed a representative set of all single 
domain proteins that have structures in the PDB (no two of which have more than 
35% pairwise sequence identity to each other) ranging from 41 to 200 residues in 
length; there are 1489 such proteins [122] the PDB200 benchmark set. Using an 
improved structural alignment algorithm, SAL, they then compared these proteins 
to a benchmark library that is no more than 20% identical to the target protein [77, 

121]. The resulting average coverage and RMSD between the best template and the 
native structure are 84% and 2.6 Å, with an average sequence identity of 13% in 
the aligned regions. These results are compatible with the notion of the 
completeness of the PDB. 

Because SAL structural alignments can contain a number of gaps, it might not 
be possible to build biologically useful models [77], in which case, the conclusion 
on the completeness of the PDB, while of fundamental interest, would not have 
practical applications. On the other hand, if the PDB were complete and useful 
models could be constructed, then, in principle, the protein folding problem could 
be solved, if one defines the protein folding problem on a purely structural level, 
i.e. building statistically significant models that have similar topology to native 
(e.g. with RMSD <6.5 Å). However, to make this conclusion a reality, the 
development of better threading algorithms to detect all such fold similarities are 
required. Using the templates and alignments identified from SAL, Skolnick et al 
demonstrated for the 1489 proteins in the PDB200 benchmark set that: (1). 
Reasonable full length models can be built by either MODELLER [42] or TASSER, a 
newly developed algorithm for threading/assembly/refinement (see below; see also 
Figure 3 for an schematic overview). Therefore, the conclusion on the 
completeness of the PDB is of practical interest. (2). Using TASSER, consistent 
improvement of the models from the best structural alignments is demonstrated. 
(3). Significant improvements in loop modeling are found. 

On average, as stated above, from SAL, the average RMSD of the structural 
alignments to native is 2.6 Å with 84% coverage. Skolnick et al applied TASSER 
[122] to the build/refine full-length models for the PDB200 benchmark set. The 
TASSER final models show improvement over their initial template alignments. 
Over the same aligned regions, on average, the RMSD is reduced to 1.9 Å. Many 
low resolution templates improve by refinement to structures with an acceptable 
resolution for biochemical function annotation [77]. For the entire chain, almost all, 
but two, targets (with dangling termini involved in intermolecular interactions) 
have a RMSD < 6 Å for the best of the top five models with an average rank of 1.7 
and an average RMSD to native of 2.3 Å. In fact, 97% of the target proteins have a 
global RMSD < 4 Å. For the rank one cluster (the highest structure density 
cluster), the average RMSD to native is 2.4 Å. The average RMSD of the best of 
top five MODELLER (a widely used comparative modeling program) models is 
3.7 Å, with average rank of 2.9. In general, TASSER does a better job in the 
unaligned regions compared to MODELLER, especially for low coverage 



templates (See Figure 2 below). Looking at those targets with more than 90% 
coverage (437 in total), the average RMSD of the full length chain models 
generated by TASSER and MODELLER are fairly close, i.e. 1.6 Å and 2.2 Å 
respectively. However, for targets with initial alignment coverage below 75% (386 
in total), the average RMSD from native to models by TASSER and MODELLER 
are 2.9 Å and 6.1 Å respectively, a significant difference. Overall, in 1120(102) 
targets, TASSER (MODELLER) models have lower RMSD to native. In essentially 
all targets, using the structural alignments provided by SAL, reasonable full-length 
models could be built. Therefore, if one could find the templates and 
corresponding alignments, given the set of already solved structures in the PDB, 
these results are highly suggestive that the protein folding problem could be solved 
for single domain proteins, if one defines the solution as the ability to generate 
models with a backbone RMSD below 4 Å.  

In Figure 2, a detailed comparison of the final models with respect to the 
template in the aligned regions is plotted. TASSER models (Figure 2A & 2B) often 
show obvious improvement, especially when templates are more than 3 Å away 
from native. As shown in Figure 2B, for initial template aligned regions with a 
RMSD from native ranging from 2 to 3 Å, for around 61% of these cases, the 
models have at least a 0.5 Å improvement; and for targets having initial template 
aligned regions with a RMSD from native ranging from 3 to 4 Å, for around 49% 
of these cases, the models have at least 1.0 Å improvement. This improvement 
occurs because the force field takes consensus information from multiple 
templates (the top 5 templates are used) [59], as well as the clustering procedure and 
the energy terms in TASSER [122, 123]. Often, the ability to refine models from the 
best structural alignments (more precisely, using the best structural alignments 
provided by SAL) is demonstrated. In contrast, Figures 2C & 2D, show the 
comparison between the models generated by MODELLER and the initial template 
alignments. Mainly, MODELLER keeps the topology of models near the template 
[124, 125]. However, sometimes (~10% of cases), the MODELLER models are > 1 Å 
worse than the initial template values. 

Here an unaligned or “loop” region is defined as a piece of sequence lacking a 
coordinate assignment in the SAL template alignment. Since no spatial information 
is provided, modeling the unaligned or loop regions is difficult [125]. Following 
Fiser et al. [125], two measures of model accuracy are calculated: RMSDlocal denotes 
the root-mean-square deviation between the native and the modeled loop with 
direct superposition of the unaligned region and measures the local conformational 
accuracy. RMSDglobal is the root-mean-square deviation between the native and 
modeled loop after superposition of up to 5 neighboring stem residues on each side 
of the loop and measures both the accuracy of the local conformation and its 
global orientation with respect to the rest of the protein. There are 11,380 
unaligned/loop regions ranging from 1 to 84 residues in length in the 1489 targets. 
In Figures 2E & 2F, the average values of RMSDlocal and RMSDglobal of TASSER 
and MODELLER models versus loop length are presented. In both cases, the 
accuracy decreases with increasing loop size. For all size ranges, TASSER models 
have lower average RMSDlocal and RMSDglobal. Focusing on the unaligned loops 
≥4 residues in length, there are 1675 cases with an average length of 8.8 residues. 
TASSER shows obviously better control of loop orientations. For example, in 1/3 



of the cases, TASSER generates models with a RMSDglobal<3 Å, while the fraction 
of MODELLER models having a RMSDglobal<3 Å is around 1/7. Clearly, while the 
problem of loop modeling is definitely not solved, some progress is being made. 

The “New Fold” targets in CASP5 [126] were also examined by Skolnick et al, 
since by definition these targets putatively adopt a novel fold never seen in the 
PDB [194]. Using TASSER, acceptable models can be built from the initial SAL 
template alignments with an average RMSD from native of 2.87 Å for the first 
predicted model. Hence, these putative NF targets have templates in the PDB that 
give reasonable structural alignments and full-length models. 

THE PROSPECTOR_3 THREADING ALGORITHM 

In the past year, Skolnick and coworkers developed an improved threading 
algorithm, PROSPECTOR_3[50], that is designed to identify analogous as well as 
homologous templates. The scoring function includes close and distant sequence 
profiles, secondary structure predictions from PSIPRED [28] and a variety of side 
chain contact pair potentials supplemented by predicted side chain contacts 
(consensus contacts in at least weakly scoring templates). Alignments are 
generated using a Needleman-Wunsch global alignment algorithm [51]. Based on 
score significance, target sequences are classified into three categories: If 
PROSPECTOR_3 has at least one significant hit with Z-score, Z, (the energy in 
standard deviation units relative to mean) above 15 or at least two structurally 
consistent template hits of Z-score above 7, these targets have high confidence to 
have a correct template and a good alignment, and the target is assigned to the 
“Easy set”. Note that Easy does not mean that they are trivially identified; indeed, 
in the PDB200 benchmark, PROSPECTOR_3 correctly assigns more than twice 
the number of targets to their correct templates (just using the Easy set) as PSI-
BLAST [127]. Sequences that either hit a single template with 7<Z<15 or hit 
multiple templates lacking a significant consensus structure are assigned to the 
“Medium set”; these have the correct fold identified in most cases, but their 
alignment may be incorrect. Finally, sequences not assigned to a template belong 
to the “Hard set”; from the point of view of the algorithm, they are New Folds, but 
based on the finding of the completeness of the PDB [16], (almost) all proteins 
should be assigned to either the Easy or Medium set by a “perfect” threading 
algorithm. 

PROSPECTOR_3 was applied to the comprehensive PDB200 benchmark set 
described above, that are no more than 30% identical to any threading template. In 
the latest version (somewhat better than published work of Skolnick et al [50], 
reflecting minor improvements), there are 915 Easy protein targets. 791 have a 
RMSD to native < 6.5 Å. The average contact prediction accuracy is 46%. 
Continuous aligned regions provide rather accurate (~90% accuracy) native-like 
fragments that can be used in structure assembly. The level of contact prediction 
accuracy combined with the fact that continuous fragments are quite accurate 
motivated the development of TASSER, described in the next Section. 67% of the 
residues obtained from the threading alignments have the same alignment to 
template as the best structural alignments using SAL. Threading (structural) 



alignment refers to the alignment provided by PROSPECTOR_3 (SAL). In 
addition, 97% of Easy targets have a template whose SAL structural alignment has 
a RMSD < 6.5 Å, with an average RMSD of 2.4 Å and 82% average coverage. 

 PROSPECTOR_3 assigns 565 Medium set proteins, 149 with a RMSD< 6.5 
Å and 44% average coverage.  However, 91% have good SAL structural 
alignments with an average RMSD of 3.8 Å and 50% coverage. The issue is to 
uncover these alignments (which as seen above can be used to build good models). 
Combining Easy/Medium sets, 65% (94%) of targets have good threading 
(structural) alignments and the average target/template sequence identity is 22%. 
Since all targets have good templates in the template library [16], the fact that 
roughly 1/3 are not identified points out that improvements in PROSPECTOR_3 
are needed. However, consistent with the notion of PDB completeness, there are 
only 19 Hard targets.  

DEVELOPMENT AND BENCHMARKING OF TASSER 

Having a set of threading templates, the next thing one wants to do is to build a 
full length model and to refine the structure so that the regions that have 
corresponding template alignments move closer to the native state than the 
template on which they are based. To achieve these two objectives, the Skolnick 
group has developed the TASSER, Threading/ASSEmbly/Refinement algorithm, an 
overview of which is schematically depicted in Figure 3. 

The protein model is described by the alpha-carbon (Cα) atoms and off-lattice 
side chain centers of mass (SG). The chain is divided into continuous aligned 
regions extracted from PROSPECTOR_3 (> 5 residues), whose local conformation 
is kept essentially unchanged during assembly, and gapped regions that will be 
treated by ab initio methods. The Cαs of these ab initio residues lie on an 
underlying cubic lattice (by discretizing the conformational space, lattices can 
improve the rate of conformational sampling), while the Cαs of aligned residues 
are excised from the threading template and are off-lattice (this is done because it 
is very difficult to move preconstructed fragments around on a lattice. Also lattices 
introduce an error in the local representation). In a certain sense, TASSER 
represents a convergence of the ROSETTA[30] and TOUCHSTONE II [128] 
approaches. However, ROSETTA [22] uses small fragments (3~9 residues), and 
since the conformational search is carried out using large-scale moves (by 
switching between different local segments), the acceptance rate of ROSSETTA 
movements significantly decreases with increasing fragment size. Here, the 
threading-based fragments are longer (~20.7 residues on average), the 
conformational entropy is significantly reduced and more native-like interactions 
are retained. Movements consist of scaled continuous translations and rotations, 
allowing for the successful movement of all size substructures. The potential 
includes predicted secondary structure propensities from PSIPRED [129], backbone 
hydrogen bonds, consensus predicted side chain contacts from PROSPECTOR_3 
[50], statistical short-range correlations and hydrophobic interactions [122]. The 
combination of energy terms was optimized by maximizing the correlation 
between the RMSD of decoy structures to native and the energy for 100 



nonhomologous training proteins (extrinsic to the PDB200 benchmark); each with 
60,000 decoys. This gave a funnel-like energy landscape, with a correlation 
coefficient of 0.7 [122] for the training set. For 200 randomly chosen testing proteins 
in the PDB200 benchmark set, the correlation coefficient between the energy and 
RMSD is 0.69; i.e. it is essentially the same for both training and testing proteins. 

The next task is to apply the TASSER algorithm to a comprehensive 
benchmark set representative of all the proteins in the PDB below a certain size. 
The goal here is to have a sufficiently comprehensive set that the results are truly 
representative. When relatively small sets of proteins are used to test a given 
algorithm, often the parameters are implicitly optimized so that success is found 
for the benchmark, but not generally. If say, one considers 100 proteins, and a 
given variant of a folding algorithm folds 3 additional proteins, does this mean that 
on average the algorithm is 3% better? In other words, the 3 folded proteins may 
or may not be representative. However, if benchmarking is done on all 
representative folds in the PDB, improvements will be statistically significant, and 
one can ascertain in general what are the strengths and weaknesses of a given 
algorithm. This will accelerate progress. On the other hand, such large scale 
benchmarking on thousands of proteins is very CPU intensive, and considerable 
computational resources are required to carry out the calculations. 

APPLICATION TO THE PDB200 BENCHMARK 

With the goal of comprehensive benchmarking, application of TASSER to the 
PDB200 benchmark set gave the following: There are obvious improvements for 
almost all quality templates, with the biggest improvement for the poorer quality 
template alignments (initial RMSD > 8 Å); these mainly belong to the Medium and 
Hard sets. For good templates (mostly Easy set targets), the alignments are much 
less gapped, and the tertiary contact restraints from PROSPECTOR_3 are more 
consistent. For initial models with a 4~5 Å (2~3 Å) RMSD from native, 58% 
(43%) of the targets improve by at least 1 (0.5) Å. These results are consistent (see 
Figure 2) with those when structural alignments are used and show a systematic 
improvement in model quality. For most initially good templates, (mainly from the 
Easy set) with an initial RMSD of 2~6 Å to native, there is consistently about a 
1~3 Å improvement because of the better local structure and side chain group 
packing following optimization. The final alignments in MODELLER[125] tend to 
be much closer to the initial template alignments. This is not entirely fair since 
MODELLER was designed to fold homologous proteins, and such protein pairs are 
excluded here. 

Turning to loop modeling, considering unaligned/loop regions that have 
lengths ≥4 residues, the average RMSD by TASSER and MODELLER are 6.7 Å 
and 14.9 Å respectively. Using a RMSD cutoff of <4 Å, MODELLER gives 
successful results in 12% of the cases, while TASSER is successful in 35% of the 
cases. These results are slightly worse than when structural alignments are used 
because of the lower accuracy of the core (See Figure 2E & 2F).  

As shown in Figure 4A, defining foldable cases as those where one of the top 
5 structures has a RMSD to native below 6.5 Å (a statistically significant value 
[130], but any reasonable cutoff can be used), the overall success rate for TASSER 



full-length models is 66% (=989/1489). The fraction of targets having an RMSD < 
6.5 Å in the aligned regions increases from 65% to 79% after TASSER refinement. 
Furthermore, TASSER does not show significant bias to secondary structure class. 
The success rates for α-, β-, and αβ-proteins are 69%, 61%, and 69% respectively. 
Nevertheless, a dependence on protein size exists. For targets <120 residues, the 
success rate is 73%; but for targets >120 residues, it is 58%. All results including 
threading templates, structure trajectories, and final models for each of the targets 
are available at http://bioinformatics.buffalo.edu/abinitio/1489.  

APPLICATION TO THE PDB300 BENCHMARK  

To explore the ability of TASSER to treat larger proteins[122], Skolnick and 
coworkers examined a second comprehensive PDB benchmark set, the PDB300 
set, of 745 proteins ranging in length from 201 to 300 residues; 258 have more 
than one domain [131]. No pair of target protein sequences has > 35% sequence 
identity; also, all proteins > 35% identity are excluded from the template library. 
PROSPECTOR_3 identifies 593 Easy set proteins; 441 have good threading 
alignments (whose RMSD from native < 6.5 Å), with an average RMSD of 3.6 Å, 
83% coverage and 21% sequence identity to their templates. There are 150 
Medium and 2 Hard targets. Using this information, Figure 4B shows the TASSER 
results for the percent of predicted targets with a given RMSD, with single and 
multiple domain protein targets presented separately. The success rate for all 
PDB300 targets is 55%. 61% of single domain proteins have the best of top five 
models with a RMSD to native < 6.5 Å. This is slightly less than the success rate 
of 66% for single domain proteins ≤  200 residues [122]. For multiple domain 
proteins, 43% have a RMSD < 6.5 Å for the best of top 5 models. But 2/3 of these 
multiple domain targets have at least one domain (average length of 144 residues) 
with a RMSD<6.5 Å. Thus, domains are often correctly predicted, but not their 
mutual orientation. This is a significant problem that must be addressed. 

Similar to the case of proteins ≤  200 residues, TASSER gives significant 
improvements with respect to the initial alignments. For example, for initial 
alignments with a RMSD between 4-5 Å, in 53% of the cases, the final models 
improve by at least 1 Å. Turning to loop modeling and focusing on 
unaligned/loops ≥4 residues, there are in total 1809 cases with average length 12.2 
residues. In around 1/3 of cases, the TASSER loop modeling procedure has 
acceptable accuracy. 

RESULTS FOR TRANSMEMBRANE PROTEINS 

There are 18 large membrane proteins in the PDB300 benchmark set. For 1/3, 
TASSER generates at least one model in the top five that has a RMSD to native 
below 5.5 Å. For the PDB200 benchmark (proteins 41-200 residues), there are 20 
membrane proteins, with a success rate of 45%. Among the total of 15 foldable 
membrane targets in both sets, for 10, PROSPECTOR_3 hits at least one other 
nonhomologous transmembrane template; in the remaining five, PROSPECTOR_3 
hit globular proteins with regular helical structures consistent with the target 
structures, which provided the opportunity for TASSER to assemble/refine the 



models. Figure 5, shows three typical results for membrane proteins: 1jgjA, 1fqyA, 
and 1bh3_, with the well-known GPCR rhodopsin, 1jgjA having the highest 
resolution. Their best template hits by PROSPECTOR_3 are respectively: 1ap9_ 
(1.47 Å over 96% coverage and 29% sequence identity), 1fx8A (5.20 Å over 92% 
coverage and 29% sequence identity), and 2por_(13.44 Å over 88% coverage and 
22% sequence identity). The final models have a RMSD to native of 1.1/0.89 Å, 
3.3/3.1 Å, and 5.3/5.2 Å over the full-length/aligned-regions respectively. This 
shows that TASSER improves threading alignments and builds reasonable loops for 
membrane proteins. 

COMPARISON OF TASSER MODELS WITH NMR STRUCTURES 

For all representative proteins ≤300 residues (in both the PDB200 and PDB300 
benchmark sets) that have corresponding multiple NMR structures in the PDB, 
≈20% of the models generated by TASSER are closer to the NMR structure 
centroid than the farthest individual NMR model. Note that no experimental 
information is employed in this set of predictions. Some representative examples 
for proteins belonging to each of the three secondary structure classes are shown in 
Figure 6. While this represents encouraging progress; nevertheless there remain 
the 80% of proteins with NMR structures that are not predicted at the level of 
experimental resolution. These remain an outstanding challenge. 

EXTENSION OF THREADING TO PREDICT QUATERNARY 
STRUCTURE 

Over the past several years, multimeric threading algorithm, 
MULTIPROSPECTOR was developed and benchmarked by Skolnick and 
coworkers [119]. The approach consists of two phases: First, traditional single 
threading is applied to generate a set of candidate structures. Then, for those 
proteins whose template structures are part of a known complex, they rethread 
both partners and now include a protein-protein interfacial energy. A database of 
multimeric protein template structures was constructed [118], interfacial pairwise 
potentials derived, and empirical indicators to identify dimers based on their 
threading Z-score and the magnitude of the interfacial energy was established. The 
authors tested the algorithm on a benchmark set comprised of 58 homodimers, 20 
heterodimers, and 96 monomers scanned against 3900 representative template 
structures. The method correctly recognized and assigned 54 homodimers, all 20 
heterodimers, and 91 monomers, and satisfactory performance was demonstrated 
[119].  

APPLICATION TO PROTEOMES 

PROSPECTOR_3 RESULTS 

To examine the generality of the PDB200 benchmark results, Skolnick and 
coworkers applied PROSPECTOR_3 to ORFS ≤  200 residues in the E. coli [132], 
M. genitalium [133], and S. cerevisiae[134] proteomes. Unlike the benchmark, here 



homologous proteins are allowed. An overview is presented with details given 
elsewhere; see 
http://www.bioinformatics.buffalo.edu/resources/genomethreading/. For E. coli 
[132], there are 1360 ORFs ≤  200 residues. PROSPECTOR_3 assigns 61% to the 
Easy set (82% average coverage) and 38% to the Medium set (51% average 
coverage). In contrast, Peitsch et al [135] produced assignments for ~10-15% of the 
entire  proteome. Using PSI-BLAST [127], Hegyi et al. [136] assigned 28% of all E. 
coli ORFs to SCOP domains. In PEDANT [40], 31% of E. coli ORFs≤ 200 residues 
have a PSI-BLAST hit to PDB structures. In GTOP [137], Reverse PSI-BLAST [138] 
assigned 35% of E. coli ORFs ≤  200 residues to PDB structures. The M. 
genitalium [133] proteome has 128 ORFs ≤  200 residues. PROSPECTOR_3 assigns 
73% to the Easy set (87% average coverage), and 27% to the Medium set (54% 
average coverage). In S. cerevisiae[139], there are 1496 ORFs ≤ 200 residues. 
PROSPECTOR_3 assign 53% to the Easy set (75% average coverage) and 45% to 
the Medium set (65% average coverage). There are few putative New Folds ORFs 
in all three proteomes.  

TASSER RESULTS 

TASSER was also applied to all ORFs in the E. coli proteome [132] ≤ 200 residues. 
Based on the PDB benchmarks, a confidence, C-score, is defined that is a function 
of cluster density, the RMSD of cluster members from the cluster centroid and the 
threading template Z-score (see eq. 1 of ref [122]). For the same C-score cutoff in 
the PDB200 benchmark that gives a false positive/negative rate of 12.4%/14.7%, 
68% of E. coli ORFs should have acceptable predictions. All results are available 
at http://www.bioinformatics.buffalo.edu/genome/ecoli. According to MEMSAT 
[140] ~23% of these E. coli ORFs have transmembrane regions. All TASSER 
predicted first rank models have at least one long (putative transmembrane) helix 
consistent with MEMSAT. Using the C-score, 47% of the ORFs have >80% 
probability for models with a RMSD < 6.5 Å. Furthermore, signal peptides are not 
masked out, and 149 ORFs have annotated signal peptides in SWISS-PROT [141]. 
Due to their composition, PROSPECTOR_3 does not align the majority of signal 
peptide residues, and due to the resulting lack of predicted contacts, these peptides 
lie outside the predicted compact core. A possibility to be pursued is to use this 
method to identify signal sequences. 

APPLICATION OF MULTIPROSPECTOR TO S. CEREVISIAE 

Using MULTIPROSPECTOR, each possible pair of interactions among more than 
six thousand encoded proteins is evaluated against a dimer database of 768 
complex structures by using a confidence estimate of the fold assignment and the 
magnitude of the interfacial potentials. 7,321 interactions are predicted involving 
1,256 proteins. After filtering by subcellular colocalization, there are 2,028 
heterodimer interactions. From mRNA abundance analysis, the 
MULTIPROSPECTOR method does not bias towards high abundance proteins. 
The predicted interactions are then compared to other large-scale methods and to 
high confidence interactions defined as those supported by two or more other 



methods [18]. 374 of the predictions are found by at least one other study, 
comparable to the overlap between two other methods. Based on functional 
category assignment, MULTIPROSPECTOR predictions have a similar 
distribution as high confidence interactions.  
 
CONCLUSION 
At this juncture, it is apparent that considerable progress is being made in the field 
of protein structure prediction, with the greatest success seen for knowledge-based 
approaches that extend comparative modeling and threading. At present, based on 
very large scale benchmarking, for weakly/nonhomologous proteins, one can 
expect to produce low-resolution structures for about 2/3 of all proteins. Given the 
observation that the PDB is complete for low-to-moderate resolution single 
domain proteins, the outstanding challenge is to develop methods to identify the 
roughly 1/3 of proteins that cannot be recognized by contemporary approaches. 
Furthermore, progress is being made on generating predictions where the model is 
closer to the native structure than to the template on which it is based. Part of the 
reason for the recent relative success is the comprehensive testing on all 
representative PDB structures so that one can identify both the strengths and 
weaknesses of a given approach. In the past, relatively small scale benchmarking 
was done, where it was difficult to establish the generality of the conclusions. 
Another reason is the improved correlation of energy and structure quality. This is 
not to say that existing potentials are perfect, for certainly they are not, but rather 
that procedures to derive better potentials are starting to bear fruit. 

There remain a number of outstanding problems that must be addressed: With 
regards to low-resolution modeling, existing approaches to predict the relative 
orientation of multiple domain proteins often fail when the domains adopt a 
different orientation from the template. This is same issue as the inability to 
predict good global orientations for long loops even when (as is often the case) 
their internal conformation is well predicted. This reflects problems with the force 
field. Similarly, it is still not possible in general to refine the low-resolution 
structures to higher quality structures at atomic detail. Whether this is an issue of 
conformational sampling or problems with existing atomic force fields or both 
remains to be established. In that regard, Skolnick and coworkers have embarked 
on a similar large scale benchmarking effort to identify the outstanding unresolved 
issues with the goal of making progress in detailed atomic model refinement. 
Indeed, one would like to supercede the current generation of knowledge-based 
approaches with more fundamental physics based approaches. The next issue that 
must be addressed is the prediction of protein-protein interactions and the 
quaternary structure of the resulting complexes. Here, the field of structure 
prediction is in its infancy; approaches similar to ROSETTA and TASSER 
generalized to multimers represent promising avenues of investigation. At the end 
of the day, one goal of protein structure prediction is to provide models that are of 
sufficient quality that they can provide functional insights. While much remains to 
be done, there is now cause for optimism that the progress is being made to 
achieve this objective. 
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 Figure 1. Schematic overview of the methodologies employed in Comparative 
Modeling/Threading, and ab initio folding. 
 
Figure 2 A. Scatter plot of RMSD from native to the final models built by TASSER 
refinements versus RMSD to native in the best initial template alignments 
identified by SAL. The same aligned regions are used in both RMSD calculations. 
B. Using TASSER, the fraction of targets with a RMSD improvement d greater 
than some threshold value. Here d=“RMSD of template”-“RMSD of final model”, 
where each RMSD is calculated over the aligned regions. Each point is calculated 
with a bin width of 1 Å. C. Similar data as in A, but the models are from 
MODELLER refinements. D. Similar data as in B, but the models are from 
MODELLER refinements. E. RMSDlocal and F. RMSDglobal of unaligned/loop 
regions as a function of loop length. TASSER and MODELLER models are denoted 
by triangles and circles respectively. The lines connecting the points serve to guide 
the eye. The dashed line in F denotes a RMSDglobal cutoff of 7 Å. 
 
Figure 3. Overview of the TASSER structure prediction methodology that consists 
of template identification by PROSPECTOR_3 [50] that provides template 
fragments and predicted contact restraints, fragment assembly using Parallel 
Hyperbolic Sampling [142], and fold selection by SPICKER clustering [122]. The 
entire process for 1ayyD is shown. 
 
Figure 4A. For the PDB200 benchmark set of proteins, histograms of foldable 
proteins using MODELLER [124] and TASSER based on the same templates and 
alignments from PROSPECTOR_3 [50]. B. For proteins in the PDB300 benchmark 
set, using TASSER, the histogram of the percent of predicted targets as function of 
global RMSD, divided into single and multiple domain categories. 
 
Figure 5. Three representative examples of the successful structure prediction of 
transmembrane proteins by TASSER. The thin (thick) lines denote the Cα-
backbone of the experimental (predicted) structure. Blue to red runs from the N- to 
C-terminus. Below the structures are their PDB id, the RMSD between the model 
and native structure, and the length of the protein. 
 
Figure 6. Three representative examples of TASSER predicted models that are 
structurally closer to the NMR structure centroid than some of individual NMR 
structures. The thick backbone shows the rank-one models predicted by TASSER; 
the wire frame presents the structures satisfying the NMR distance constraints 
equally well. Blue to red runs from the N- to C-terminus. The RMSD of TASSER 
models to the NMR centroid for 1adr_ (α-protein), 2fnbA (β-protein), and 1dbyA 
(αβ-protein) are 1.6 Å, 1.9 Å, and 1.1 Å respectively; the maximum RMSD of 
NMR models to the centroid are 3.6 Å, 2.3 Å, and 1.3 Å, respectively. 
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