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ABSTRACT Most state-of-the-art protein–pro-
tein docking algorithms use the Fast Fourier Trans-
form (FFT) technique to sample the six-dimensional
translational and rotational space. Scoring func-
tions including shape complementarity, electro-
statics, and desolvation are usually exploited in
ranking the docking conformations. While these
rigid-body docking methods provide good perform-
ance in bound docking, using unbound structures
as input frequently leads to a high number of false
positive hits. For the purpose of better selecting
correct docking conformations, we structurally
cluster the docking decoys generated by four
widely-used FFT-based protein–protein docking
methods. In all cases, the selection based on cluster
size outperforms the ranking based on the inherent
scoring function. If we cluster decoys from differ-
ent servers together, only marginal improvement is
obtained in comparison with clustering decoys
from the best individual server. A collection of mul-
tiple decoy sets of comparable quality will be the
key to improve the clustering result from meta-
docking servers. Proteins 2007;68:187–194.
VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

The goal of protein–protein docking is to elucidate the
quaternary structure of protein complexes by reassem-
bling the solved monomer structures. Since the possible
orientations of receptor and ligand towards each other
are in the order of billions (three translational and three
rotational degrees of freedom), an exhaustive search of
all possible conformations using traditional energy scor-
ing methods is not feasible. The introduction of the grid-
based Fast Fourier Transform (FFT) method by Katchal-
ski-Katzir et al. in 1992 made an extensive screening of
orientations possible for the first time.1 The proposed
FFT method starts with a grid-based representation of
the target receptor and ligand molecules by three-dimen-
sional discrete functions that distinguish between the
surface and the interior of protein molecules. A correla-
tion function that assesses the degree of molecular shape

match can then be quickly calculated with the aid of the
Fourier transformation technique.

FFT methods have been enhanced by several means.
While the original approach summed up the number of
overlapping surface grid points as a measure of shape
complementarity, Chen and Weng introduced a pair-wise
shape complementarity function which provides higher
scores in regions of high curvature and favors continu-
ous contact patches over several small contact patches.2

In addition to shape complementarity, terms for desolva-
tion3 and electrostatic energy4 have been introduced for
the account of water and protein atom interactions.
Common methods of postdocking processes for refining
the docking conformations include conjugate gradient
rigid-body energy minimization,5,6 simultaneous back-
bone rigid-body and side-chain rotamer optimization,7

and the use of computationally more expensive scoring
functions to rerank the FFT decoys.8

For the purpose of identifying near-native docking
decoys, another efficient approach is the structural clus-
tering of the conformations generated by the docking
search algorithms. The basic assumption behind the
clustering approach is that the free energy landscape
exhibits a broader and deeper well near the native struc-
ture than near non-native structures.9 Therefore, a rea-
sonable docking algorithm should have more structures
in near-native regions. Clustering methods have been
introduced and extensively used in tertiary protein
structure prediction for picking up correct protein
folds.10,11 Vakser et al.12,13 introduced clustering of dock-
ing decoys in low-resolution docking studies. It is pointed
out that, in contrast to high-resolution docking, where a
tight lock between the receptor and the ligand is needed
and thus only few discrete decoys fall into one energy
minimum, low-resolution representation of potentials
lead to broader wells in the energy landscape and thus
produce many ‘‘partially correct’’ hits which fall in the
same energy minimum and can thus be detected by clus-
tering. Law et al.14 used docking decoys generated by
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DOT15 and, after shape complementarity filtering, clus-
tered the remaining decoys using a six-dimensional dis-
tance measure describing the rotations and translations
between different ligand orientations. Camacho and
Gatchell16 used an all Ca RMSD and a Ca binding site
RMSD to cluster decoys generated by DOT.15 The algo-
rithm using Ca binding site RMSD is now made publicly
available as a server called ClusPro,17,18 which shows
improvements in selecting docking decoys over the inher-
ent docking scoring function. The RMSD matrix in Clu-
sPro is calculated for ligand residues which are less than
10 Å away from the receptor and the default clustering
RMSD cutoff is set to 9 Å. Clustering is known to be
used by many other docking algorithms after sampling
the possible orientations of receptor and ligand towards
each other.19 However, the parameters used in clustering
differ between the groups, and to our knowledge no sys-
tematic approach of optimizing parameters like the
RMSD cutoff or the number of decoys used for clustering
has been published. Kozakov et al.20 recently suggested
using a clustering threshold corresponding to the mini-
mum following the first peak of the bimodal pair-
wise RMSD histogram, which usually lies between 5
and 10 Å.
In this work, we will apply the clustering algorithm to

structure decoys generated by four different FFT-based
protein–protein docking methods and study in detail the
impact of various clustering parameters on the cluster-
ing performance. Another purpose was inspired by the
idea of meta-servers in the protein tertiary structure
prediction, where the consensus models collected from
different servers on average perform better than that of
the best individual server.21–23 We will test whether
additional gain can be obtained in the quaternary struc-
ture prediction if we combine and cluster structure
decoys from different FFT docking methods. According
to Camacho et al.,24 the differences in refinement and
scoring functions between docking algorithms make a
rescoring of the pooled decoys of different methods less
successful than rescoring the decoys from each single
method. It is not known whether the clustering behavior
of a pool of decoys from metaserver is influenced by dif-
ferences in the energy scoring methods. However, a
rough scoring function might result in only few hits
around the native conformation, whereas a smoother
function is more tolerant to changes in the ligand orien-
tation and will thus result in bigger clusters.

MATERIALS AND METHODS
Rigid-Body Docking

We took unbound structures of 59 nonredundant pro-
tein complexes from Weng’s benchmark library.25 Prior
to docking, ligand structures were randomly translated
and rotated. ZDOCK26 version 2.3, FTDOCK7 version
2.0 with rescoring by RPScore,8 GRAMM-X5,27 version
1.0.1, and MOLFIT28 version 2 were used to generate
rigid-body docking conformations.

In all these programs, the conformational search is
performed using the FFT technique of Katchalski-Katzir
et al.1 The methods differ in their scoring functions: both
FTDOCK7 and MOLFIT28 use shape complementarity
and electrostatic potential in their FFT scoring func-
tions. FTDOCK7 provides an additional program
(RPScore8) to rerank docking decoys by pair-wise residue
potentials. In ZDOCK,26 the surface-overlap shape com-
plementarity function is replaced by a pair-wise shape
complementarity, and terms for average Atomic Contact
Energies are added as a measure of desolvation energy.
GRAMM-X5 includes a grid-projection of a smoothed
Lennard-Jones potential, combined with a postdocking
procedure of rigid-body energy minimization and struc-
ture clustering.

All programs were run with default parameters. If not
stated otherwise, 2000 highest-scoring decoys of each
method were retained for further analysis. As a control,
the same randomly translated and rotated structures
were submitted to the ClusPro server for clustering.17

Structure Clustering

For a given set of docking decoys, an all-against-all
RMSD matrix was calculated by comparing the ligand
coordinates of different orientations after superposing
the Ca atoms of the receptor. The first cluster center is
defined as the docking decoy with the highest number of
structural neighbors below a given RMSD threshold. Af-
ter excluding the first cluster center and its structural
neighbors, the second cluster center is identified as the
decoy with the highest number of structural neighbors
in the remaining decoy pool. Subsequent cluster centers
can be obtained by repeating the procedure. This cluster-
ing procedure is similar to that used in SPICKER,11

which was designed to cluster tertiary structure confor-
mations.

Decoy Quality Evaluation

While the pairwise RMSD of complete ligands was
used for clustering, the quality of docking predictions is
evaluated by the RMSD to native of interface residues,
where interface residues are defined as the residues of
the receptor (ligand) that have at least one atom within
10 Å to the ligand (receptor) in the native structure. One
purpose of using the interface RMSD rather than com-
plex RMSD or ligand RMSD is to minimize the influence
of the sizes of ligand and receptor. The same measure
has been used to evaluate docking quality in the CAPRI
experiment.29 A ‘hit’ here is defined as a docking predic-
tion with an interface RMSD below 2.5 Å.

By definition, the RMSD calculation averages the
squares of distances of all residue pairs with the same
weight.30 A local error (e.g., a tail misorientation) may
cause a big RMSD value although the global topology of
the model is correct. Alternatively, we will use the TM-
score,31 which weights small distances stronger than
larger distances and therefore is more sensitive to the
global topology of models. Moreover, the TM-score value
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is rescaled by the average distance of random structure
pairs in the PDB library, which makes the meaning of a
specific TM-score value independent on the target pro-
tein sizes.

RESULTS AND DISCUSSION
Benchmark Docking of Four FFT-Based
Docking Algorithms

In Table I, we summarize the docking results of the
four FFT-based docking algorithms on the 59 targets
taken from Weng’s benchmark set.25 If ranking the
decoys by the inherent scoring function, ZDOCK has at
least one hit within the first 10 decoys in 19 cases. If the
top 2000 decoys are considered, the number of cases
with hits increases to 42. In 15 cases, ZDOCK has more
than 50 hits in the top 2000 decoys. FTDOCK and
MOLFIT have hits in the top 10 decoys in five and six
cases, respectively. Interestingly, the number of cases
with hits in the top 2000 decoys is comparable in all four
methods. The higher number of hits in top 10 by ZDOCK
indicates the power of its inherent scoring function in
distinguishing good decoy from bad ones.
The number of hits in the GRAMM-X run is compara-

ble to that of ZDOCK (17 in top-10 and 42 in top-2000).
With consideration of the inherent postdocking proce-
dure, the good performance of GRAMM-X may be par-
tially due to the combined effect of the minimization and
clustering procedures. As shown in row six of Table I, if
we omit the clustering and minimization procedures and
allow only one decoy for each of the FFT rotation steps,
the number of hits by GRAMM-X is reduced to 13 (in
top-10) and 36 (in top-2000). We will refer to the first
type of GRAMM-X decoys with minimization as ‘default
GRAMM-X’ and to the second type of GRAMM-X decoys
as ‘filtered GRAMM-X’.
In the last row of Table I, we show the clustering

result of ZDOCK decoys by ClusPro, which improves the
number of hits in top 10 from 19 to 22.

Number of Structural Neighbors

In Figure 1, we show the average number of structural
neighbors, as judged by the pair-wise ligand RMSD after
superimposing the receptor, for all and near-native

decoys. Here, a near-native structure is defined as a
structure with an interface RMSD to native below 5 Å.

Ideally, in a docking algorithm of reasonable scoring
potential, a correct docking conformation should have
more structural neighbors than an incorrect one because
the native structure often shows a wider well in the free
energy landscape.9 On average, near-native decoys in
ZDOCK have much more structural neighbors than non-
native ones and therefore can be clearly differentiated
from the latter by structure clustering. In contrast, the
clustering of near-native decoys generated by MOLFIT is
barely distinguishable from non-native ones. In
FTDOCK, the near-native decoys cluster relatively bet-
ter than the non-native decoys. However, the overall
decoys are very divergent.

For the default GRAMM-X run, because of the energy
minimization procedure, the decoy conformations tend to
be driven to some common energy minima. Therefore,
the default GRAMM-X decoys shows a large number of
neighbors even with a very small RMSD cutoff. If the
minimization step is omitted and only one decoy is kept
per FFT rotation step, the redundant structural neigh-
bors vanish (see Fig. 1, dotted lines). The near-native fil-
tered GRAMM-X decoys have also more structural
neighbors than non-native decoys. Thus, the decoys pro-
duced by ZDOCK and the filtered GRAMM-X decoys
seem to be the most promising for the subsequent clus-
tering.

Clustering of Individual Decoy Sets

In Figure 2, we show the clustering results of docking
decoys generated by different algorithms using various

TABLE I. Comparison of Four Rigid-Body Docking
Algorithms on 59 Benchmark Protein Complexes

Number
of hits

in top-10

Number
of hits in
top-2000

Number
of cases
with >50

hits in top-2000

ZDOCK 19 42 15
FTDOCK 5 35 0
MOLFIT 6 26 0
GRAMM-X (default) 17 42 0
GRAMM-X (filtered) 13 36 3
ClusPro on ZDOCK 22 — —

Fig. 1. Average number of structural neighbors versus the RMSD
cutoff. For each program, two sets of decoys are calculated: all decoys
(thin curves) and near-native decoys (thick curves).
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RMSD cutoffs. The number of cases with hits show a
peak around RMSD ¼ 5 Å for all decoys (except for the
default GRAMM-X). These data demonstrate that a
RMSD of 5 Å may be used as a uniform cutoff for clus-
tering of all docking decoys. The maximum at small
RMSD cutoffs in the default GRAMM-X is due to the in-
herent energy minimization procedure which drives the
decoys into some common energy minima. Because of
the redundancy of the decoy structures, using different
RMSD cutoffs below 5 Å just identifies the same set of
tightly clustered decoys. As shown in both Figures 1 and
2, using the filtered GRAMM-X eliminates the redun-
dancy and improves the clustering of GRAMM-X decoys.
Overall, the number of hits in ZDOCK clustering is
higher than all other individual methods because of its
better decoy quality and the relatively higher number of
structural neighbors of near-native decoys compared to
non-native ones as shown in Figure 1. When using a cut-
off of 5 Å, our clustering approach improves the number
of ZDOCK hits from 19 to 25 cases, slightly more than
the 22 cases detected by ClusPro. This difference of per-
formance should be due to the different clustering strat-
egies. In ClusPro, the RMSD matrix is calculated from
ligand interface residues, where the RMSD is more sen-
sitive to the ligand spin/rotation. In our method, the
RMSD matrix is calculated using the complete ligands,
where the RMSD is more sensitive to the receptor spin/
rotation. The different sensitivity in these two cases can
be easily understood by the example of spinning a ligand
with the receptor fixed, where the change on the global
ligand RMSD is smaller than that on the ligand inter-
face RMSD. On the other hand, when we spin a receptor
with the ligand fixed, after superposing the receptor, the

change on the global ligand RMSD will be larger than
that on the ligand interface RMSD.

In Table II, we list the distribution of the 59 targets
when the ZDOCK decoys are ranked by different meth-
ods, i.e. ZDOCK inherent scoring function, ClusPro, and
current clustering. There are 30 cases that have no hit
by any ranking, although 13 of them have at least one
hit in the decoy pool. Among them, 12 cases are anti-
body–antigen complexes, four are enzyme-inhibitor com-
plexes, and seven are other complexes. The remaining
seven cases are ‘difficult test cases’ in Chen and Weng’s
assignment.25

In 14 easy cases, the correct hits can be identified by
all three methods. The majority of these (10) are
enzyme-inhibitor complexes. In the remaining 15 cases,
the correct decoys can be picked up by at least one of the
methods, which show the potential power of combining
different ranking methods.

Clustering of Combined Decoys From
Different Programs

Meta-servers have been extensively used in protein
tertiary structure prediction. It has been demonstrated
that the consensus prediction derived from models gen-
erated by different modeling servers usually outperforms
the best individual server.21–23 Inspired by the meta-
server idea, here we check whether a combination of
decoys from different docking servers leads to further
improvement of the results.

In Figure 3, we show the results of clustering decoys
from two different methods. Obviously, because the
FTDOCK and MOLFIT decoys are much more divergent
than ZDOCK decoys, as demonstrated in Figure 1, the
combination of ZDOCK with FTDOCK or MOLFIT does
not change the results much in comparison to clustering
ZDOCK decoys alone. However, it was somewhat unex-
pected that the combination of ZDOCK and GRAMM-X
performed worse than clustering ZDOCK decoys only
(thin short-dashed curve in Fig. 4), although both meth-
ods show a similar number of hits in top-10 and top-
2000 decoys in Table I. One reason might be that the

Fig. 2. Number of cases with hits in top 10 decoys when the decoys
are clustered using different RMSD cutoffs.

TABLE II. The Distribution of 59 Benchmark Cases
Using Different Ranking Methods

ZDOCK
score ClusPro

Current
clustering

Number of
cases (A/E/O/D)

30 (12/4/7/7)
x 3 (2/1/0/0)
x x 4 (1/2/1/0)

x 3 (1/2/0/0)
x x 1 (0/1/0/0)
x x 4 (1/2/1/0)
x x x 14 (2/10/2/0)

‘x’ denotes the case that has at least one hit in top 10 decoys. The
targets are categorized as antibody–antigen (A), enzyme-inhibitor
(E), ‘other’ (O), and ‘difficult test case’ (D) according to Chen and
Weng.25
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energy optimization procedure in the default GRAMM-X
run has driven the decoys into common structure basins.
Therefore, the redundant GRAMM-X decoys dominate
the combined clustering and mask the cluster centers
from ZDOCK. As shown in the thin long-dashed curve in
Figure 3, omission of the energy optimization procedure
and filtering of the redundant GRAMM-X decoys by
choosing one decoy for each FFT rotation step leads to
better clustering performance than the combination of
ZDOCK and default GRAMM-X. However, compared
with the ZDOCK clustering alone (25 cases in top 10
hits), the increase in the number of hits (27 cases in top
10 hits) is still marginal. Hit rates when combining
three or four programs are not better than results from
combining two programs (data not shown). The lack of
obvious improvement when combining different pro-
grams might be due to the big differences in quality of
docking decoys and clustering behavior between the dif-
ferent programs. A collection of comparable decoys from
new good servers will be helpful. However, differences in
the softness of the scoring functions of the programs
used might cause different tolerance towards small
movements of the ligand, which can influence the num-
ber of structural neighbors included in their high-scoring
decoys.

How Many Decoys Should be Used in Clustering?

The choice of a subset of clustering decoys from bil-
lions of docking conformations generated in FFT scans is
always a compromise between the number of hits in the
pool and the noise contamination. Since the decoys are
usually ranked and preselected by the inherent scoring

function, a pool of fewer decoys should have on average
better quality but include fewer hits. On the other hand,
the inclusion of more decoys in the clustering will lead
to more hits in the pool but be in the danger of including
more noise. In the above clustering calculations, we have
by default used 2000 decoy structures in our clustering
pool. Here we examine the numbers in more detail.

In Figure 4, we plot the clustering result versus the
number of used decoys. Besides the binary count of the
number of hit cases, we also calculate a continuous accu-
mulative TM-score of all targets, where TM-score is
defined as31

TM-score ¼ 1

N

XN

i¼1

1

1þ d2
i =d

2
0

: ð1Þ

Here, di is the Ca��Ca distance of the ith pair of residues
in the ligand between the decoy and the native structure
after superimposing the receptor. d0 ¼ 1:24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 153

p � 1:8
and N is the number of residues in the ligand molecule.

For both hits in the first cluster and in top-10 clusters,
there is a gradual increase when including more decoys
in the clustering pool. After the total decoy number
reaches around 1000, there is no obvious change on the
overall performance. The number of hits in the first clus-
ter is the same when using 1000 and 2000 decoys. While
the hit number in top-10 clusters fluctuates around
1000, it is the same when using 2000 or 750 decoys. The
accumulative TM-score stays stable after the number of
decoys increases to 1000. These data confirm that 2000
decoys should be a safe choice for the docking decoy clus-
tering.

Fig. 3. Clustering results of combined decoys from two different
docking programs.

Fig. 4. Dependence of clustering results on the number of used
decoys.
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Cluster Centroid and Cluster Center

In our cluster algorithm, the cluster center (the decoy
which has the most structural neighbors) was returned
as the final docking prediction. Here, we also try the
option of averaging the atom coordinates of all clustered
ligand conformations and generating an artificial decoy
called ‘cluster centroid’. As shown in Table III, the clus-
ter centroid in general has a higher TM-score than the
cluster center. However, the cluster centroid is usually
structurally distorted because of the averaged coordi-
nates. The distortion will become more serious if the
RMSD cutoff of the clustering is large. In the last col-
umn of Table III, we generate a new docking conforma-
tion by superimposing the ligand structure onto the clus-
ter centroid. On average, the TM-score of the docking
conformation generated by the centroid superposition is
as good as the cluster centroid, which is about 7% higher
than the cluster center.

Ranking of the Clusters by Free Energy

The general procedure of clustering the FFT-based
docking decoys in RMSD space is actually to identify the
state of the maximum entropy, because the energy or
scoring function is not used to drive the FFT searching.
This is different from the clustering of decoys generated
by Metropolis Monte Carlo simulations, where the big-
gest cluster corresponds to the lowest free-energy
because ideally the Monte Carlo conformation is inher-
ently weighted by the Boltzmann factor.11 To identify the
lowest free-energy state in FFT-based docking, we can
simply rerank the clusters in a way that each decoy is
weighted by the Boltzmann factor exp(�bE), where E is

TABLE III. TM-Score of Cluster Center, Cluster
Centroid, and The Conformation Superimposed

on the Cluster Centroid (Superpos.)

ID Center Centroid Superpos.

1A0O 0.029 0.031 0.031
1ACB 0.383 0.406 0.404
1AHW 0.639 0.686 0.687
1ATN 0.885 0.909 0.909
1AVW 0.630 0.616 0.613
1AVZ 0.021 0.018 0.018
1BQL 0.640 0.721 0.719
1BRC 0.222 0.245 0.243
1BRS 0.127 0.127 0.125
1BTH 0.071 0.070 0.069
1BVK 0.038 0.038 0.038
1CGI 0.538 0.532 0.533
1CHO 0.307 0.381 0.382
1CSE 0.125 0.112 0.110
1DFJ 0.593 0.678 0.678
1DQJ 0.070 0.067 0.067
1EFU 0.022 0.023 0.023
1EO8 0.050 0.051 0.051
1FBI 0.115 0.121 0.119
1FIN 0.021 0.022 0.022
1FQ1 0.073 0.073 0.073
1FSS 0.109 0.119 0.116
1GLA 0.011 0.010 0.010
1GOT 0.102 0.100 0.100
1IAI 0.090 0.090 0.090
1IGC 0.006 0.006 0.006
1JHL 0.264 0.280 0.278
1KKL 0.016 0.017 0.017
1KXQ 0.649 0.649 0.648
1KXT 0.041 0.042 0.043
1KXV 0.015 0.014 0.014
1L0Y 0.014 0.014 0.014
1MAH 0.035 0.039 0.037
1MEL 0.757 0.787 0.790
1MLC 0.134 0.118 0.117
1NCA 0.834 0.888 0.888
1NMB 0.099 0.098 0.098
1PPE 0.365 0.358 0.365
1QFU 0.031 0.031 0.031
1SPB 0.693 0.761 0.765
1STF 0.683 0.750 0.748
1TAB 0.328 0.307 0.315
1TGS 0.550 0.685 0.685
1UDI 0.406 0.671 0.672
1UGH 0.473 0.469 0.466
1WEJ 0.081 0.081 0.079
1WQ1 0.512 0.505 0.503
2BTF 0.916 0.930 0.931
2JEL 0.090 0.098 0.097
2KAI 0.074 0.071 0.069
2MTA 0.021 0.019 0.019
2PCC 0.085 0.086 0.085
2PTC 0.228 0.244 0.243
2SIC 0.219 0.236 0.236
2SNI 0.113 0.121 0.119
2TEC 0.636 0.684 0.688
2VIR 0.047 0.045 0.045
3HHR 0.023 0.023 0.023
4HTC 0.535 0.644 0.654
Sum 15.884 17.017 17.020

Fig. 5. Lowest RMSD within first 10 clusters with and without
weighting by Boltzmann factor.
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the energy/scoring function of the decoys in the cluster
and b is the reciprocal temperature. In Figure 5, we
show the comparison of clusters of the lowest free-energy
and that of the maximum entropy for ZDOCK decoys.
The result indicates some difference but overall the
number of hit is quite similar.
The result is understandable based on Figure 6, which

shows that, for the majority of the decoys, the ZDOCK
score is not sensitive to the real quality of the conforma-
tion (see left part of Fig. 6). Therefore, the Boltzmann
factor in these cases is close to random and does not
improve the selection of docking decoys. To improve the
free-energy based clustering on the decoy selection, a
scoring function with strong correlation to the decoy
quality will be needed.

CONCLUSIONS

In summary, we develop different clustering algo-
rithms for picking up near-native docking conformations
generated by the four widely used FFT-based protein–
protein docking methods ZDOCK,26 GRAMM-X,5,27

FTDOCK,4 and MOLFIT.28 The performance of our clus-
tering algorithms varies considerably depending on the
quality and structural distribution of the decoys. How-
ever, in all cases, the decoy ranking based on clustering
is better than that by the inherent scoring function.
A strong correlation of the performance of the individ-

ual docking methods and their clustering behavior is
demonstrated. On average, in ZDOCK, the top 2000
decoys are more tightly clustered than in the other three
methods and near-native decoys are more densely dis-

tributed than non-native decoys. For MOLFIT and
FTDOCK, the decoys are either divergently distributed
or there is no difference in the number of structural
neighbors between near-native and non-native decoys.
These clustering behaviors are closely related to the per-
formances of the docking methods.

We also tried to combine and cluster docking decoys
generated from different methods. Compared with the
clustering of ZDOCK decoys alone, only marginal
improvement was obtained by combining filtered
GRAMM-X and ZDOCK decoys. The result of other com-
binations is almost the same as that by clustering only
ZDOCK decoys. Since the distribution of ZDOCK decoys
is more convergent, they will dominate the clustering
procedure if combined with other divergent decoys.
Therefore, to obtain additional gain from the combina-
tion of meta-docking servers, different docking decoy
sets with comparable quality and balanced structural
distribution will be the key.

We further examine the docking quality of cluster cen-
ters and the conformations generated by superimposing
the ligand onto the cluster centroids. The latter shows to
be closer to the native structure than the cluster centers,
with a TM-score increase by about 7%.

Finally, we compare clustering based on free-energy
with clustering based on entropy. While differences occur
in specific protein targets, there is not obvious difference
in the overall result. A main reason is that there is no
strong correlation between the energy/scoring function
and the decoy quality in the majority of the pooled
decoys.
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