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Abstract

Structures of hitherto unknown protein complexes can be predicted by docking the solved protein
monomers. Here, we present a method to refine initial docking estimates of protein complex structures
by a Monte Carlo approach including rigid-body moves and side-chain optimization. The energy
function used is comprised of van der Waals, Coulomb, and atomic contact energy terms. During the
simulation, we gradually shift from a novel smoothed van der Waals potential, which prevents trapping
in local energy minima, to the standard Lennard-Jones potential. Following the simulation, the con-
formations are clustered to obtain the final predictions. Using only the first 100 decoys generated by a
fast Fourier transform (FFT)-based rigid-body docking method, our refinement procedure is able to gener-
ate near-native structures (interface RMSD <2.5 Å) as first model in 14 of 59 cases in a benchmark set.
In most cases, clear binding funnels around the native structure can be observed. The results show the
potential of Monte Carlo refinement methods and emphasize their applicability for protein–protein docking.

Keywords: protein–protein docking; fast Fourier transformation; scoring; refinement; smoothed potential

Most proteins associate with other proteins to fulfill their
function in the living cell. The understanding of the
function of a protein thus crucially depends on structural
knowledge of its complexes with interaction partners.
However, since many protein–protein complexes are hard
to crystallize, experimental structural data of the com-
plexes is often missing. With the structures of the respec-
tive monomers available in the Protein Data Bank (PDB)
(Berman et al. 2000), it is the task of computational
protein–protein docking to reassemble the monomers into
complexes. Generally, there are three levels of degrees of
freedom in complex formation from monomers: First,
both chains can be treated as rigid bodies and translated
and rotated against each other, which results in six

degrees of freedom. Further on, the conformation of side
chains can be adjusted to optimize the interface between
the two monomers. The highest number of degrees of free-
dom is introduced by the possibility of backbone re-
arrangements upon complex formation.

Thus, the ‘‘redocking’’ of monomers obtained from a
cocrystallized complex structure (bound–bound docking)
is much easier than the prediction of a complex structure
from independently crystallized monomers (unbound–
unbound docking). While for the bound–bound cases,
shape complementarity as the major determinant seems to
be sufficient for reliable results (Norel et al. 1994), the
more difficult unbound–unbound cases have to be con-
sidered as real-world examples. The introduction of the
fast Fourier transform (FFT) technique by Katchalski-
Katzir et al. (1992) made the computational search of the
six-dimensional conformation space possible for the first
time. Until today, most rigid-body docking algorithms
depend on the FFT algorithm (Gabb et al. 1997; Mandell
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et al. 2001; Heifetz et al. 2002; Chen et al. 2003a;
Tovchigrechko and Vakser 2006).

While the initial scanning of possible docking con-
formations by these methods is quick and efficient, the
major problem lies in the scoring of thousands of decoys
and in the missing treatment of structural flexibility. A
rescoring of docking decoys using more elaborate energy
functions and filters (Murphy et al. 2003; Camacho et al.
2006) was shown to improve the selection of models.
Structural flexibility can be treated by soft potentials
(Vakser 1995, 1996), multicopy representations of side
chains (Lorber et al. 2002), or flexible loops (Zacharias
2003; Bastard et al. 2006). Initial results of docking
programs can subsequently be refined by conjugate gra-
dient minimization (Tovchigrechko and Vakser 2005) and
are then usually clustered to identify near-native struc-
tures. The basic idea behind clustering is the notion that
in most cases native structures lie in broad energy wells
(Camacho et al. 1999), and it can be shown that clustering
significantly enhances the performance of docking algo-
rithms (Comeau et al. 2004; Lorenzen and Zhang 2007).

A different approach to the docking problem is the
Monte Carlo method. Instead of screening all possible
conformations with a Fourier-transformable energy func-
tion, random starting decoys are refined by applying
random translational and rotational moves and deciding on
their acceptance using the Metropolis criterion (Metropolis
et al. 1953; Gray et al. 2003; Schueler-Furman et al. 2005).
While FFT methods have the advantage of great speed and
complete sampling of the conformational space, Monte
Carlo methods are able to generate more physical decoy
distributions, can involve arbitrary energy functions, and
might allow for structural flexibility. However, an exhaus-
tive sampling of conformational space can be very time
consuming, if not beyond computational possibility.

Here, we present a hierarchical approach of initially
scanning the conformational space by a quick FFT-based
ZDOCK run, followed by the refining of the resulting top
100 decoys by ROTAFIT, a Monte Carlo refinement
program, combined with subsequent clustering. Of 59
cases in a common benchmark set (Chen et al. 2003b),
we are able to obtain 14 cases with a near-native solution
(interface RMSD below 2.5 Å) as the highest scoring
model, compared with six near-native solutions obtained
as first hits by ZDOCK.

Similar two-step approaches have been realized by
Fernandez-Recio and colleagues (ICM-DISCO) (Fernandez-
Recio et al. 2002, 2003) and Gray and colleagues
(RosettaDock) (Gray et al. 2003). In ICM-DISCO, the
investigators start with a rigid-body docking searched by
a pseudo-Brownian Monte Carlo simulation (Abagyan and
Totrov 1994). The second step is the Monte Carlo refine-
ment of ligand side-chain torsion angles. In RossetaDock,
the authors start from random ligand-receptor orientations,

followed by a low-resolution rigid-body docking. In a
second step, RosettaDock optimizes side chains and rigid-
body orientations simultaneously, based on the simulated
annealing Monte Carlo simulation (Kirkpatrick et al.
1983). In both of the approaches, the rigid-body docking
is performed by Monte Carlo searches. In our approach,
however, the first step of rigid-body conformation is taken
directly from the FFT-based docking (Chen et al. 2003a),
which is supposed to cover the whole complex space and
may include a larger diversity of initial conformations. In
the second step, while ICM-DISCO uses the pseudo-
Brownian Monte Carlo approach and RosettaDock the
simulated annealing, we exploit the replica-exchange
Monte Carlo simulation (Swendsen and Wang 1986), a
method that has been demonstrated to be more efficient in
biomolecule simulations than other Monte Carlo methods
(Gront et al. 2000; Zhang et al. 2002).

Another novelty in our approach is the smoothing of
the Lennard-Jones potential and a gradual roughening
to finally reach the original potential. Since in unbound–
unbound docking, the conformations of side chains, and
to some extent, also the main chain, often differ from the
bound conformation, the ‘‘hard’’ Lennard-Jones potential
needs to be smoothed in some way to allow some overlap
between the structures or tolerate inaccuracies. Previous
methods to smooth the Lenard-Jones potential for small
atom distances in docking refinement include linear
extrapolation below some threshold (Gray et al. 2003)
or truncation above a maximal positive energy (Fernandez-
Recio et al. 2003). Our smoothing approach was inspired
by Zacharias’s study (Zacharias et al. 1994; Riemann and
Zacharias 2005) (see Materials and Methods and Fig. 8,
below). In addition to dampening the positive part of the
potential, the minimum well is also broadened, which leads
to a less restrictive location of the minimum, and thus
enables a smooth direction of the structure toward the true
minimum in the course of roughening the potential.

Results

The principle of our method is summarized in Figure 1.
First, the conformational space is scanned by ZDOCK
(Chen et al. 2003a), a rigid-body FFT docking program.
Prior to docking, structures were translated and rotated
randomly. The top-scoring decoys are then refined by a
replica-exchange Monte Carlo approach (Swendsen and
Wang 1986). To ensure a smooth refinement process
starting from the rigid-body decoys, the simulation starts
with a smoothed van der Waals energy function, which is
gradually roughened to finally represent the standard 12/6
Lennard-Jones potential (see Materials and Methods). In
this way, the repulsive part is small at the beginning of the
simulation when incorrect side-chain conformations
might prevent perfect geometrical complementarity and
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a rough scan is desired. During the simulation, it becomes
more restrictive gradually to induce a tight fit between
receptor and ligand and select correct side-chain con-
formations. The median energies of the lowest temper-
ature replicas for the 59 cases versus the simulation time
are shown in Figure 2. Note the jumps in the energy value
at the times when the energy function is roughened (every
150 steps). At around half the simulation length (1250
steps), the energy values start to be stable, and longer
simulations did not obviously change the results. Gen-
erally, our replica exchange method leads to a complete
exploration of the simulated temperature range by all
replicas in the course of the simulation. As an illustrative
example, the temperature progression of two replicas of
case 1ACB is plotted in Figure 3. Initially, both replicas
start exploring the complete range of temperatures. Only
after around 1600 steps, Replica 16 stays in the colder
temperature regions.

Performance of ROTAFIT versus ZDOCK

Table 1 summarizes the results of the procedure on the
benchmark set. For all 59 cases, the interface RMSD of
the top-1 and top-5 and the best decoys by ZDOCK
(columns 2–4) and the subsequent ROTAFIT refinements
(columns 7–13) are listed. In the bottom of the table, we
also list the number of cases with an interface RMSD
below some thresholds as well as the average RMSD for
the best 10–50 cases.

In most cases, the ROTAFIT Monte Carlo simulations
can significantly improve the interface RMSD. For
example, the average interface RMSD of the best decoy
in the best 50 targets by ZDOCK is 3.6 Å. During the

Monte Carlo refinements, the average RMSD decreases
to 2.6 Å. If we consider the best 40/30/20/10 targets, the
average RMSD of the best decoys is reduced from 2.4/
1.4/0.9/0.7 Å to 1.6/0.9/0.5/0.3 Å, respectively.

The ranking of Monte Carlo decoys by ROTAFIT
energy also performs better than the ranking of ZDOCK
decoys by the ZDOCK energy. As shown in Table 1, the
average interface RMSD of the first model in the best 20
targets by ZDOCK is 5.3 Å; while based on the ROTAFIT
ranking, the average RMSD of the first model is reduced
to 2.9 Å. If we count the number of targets that have the
first model with an interface RMSD <2.5 Å, ZDOCK has
six cases and ROTAFIT has 13 cases in this criterion. The
structural clustering of the low-temperature replica decoys
can further improve the ROTAFIT ranking. As shown in
column 10 of Table 1, the average interface RMSD of the
first cluster in the best 20 targets is 2.4 Å. For 14 targets,
the first cluster center has an interface RMSD of <2.5 Å,
and for 19 targets, at least one of the first five cluster
centers has an interface RMSD of <2.5 Å (Table 1).

Figure 4 presents three representative examples of
interface RMSD versus ZDOCK-score of the ZDOCK de-
coys (left column) and interface RMSD of refined decoys
versus ROTAFIT energy (right column). These data show
that the top-ranking decoys in ROTAFIT have a much
lower interface RMSD than that of ZDOCK decoys,
which explains why the average ranking of ROTAFIT
performs better than that of ZDOCK shown in Table 1.

Figure 5 summarizes the comparison of ROTAFIT and
ZDOCK results for the first (left) and top five (right) de-
coys. In two cases, the interface RMSD of the top-1 decoy
by ROTAFIT is increasing significantly (1DFJ: 2.5 versus

Figure 1. Flowchart of the ROTAFIT refinement procedure: Starting

orientations are obtained from rigid-body docking by ZDOCK (Chen

et al. 2003a). Each decoy is then refined by a Monte Carlo run with

subsequent clustering. The resulting models are ranked by their energy.

Figure 2. Median energies of the lowest temperature replica versus simu-

lation time (in the unit of moving attempts) for all 59 benchmark protein

complexes. Jumps in the energy function in every 150 moving attempts

indicate a roughening of the energy function (see Materials and Methods).
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14.9 and 1WQ1: 2.73 versus 5.57), whereas in eight
cases, ROTAFIT obviously outperforms ZDOCK (1ACB,
1ATN, 1BRC, 1KXQ, 1MEL, 1NCA, 1UDI, 2SIC). The
solid lines show the average interface RMSD of the
best-performing ROTAFIT cases versus the average inter-
face RMSD of the best-performing ZDOCK cases. Num-
bers indicate the average of the best 10, 20, 30, 40, and
50 cases. All points are below the diagonal line, which
again shows a clear improvement of interface RMSD by
ROTAFIT compared with the initial ZDOCK input.

Comparison with other methods

Several groups reported methods to refine initial docking
decoys. For example, starting from conformations gen-
erated by ZDOCK, Li et al. (2003) use short CHARMM
energy minimizations to refine and rescore the initial
decoys (called RDOCK). The final scoring function is
comprised of electrostatic interaction energies between
ligand and receptor as well as an ACE term, with filtering
for unfavorable van der Waals energies. Using a bench-
mark set of 49 protein complexes, the authors report 21
cases with solutions within the first 100 ZDOCK decoys
and were able to rank 11 of them as top-ranking decoy
and two others within the top five decoys (Li et al. 2003).
However, the ZDOCK version used by Li et al. (2003)
was 2.1, whereas we are using version 2.3. To have a fair
comparison, we downloaded and ran RDOCK based on
the same set of 100 decoys (not counting the ones dis-
carded because of unfavorable van der Waals interac-
tions). We obtained 12 hits in the rank-1 decoys and 19
hits in the best of top five decoys, which are comparable
to 14 and 19 hits by ROTAFIT. The average RMSD of the
rank-1 decoys by ROTFIT is slightly lower, i.e., 0.6/2.4/
4.7/6.8/8.8 Å for the top 10/20/30/40/50 cases versus
1.0/3.4/5.9/7.8/9.6 Å by RDOCK. The detailed RDOCK
results are listed in columns 5 and 6 in Table I.

Gray et al. (2003) tested RosettaDock on a benchmark
of 54 proteins, a subset of the benchmark used in this
study. The investigators report seven cases with the first
model of <5 Å ligand Ca RMSD after superimposing the
receptor structures and a further nine cases with this
criterion within the first five models. Using ROTAFIT, we
found 12 cases with a complete ligand RMSD of <5 Å as
top-1 hit and 16 hits within the first five decoys (see
columns 12 and 13 of Table 1).

Performance of ROTAFIT in CAPRI round 11

As a blind test for our algorithm, we took part in round 11
of the community-wide protein–protein docking experi-
ment, CAPRI (Janin et al. 2003; Janin 2005; Mendez
et al. 2005). The target was a complex of Huntingtin-
interacting protein 2 (Hip2), a ubiquitin-conjugating
enzyme with Ubc9, a SUMO transferase (Desterro et al.
1997; Johnson and Blobel 1997; Schwarz et al. 1998).
SUMO, a ubiquitin-like protein of 101 residues (Muller
et al. 2001), is transferred from cystein 93 of Ubc9 to
lysin 14 of Hip2 (Pichler et al. 2005). In a crystal struc-
ture of Ubc9 with another substrate, RanGAP (PDB code
1KPS), the acceptor Lysine residue lies in a pocket
with contacts to residues Asp127, Pro128, Ala129, and
Tyr87 of Ubc9 (Bernier-Villamor et al. 2002). Residues
129–135 of Ubc9 have also been shown to interact with
Ubc9 substrates by chemical-shift analysis (Lin et al.
2002).

We first performed a rigid-body docking with ZDOCK
and filtered for decoys with a distance of <10 Å between
Lys14 of Hip2 and Cys93 of Ubc9. After filtering the
10,000 top-ranking models generated with default and
high-density rotational sampling, we obtained 31 and 101
docking structures, respectively, which are used as the
starting conformations in the subsequent ROTAFIT refine-
ments. During the simulations, we also add a distance
restraint proportional to the square of the distance between
Ne of Lys14 and Sg of Cys93 to our potential. Here, one
issue is the determination of the weight factor of the
restraint, which should be strong enough to move the
monomer structures, but should not dominate the other
inherent physics-based ROTAFIT potentials. To do this, we
tested three weight factors of 0.1, 0.5, and 5. Figure 6A
shows the Lys–Cys distance distribution of the simulated
ROTAFIT decoys with various weights compared with
the original selected ZDOCK decoys. A restraint weight
factor of 0.5 seems to work best, which is sufficient to
guide the monomer movement, but does not modify
significantly the energy distribution of the final models
(Fig. 6B). So 0.5 has been exploited in our simulations.
Finally, the ROTAFIT decoys were clustered with a cutoff of
3.5Å ligand RMSD, which are ranked based on the cluster
size. Figure 7 shows our first submitted model to CAPRI,

Figure 3. Temperature progression for two replicas of decoy 4 of 1ACB

(RMSD 1.5 Å at the end of the simulation). Replica 16 (black) initially

explores the complete temperature range and, due to the favorable

conformation and energy, stays at low-temperature ranges after around

step 1600. Replica 3 (gray) keeps traveling through the complete temper-

ature range in the whole course of the simulation.
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Table 1. Performance of ZDOCK, RDOCK, and ROTAFIT on 59 benchmark protein complexes

ZDOCK RDOCK ROTAFIT decoys ROTAFIT cluster

I-1a I-5b I-Bc I-1a I-5b I-1a I-5b I-Bc I-1a I-5b L-1d L-5e

1A0O 12.4 9.1 6.0 12.9 12.9 12.6 11.9 4.7 12.5 12.3 26.8 26.8

1ACB 4.8 1.9 0.9 1.3 1.2 1.4 1.0 0.7 1.5 0.9 6.7 3.5

1AHW 16.0 9.0 1.5 17.4 1.0 20.4 14.7 0.9 27.1 15.2 57.7 43.9

1ATN 12.1 12.1 0.5 0.5 0.5 0.5 0.5 0.3 0.4 0.4 1.4 1.4

1AVW 17.4 1.7 1.6 17.5 1.8 17.8 7.5 0.5 17.6 1.7 49.9 6.8

1AVZ 11.8 11.6 6.9 10.3 9.8 11.8 10.0 6.2 12.3 11.7 30.6 30.6

1BQL 7.9 1.1 1.0 1.4 1.0 19.1 0.7 0.5 14.4 0.7 47.9 1.6

1BRC 5.7 2.4 1.5 4.6 2.6 2.4 2.3 0.8 2.4 2.3 10.3 9.6

1BRS 8.0 8.0 5.7 14.5 5.7 14.9 9.7 4.0 11.4 11.4 35.5 35.5

1BTH 9.4 7.7 3.4 7.3 6.6 8.9 6.6 3.2 6.6 4.2 17.5 10.8

1BVK 18.3 15.9 9.5 14.4 11.6 17.8 17.8 8.1 17.8 15.2 63.8 63.7

1CGI 8.7 2.4 2.1 12.4 2.1 8.8 7.7 1.7 9.8 2.6 23.1 6.4

1CHO 9.3 1.6 1.0 1.5 1.3 6.9 1.5 0.6 6.9 1.1 15.1 3.8

1CSE 11.6 5.8 4.1 17.3 4.1 11.1 5.7 3.2 11.2 5.8 38.6 13.3

1DFJ 2.5 2.0 1.4 2.3 2.0 15.2 14.9 1.0 14.9 14.9 24.3 24.2

1DQJ 14.2 13.5 9.0 14.6 11.5 14.5 14.1 5.9 14.6 14.1 31.6 30.1

1EFU 14.0 13.9 11.3 28.1 12.5 29.1 12.5 10.9 29.2 13.4 64.6 50.7

1EO8 9.7 9.7 9.6 17.6 9.6 17.2 15.0 8.0 12.6 12.6 33.0 33.0

1FBI 13.9 10.3 4.0 13.2 12.5 15.3 11.9 2.5 21.1 11.8 58.5 24.7

1FIN 21.3 13.8 10.4 12.3 12.3 21.6 9.5 8.7 21.6 15.8 56.3 55.8

1FQ1 17.2 10.0 9.3 20.7 16.4 17.0 13.7 8.1 17.2 14.0 30.7 27.4

1FSS 16.4 6.3 1.4 10.4 8.4 5.7 5.4 0.8 5.8 5.4 14.7 13.6

1GLA 19.3 17.8 7.1 19.5 18.7 20.8 11.9 4.5 21.1 20.6 51.5 51.5

1GOT 11.0 11.0 5.6 16.4 9.3 13.3 10.1 4.0 13.2 10.8 37.9 30.8

1IAI 13.4 13.3 7.3 11.3 11.3 11.8 7.3 5.9 12.1 11.9 31.9 24.4

1IGC 16.1 15.9 8.3 16.6 12.7 13.3 13.1 3.5 13.2 13.0 37.9 37.7

1JHL 14.6 8.4 5.1 17.5 17.5 9.4 9.1 2.3 9.2 8.8 18.6 18.3

1KKL 20.2 16.3 11.5 20.1 15.8 17.5 15.7 9.6 18.3 16.7 49.4 48.4

1KXQ 10.2 4.1 1.1 9.3 4.2 1.2 0.7 0.4 1.1 1.1 1.9 1.9

1KXT 19.2 17.2 8.6 12.5 12.5 15.7 11.9 7.3 15.4 15.4 42.4 42.4

1KXV 16.9 16.5 5.2 18.3 16.8 14.4 14.3 4.1 18.6 5.0 45.2 12.4

1L0Y 17.5 12.0 10.2 11.9 11.9 27.3 13.5 9.9 14.6 14.6 67.6 55.7

1MAH 12.4 10.5 1.0 1.3 1.2 5.8 1.1 0.6 5.7 0.6 14.7 1.0

1MEL 12.2 9.7 0.9 14.0 1.2 1.2 1.2 0.7 1.1 1.1 2.1 2.1

1MLC 16.2 9.4 4.6 12.0 12.0 9.6 6.9 3.1 9.9 7.0 23 21.1

1NCA 14.5 1.3 1.1 22.8 15.7 18.8 18.8 0.3 0.5 0.5 1.0 1.0

1NMB 17.7 14.0 13.9 22.7 21.4 24.4 17.9 11.1 24.4 20.2 72.0 43.9

1PPE 0.6 0.6 0.6 1.0 0.8 1.2 0.6 0.3 1.1 0.5 3.3 1.3

1QFU 22.6 13.2 10.6 22.5 13.4 17.5 13.6 9.7 18.1 17.0 53.8 52.2

1SPB 0.6 0.5 0.5 0.7 0.5 0.4 0.4 0.4 0.5 0.4 0.6 0.4

1STF 1.1 0.9 0.7 1.2 0.9 0.4 0.4 0.3 0.4 0.4 1.1 0.9

1TAB 8.5 7.5 0.9 18.4 11.6 7.9 7.9 0.3 8.0 7.9 20.2 20.2

1TGS 8.4 8.2 1.5 9.0 1.9 8.1 8.1 1.4 8.2 8.1 16.2 15.9

1UDI 15.2 1.2 0.8 7.5 0.8 16.4 0.5 0.4 0.5 0.5 0.8 0.8

1UGH 6.4 6.0 1.5 2.2 1.6 2.0 2.0 0.7 8.2 2.2 23.7 5.0

1WEJ 15.8 10.4 8.2 10.5 10.5 10.6 10.6 4.3 11.6 10.8 21.2 19.5

1WQ1 2.7 2.5 1.2 6.4 4.9 5.4 5.4 0.9 5.6 5.6 10.3 10.3

2BTF 0.8 0.7 0.5 1.0 0.7 0.7 0.7 0.3 0.8 0.4 1.9 1.1

2JEL 9.5 9.5 9.0 12.2 10.6 9.9 9.7 8.8 9.7 9.7 16.6 16.6

2KAI 13.5 7.2 4.7 10.2 9.0 4.8 4.8 4.0 4.8 4.8 14.4 14.4

2MTA 20.3 17.7 6.9 16.8 16.8 17.5 16.4 6.8 17.5 17.4 55.6 55.1

2PCC 20.3 14.9 7.0 13.5 7.0 18.5 15.3 4.0 22.3 10.8 47.4 29.3

2PTC 12.6 8.5 2.6 12.6 2.6 12.9 5.3 1.5 13.3 8.0 40.0 18.4

2SIC 10.3 10.3 1.4 8.7 1.4 1.0 0.9 0.6 1.0 1.0 4.8 4.8

2SNI 8.4 5.0 4.4 8.8 5.8 9.2 8.1 3.2 8.4 8.1 18.9 17.8

2TEC 1.0 0.6 0.5 0.9 0.9 0.5 0.3 0.2 0.3 0.3 0.8 0.6

2VIR 18.7 14.9 11.2 21.1 20.5 18.4 15.8 11.2 18.3 18.3 53.6 49.1

(continued)
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which has an interface RMSD of 2.5 Å to the native
structure.

Discussion

We present an algorithm to refine docking decoys
generated by ZDOCK, a state-of-the-art FFT rigid-body
docking program. The goal of the work was to combine
the advantages of different methods in protein–protein
docking: While the fast Fourier transform technique
allows a rapid scanning of the complete six-dimensional
translational and rotational space, it relies on simple
energy functions that can be expressed as sums of prod-
ucts between grid values to allow a fast Fourier trans-
formation. While the final ranking of decoys might not be
optimal, in most cases the FFT algorithm provides some
reasonable starting points for further refinements.
Another drawback of FFT methods is the inherent rigidity
of receptor and ligand molecules.

On the other hand, Monte Carlo simulations allow the
implementation of any form of composite energy terms as
well as the conformational flexibility. Here, we chose the
Monte Carlo approach to obtain not only information about
the energies of docking decoys, but also about their distri-
bution. It is well known that native structures mostly lie in
broad energy wells rather than a narrow minimum (Camacho
et al. 1999), which can be detected by clustering the resulting
Monte Carlo decoys (Lorenzen and Zhang 2007).

Another novelty in our approach is the gradual rough-
ening of the energy landscape, starting from a smoothed

Lennard-Jones potential. In this way, structures can be
smoothly guided into tight-fit positions with rising impact
of side-chain positions (since overlap and clashes are
punished stronger) during the simulation process. Since
the average negative part of the van der Waals energy is
kept constant by our scaling method, the shape of the
potential smoothly changes from having considerable at-
tractive forces even for r >> r0 and only a few repulsive

Table 1. Continued

ZDOCK RDOCK ROTAFIT decoys ROTAFIT cluster

I-1a I-5b I-Bc I-1a I-5b I-1a I-5b I-Bc I-1a I-5b L-1d L-5e

3HHR 12.3 12.0 11.5 13.5 13.4 17.5 12.3 10.6 21.2 17.2 58.4 52.3

4HTC 0.9 0.9 0.7 16.1 16.1 0.6 0.6 0.6 0.7 0.6 0.8 0.7

<2.0f 6 13 25 10 18 12 16 27 13 17 9 12

<2.5 6 16 26 12 19 13 17 28 14 19 10 13

<3.0 8 16 27 12 21 13 17 29 14 20 10 13

<4.0 8 16 29 12 21 13 17 38 14 20 11 15

<5.0 9 18 33 13 24 14 18 42 15 23 12 16

<8.0 12 24 43 16 28 19 28 47 20 29 13 19

Best 10g 2.1 0.9 0.7 1.0 0.8 0.8 0.6 0.3 0.6 0.5 1.2 0.9

Best 20 5.3 2.2 0.9 3.4 1.1 2.9 1.5 0.5 2.4 1.0 6.2 2.7

Best 30 7.3 4.1 1.4 5.9 2.3 5.3 3.4 0.9 4.7 2.7 11.0 6.6

Best 40 8.9 5.6 2.4 7.7 4.2 7.5 5.2 1.6 6.8 4.7 16.6 10.9

Best 50 10.5 7.1 3.6 9.6 5.9 9.5 6.8 2.6 8.8 6.5 22.9 16.2

a (I-1) Interface RMSD (Å) of the highest-scoring decoys.
b (I-5) Best interface RMSD (Å) in five top-scoring decoys.
c (I-B) Interface RMSD (Å) of best decoy.
d (L-1) Ligand RMSD (Å) of the highest-scoring decoys.
e (L-5) Best ligand RMSD (Å) of five top-scoring decoys.
f (<2.0) Number of cases with an interface RMSD of <2.0 Å.
g (Best 10) Mean RMSD (Å) of the 10 best-performing cases in the benchmark set.

Figure 4. Interface RMSD versus energy for the first 100 ZDOCK decoys

before (left, negative ZDOCK score interpreted as energy) and after (right)

the ROTAFIT Monte Carlo refinement. The figure shows three represen-

tative cases (1ACB, 1MEL, and 2SIC). The energy values have been

rescaled to fit the united scale of different targets.
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forces for clashes caused by incorrect side-chain con-
formations to being more restrictive toward the distance
of minimal energy, r0.

Another advantage of a smoothed energy function is
the possibility of a broader distribution of decoys in the
beginning phase of the simulation and subsequent driving
toward local minima. In this way, a bigger part of the
conformational space can be scanned, while cluster sizes
of the final conformations give information about the
width of the energy well.

As shown in Figure 5, the RMSD of the highest-scoring
decoys could be improved by our method, and in eight
cases, near-native decoys were identified that were missed
by ZDOCK. Refinement results with gradual roughening
were significantly better than with a static energy function
(data not shown), which shows the potential of our

approach. An increase in the number of starting decoys
is promising to further improve the results, since 100
ZDOCK decoys often do not include structures close
enough to the native structure to be refined. The improved
version of the ROTAFIT algorithm is being developed and
will be made publicly available in future work.

Materials and Methods

Docking algorithm

ROTAFIT starts from the FFT-based rigid-body docking struc-
tures by ZDOCK (Chen et al. 2003a). The conformational space
in ROTAFIT is searched by the replica-exchange Monte Carlo
simulation algorithm (Swendsen and Wang 1986), where 40
replicas are used and each takes 2500 Monte Carlo moving
attempts. Our testing data show that longer simulation with

Figure 6. (A) Distribution of distances between Cys93 of Ubc9 and Lys14 of Hip2 in the initial decoy set and after Monte Carlo

refinement with different restraint weights. A restraint $0.5 leads to a significantly closer distance between the two residues. (B)

Energy distribution of refined decoys using different restraint weights for the Cys–Lys distance. A restraint below 0.5 does not

significantly impair the final energies of the models.

Figure 5. Interface RMSD of refined decoys by ROTAFIT versus RMSD of initial ZDOCK decoys for the 59 benchmark targets.

(Left) First decoy; (right) the best in top five decoys. The Monte Carlo decoys show more near-native cases. The solid lines indicate

average interface RMSDs of the best 10, 20, 30, 40, and 50 cases by both ZDOCK and ROTAFIT. The lines below the diagonal line

indicate that the average interface RMSD has been improved by the ROTAFIT simulations.
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more replicas does not improve the results (see Fig. 2). In each
moving attempt, a translation along a random vector and a
rotation around a random axis are performed. The translation
distance and the rotation angle are scaled so that the displace-
ment of interface atoms is distributed according to a Gaussian
function with a standard deviation of 0.5 Å. Following the
backbone displacement, conformations of two randomly se-
lected side chains on the ligand-receptor interface are randomly
changed based on Dunbrack’s rotamer library (Dunbrack Jr. and
Cohen 1997). The acceptance of the composite movements is
decided by the Metropolis criterion (Metropolis et al. 1953)
using an energy function comprised of van der Waals, Coulomb,
and atomic contact energy. Replica exchange is performed after
every moving attempt, which leads to an average of 1000
exchanges between neighboring replicas. After the Monte Carlo
simulations, the structures in the five lowest temperature rep-
licas obtained in the last 600 steps of the refinement simulations
are clustered. For each cluster, the structure at the cluster center
is selected. The structures from 100 different clusters are ranked
by their energy. The overall procedure of ROTAFIT can be seen
in Figure 1.

Energy function

Receptor and ligand are modeled with implicit hydrogen atoms
(only polar hydrogen atoms treated explicitly). The energy
function of ROTAFIT consists of three terms: a Lennard-Jones

term Eij = eij
r0ij

rij

� �12

�2
r0ij

rij

� �6
� �

with parameters of eij and r0ij

taken from CHARMM (Brooks et al. 1983), a Coulomb term

ECou = 1
4pee0

qiqj

rij
, and an atomic contact energy term (Zhang et al.

1997). For the Lennard-Jones and Coulomb terms, rij is the
distance between two atoms i and j, qi and qj are their charges,
and r0ij

is the optimal distance between two atoms of type i and
j. For the Coulomb term, a distant dependent dielectric e ¼ 4rij

was used. Partial charges for amino acids used in the Coulomb
term were also taken from CHARMM. The atomic contact
energy is a statistical potential with 19 distinct atom types
derived from PDB structures. For the Coulomb and Lennard-
Jones interaction energies, a distance cutoff at 1 Å was used to
avoid singularities, which sets the potential at shorter distances
equal to that at 1 Å.

Smoothing of the van der Waals energy function

The smoothing approach for the van der Waals function was in-
spired by the potential scaling approach of Zacharias (Zacharias
et al. 1994; Riemann and Zacharias 2005). Basically, the
authors used a modified Lennard-Jones potential of the form

VðrijÞ = eijð1� lÞ
r2

0ij
+ld

r2
ij+ld

� �6

�2
r2

0ij
+ld

r2
ij+ld

� �3
 !

with eij being the

minimum Lennard-Jones energy for the interaction between
atoms i and j, r0ij

the optimal distance between the two atoms, and
d, a shifting parameter. The value of l can vary between 0 (full
Lennard-Jones potential) and 1 (interaction energy vanished)
during the simulations.

Our potential was designed to include only one scalable
parameter l instead of the two parameters, l and d, and keep the
average attractive forces constant while increasing the repulsive
forces. Assuming an equidistribution of particles in three-
dimensional space, the number of pairwise interactions between
particles with distance r would be proportional to r3. The
integral over the attractive (negative) part of our modified
potential would thus be:

ð‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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A scalable potential function with constant average attractive
forces can be obtained by scaling:

Figure 7. The first ROTAFIT model for T27 submitted to round 11 of the

CAPRI experiment, which has an interface RMSD of 2.5 Å. The predicted

model is shown in cartoon and the target in backbone. Left is the structure

of Ubc9 and right for Hip2. The catalytic residue Cys93 and the acceptor

site Lys14 are shown as sticks in the model.

Figure 8. Smoothed Lennard-Jones potential (see Materials and Methods)

with r0ij
¼ 2 (solid lines) and 4 (dashed lines). l9 ranges from 0 to 1.6, as

indicated in the figure. The spatial sum of attractive forces only depends on r,

not on l9. A l9 value of 0 is equivalent to the original Lennard-Jones potential.
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To obtain comparable degrees of smoothness for different values
of rij, we used smoothing parameters l9 which depends on r0ij

with l ¼ l9 r2
0ij

. Figure 8 shows potential functions of different
smoothing values.

The current setting starts with a smoothing value l9 ¼ 0.4,
which is decreased by 0.05 in every 150 Monte Carlo steps. This
way, the initial setting allows a rough orientation of receptor and
ligand toward each other, while later in the simulation, restric-
tive settings direct orientations and side chains toward a tight fit
between receptor and ligand. Stronger smoothing in the begin-
ning of the simulation decreased the specificity of the inter-
action and worsened the results (data not shown). The
roughening of the energy landscape was designed in such a
way that the original Lennard-Jones potential was reached and
briefly equilibrated after half of the simulation time.
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