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ABSTRACT This study involves the development of a rapid comparative modeling tool for homologous sequences by exten-
sion of the TASSER methodology, developed for tertiary structure prediction. This comparative modeling procedure was
validated on a representative benchmark set of proteins in the Protein Data Bank composed of 901 single domain proteins (41–
200 residues) having sequence identities between 35–90% with respect to the template. Using a Monte Carlo search scheme
with the length of runs optimized for weakly/nonhomologous proteins, TASSER often provides appreciable improvement in
structure quality over the initial template. However, on average, this requires ;29 h of CPU time per sequence. Since
homologous proteins are unlikely to require the extent of conformational search as weakly/nonhomologous proteins, TASSER’s
parameters were optimized to reduce the required CPU time to ;17 min, while retaining TASSER’s ability to improve structure
quality. Using this optimized TASSER (TASSER-Lite), we find an average improvement in the aligned region of ;10% in root
mean-square deviation from native over the initial template. Comparison of TASSER-Lite with the widely used comparative
modeling tool MODELLER showed that TASSER-Lite yields final models that are closer to the native. TASSER-Lite is provided
on the web at http://cssb.biology.gatech.edu/skolnick/webservice/tasserlite/index.html.

INTRODUCTION

Knowledge of the native structure of a protein can provide

insight into the molecular basis of protein function. Since the

experimental determination of a protein’s tertiary structure is

both time consuming and expensive, the ability to predict the

native conformation of a protein has become increasingly

important, especially in the postgenomic era (1,2). There

are three basic classes of protein prediction approaches (3):

homology modeling (4,5), threading (6–8), and ab initio fold-

ing (9–11). Of these, homology or comparative modeling

aims to find a clear evolutionary relationship between the

template sequence (of known structure) and the target se-

quence (of unknown structure). Since evolutionarily related

sequences have similar folds (12,13), a model of the target

structure based on that of the template can be built (14). The

usefulness of comparative modeling is steadily increasing

because the number of unique structural folds that protein

can adopt is limited (13) and the number of protein families

where the structure of at least one member has been solved is

increasing exponentially (12). Moreover, it has been recently

shown that the PDB is complete for low-to-moderate reso-

lution single domain protein structures (15). Hence, it is in

principle possible to use comparative modeling to predict the

tertiary structure of most single domain proteins, provided

that a suitable template can be identified (15). If there is a

clear evolutionary relationship between the template and tar-

get, as indicated above, this is relatively easy to do. How-

ever, if such a relationship cannot be detected or the folds are

analogous (similar folds adopted by proteins with no appar-

ent evolutionary relationship), then the identification of the

analogous template structure can be quite difficult, and in

general the resulting models are of poorer quality.

In practice, homology modeling proceeds as follows: First,

an evolutionarily related template protein is identified. Sec-

ond, an alignment between the target and template sequences

is constructed. Third, a three-dimensional model includ-

ing loops in the unaligned regions is built (5). A variety of

methods could be used to construct the protein’s three-

dimensional structure. One involves modeling by rigid-body

assembly as in COMPOSER (16,17). Another method uses

segment matching, which relies on the approximate positions

of the conserved template atoms (18–20); a representative

approach is SEGMOD. The third group of methods incor-

porates modeling by satisfaction of the spatial restraints ob-

tained from the alignment by using either distance geometry

or optimization techniques (21–23); such an approach is im-

plemented in MODELLER (24), one of the most widely used

comparative modeling tools. Despite improvements in homo-

logy modeling procedures, the ability to accurately predict

the conformation of the intervening loops between the aligned

regions has been rather limited (25,26). Moreover, the ac-

curacy of the resulting model depends mainly on the tem-

plate selection and alignment accuracy between the target

and the template. Indeed, the resulting models (in the aligned

regions) are generally closer to the template structure than

that of the target sequence being modeled. This is an essen-

tial problem that must be addressed; this forms the major

focus of this work.

Recently, we developed a methodology, Threading/

ASSembly/Refinement (TASSER) (27), for the automated

tertiary structure prediction that proceeds in a two-step fashion:

First, we employ the threading algorithm PROSPECTOR_3

to provide continuous aligned fragments and predicted ter-

tiary restraints (28). TASSER uses PROSPECTOR_3 provided
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fragments and tertiary restraints to assemble the structure un-

der the influence of a knowledge-based force field. TASSER

has been benchmarked on a comprehensive set of weakly/

nonhomologous single domain proteins (27) as well as

medium to larger sized, possibly multi-domain, proteins (29).

This benchmarking showed that TASSER could significantly

refine the structures and provide final models that are often

considerably closer to the native structure than the input tem-

plates, and it could generate good predictions for the unaligned

(loop) regions. Moreover, the performance of TASSER in

CASP6 (30) was consistent with that of the benchmark.

Although TASSER often generates good models for

weakly/nonhomologous proteins, the procedure is rather CPU

intensive, requiring several CPU hours to days/sequence for

a complete run. However, when the sequence identity be-

tween the target and template is .35%, viz. in the compara-

tive modeling regime, the alignment to the template is

usually good and such long simulations might not be re-

quired; however, TASSER’s ability to refine proteins over

their initial template alignment in the comparative modeling

regime where the initial alignments are in general quite good

has not been systematically explored. Thus, this study sys-

tematically benchmarks TASSER in the comparative mod-

eling regime. The benchmark set consists of representative

single domain protein structures in the Protein Data Bank

(PDB) (31) of the length between 41–200 residues having a

sequence identity $35% with respect to the templates. We

optimize the run time parameters of TASSER so that a single

calculation gives essentially the same results as the original

procedure but does so in considerably less computer time.

The resulting fast and effective search version of TASSER,

TASSER-Lite, is a rapid comparative modeling tool that is

readily applicable to the large-scale comparative modeling.

METHODS AND MATERIALS

Construction of the benchmark set

TASSER has been previously benchmarked on a representative set of single

domain proteins with sequence identities ,35% (27). In this work, the

benchmark set was constructed using all the PDB structures (with 41–200

amino acids and solved x-ray crystallography with a resolution of 2.5 Å or

better) having pairwise sequence identity between 35–90% to their respec-

tive templates from the PDB template library of PROSPECTOR_3 (28).

We constructed an initial data set from which the benchmark set was

derived. Each member of the PDB template library has its own cluster, which

consists of the PDB sequences having sequence identity .35%. Those PDB

sequences, which satisfy the criteria mentioned above, were selected from

each of these template clusters to form the initial data set. In addition,

sequences having sequence identity $98% among the cluster members were

removed from each template cluster to reduce redundancy. From the initial

data set, sequences having two or more domains were identified using the

protein domain parser (32), scrutinized manually, and removed from the data

set. For the systematic analysis, sequences in the 35–90% sequence identity

range are subdivided into six categories: 35–40%, 40–50%, 50–60%,

60–70%, 70–80%, and 80–90%. From this initial data set, one representative

target per template cluster was selected to form the benchmark set, except for

the category 35–40%. For 35–40%, all members are included to form

the benchmark set. The list of all proteins belonging to the six sets of clus-

ter can be found at http://cssb.biology.gatech.edu/skolnick/files/tasserlite/

tasserlite_data.html.

Overview of TASSER

Since TASSER has been previously described (27,28,33–36), here we just

outline its essentials. Structural templates for a target sequence are selected

from a representative PDB library using our iterative threading procedure

PROSPECTOR_3 (28) designed to identify homologous as well as anal-

ogous templates. The scoring function of PROSPECTOR_3 includes se-

quence profiles, secondary structure propensities from PSIPRED (37), and

consensus contact predictions from the previous threading iterations. A

target sequence is classified into three categories based on the confidence of

the template identification and likely alignment accuracy as ‘‘Easy’’, both

the template identification and alignments are likely to be quite accurate;

‘‘Medium’’, the template is reasonable, viz., has a good structural alignment

with the target structure, but the threading-based alignment may be quite

inaccurate; and ‘‘Hard’’, where the template selection is likely incorrect.

Based on the threading template, the target sequences are split into the

continuous aligned regions and unaligned regions. For a given threading

template, an initial full-length model is built by connecting the continuous

template fragments (building blocks) by a random walk confined to lattice

bond vectors. If a gap is too long to be spanned by the specified number of

unaligned residues, a long Ca-Ca bond remains and a spring-like force that

acts to draw sequential fragments together is used until a physically rea-

sonable bond length is achieved. Parallel hyperbolic Monte Carlo (MC)

sampling (38) samples conformational space by rearranging the continuous

fragments excised from the template. During assembly, building blocks are

kept rigid and are off-lattice to retain their geometric accuracy; unaligned

regions are modeled on a cubic lattice by an ab initio procedure and serve as

linkage points for rigid body fragment rotations. Conformations are selected

using an optimized force field, which includes knowledge-based statistical

potentials describing short-range backbone correlations, pairwise interac-

tions, hydrogen-bonding, secondary structure propensities from PSIPRED

(37), and consensus contact restraints extracted from the PROSPECTOR_3

identified template alignments.

In a standard TASSER run, for each protein, five MC runs (Nrun) are

performed. Each MC simulation contains 40–50 replicas (Nrep), depending

on the size of the protein, with each replica simulated at a different tempera-

ture. The number of MC steps, Nstep, before a temperature exchange or a

swap is performed is 200. The total number of such swaps, Nswap, is 1000.

After each MC swap, the structures of the 16 lowest temperature replicas are

stored. Finally, the structures generated in these 16 lowest temperature

replicas for all the five independent runs are submitted to an iterative

clustering program, SPICKER (36). The final models are combined from the

clustered structures and are ranked by the cluster density, and the five highest

structural density clusters are selected. Thus, no knowledge of the native

structure is used in either generation of the models or in their selection.

Solely for the purpose of subsequent analysis, the final model is the one

among the top five cluster centroids that has the lowest root mean-square

deviation (RMSD) from the native structure in the aligned region. We

construct a detailed atomic model using PULCHRA (unpublished) using the

best cluster centroid model.

The set of parameters (Nrun, Nrep, Nstep, Nswap) described above are those

of a standard TASSER simulation and were obtained based on the optimiza-

tion of TASSER on a weakly/nonhomologous protein benchmark set of

1489 proteins (27). Since with the above-mentioned parameters TASSER

takes hours/days of CPU time, our goal here is to develop TASSER into a

reliable fast comparative modeling tool, which we achieve by tuning the run

time parameters of TASSER. Although we found that the parameters Nrun,

Nstep, and Nswap could be significantly reduced during the optimization, Nrep

could not (data not shown).

We have used the template modeling score (TM-score) (39) as one means

of comparing the improvement over the initial template, which is defined as
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where LN is the length of the native structure, LT is the length of the aligned

residues to the template structure, di is the distance between the ith pair

of aligned residues, and d0 is the scale to normalize the match difference.

Max denotes the maximum value after optimal superposition. The value of

TM-score always lies between (0,1), with better templates having a higher

TM-score.

RESULTS

The benchmark set consists of 901 homologous single do-

main PDB structures having pairwise sequence identities in

the range of 35–90% with respect to the templates in the

PDB template library of PROSPECTOR_3. The targets are

classified into six categories, based on their sequence identity

with the template, as discussed in the Methods section. The

benchmark set encompasses various classes from the Struc-

tural Classification of Proteins (SCOP) database (40). Of 901

targets, 160 belong to the a-class, 248 targets are in the b-

class, and 387 targets belong to either the a/b or a 1 b class.

Of the rest, either they belong to peptides or membrane

proteins or could not be classified into any of the above classes.

In general, the RMSD is used to assess the quality of the

full-length models between the equivalent atoms in the model

and the native structure (41). For the weakly/nonhomologous

pairs of proteins where only substructures of the target and

template may be related, the RMSD is a poor measure to

estimate the quality of different initial templates because the

alignment coverage could be very different even when the

RMSD is the same (28,41,42). When the models are of low

to moderate quality (say with an RMSD above 3 Å), the

TM-score has a relatively good correlation between the ini-

tial template alignment and the final model (39). However,

for very good full-length models without large local devia-

tions, because of its greater sensitivity to details, the RMSD

is the more appropriate measure. Hence, in this work, the

RMSD from native of the Ca atoms has been used to assess

the quality of the structure template and the predicted full-

length model.

The threading results of PROSPECTOR_3 for the 901

targets are summarized in Table 1 under the columns labeled

by Tali. In the threading process, for each of the six categories

(as mentioned in Methods), homologous templates with a se-

quence identity greater than the upper limit of identity ranges

are excluded from the template library. Among the 901 target

sequences, PROSPECTOR_3 assigns 897 to the Easy set

with an average RMSD and TM-score to native of 2.1 Å and

0.86 respectively with an average alignment coverage of

97% (Table 1). Four targets are classified as belonging to the

Medium set. Analysis of these cases, showed that either they

are small proteins or have few secondary structures, which

might have resulted in poor alignment and poor Z-scores. In

further discussions, we focus on the Easy set of proteins. In

general and not surprisingly, PROSPECTOR_3 identifies

good templates with increasing sequence identity as shown

by an average decrease in the RMSD of the template to

native over the aligned region (Table 1). This is a minimal

requirement for any acceptable threading algorithm.

The threading templates and alignments by PROSPEC-

TOR_3 are taken as initial input into TASSER. Between the

top two templates from PROSPECTOR_3, the one having

the highest TM-score with respect to the native is selected as

the best template for the subsequent calculation of the RMSD

or TM-score. This step resulted in 162 targets with templates

having pairwise sequence identity less than the lower limit

of the sequence identity range in their respective category.

Since most (75%) have sequence identities .30%, these are

included in the analysis. Moreover, TASSER also uses the

information from the other templates. As an initial step, a

standard TASSER run (as discussed in Methods), which is

not an optimized simulation, was performed. Table 1 presents

the summary of final models produced by such a nonop-

timized standard TASSER run, under columns Mali and Ment,

for the various sequence identity ranges. For the Easy set of

897 proteins, TASSER yields final models with an average

RMSD and TM-score of 1.9 Å and 0.85 in the aligned region,

respectively. Thus, TASSER has the capacity to improve the

model quality over that of the initial template alignment by

0.2 Å on average as assessed by the decrease in RMSD.

Hence, TASSER improves the RMSD in the aligned region

by ;10%. When we compare the improvement in the aver-

age RMSD of the final model (Mali) with respect to the initial

template (Tali) for the different sequence identity ranges, as is

evident from Table 1, with the increase in sequence identity,

there is no relative improvement in the RMSD. This suggests

that when the sequence identity is high, while the room for

further structure improvements is reduced, then refinement

by TASSER with respect to the initial template is limited

essentially because the distance between the target and tem-

plate structures is below the inherent resolution of the

TASSER potential.

In the above analysis, we have calculated the RMSD of the

template or model to native with an a priori specified equi-

valence between pairs of residues provided by the thread-

ing method PROSPECTOR_3. To clarify the relationship

between the threading alignments and the best structural

alignments, we compare the above results with the RMSD

calculated by finding the best structural alignment between

the template/model to native using TM-align (43). We align

the substructure identified by threading (using PROSPEC-

TOR_3) to the native structure. The average RMSD of 897

proteins in the Easy set, for the template aligned region to

native for the structural alignment is 1.4 Å (Table 1 under

column Taln in the row TMalign A) in comparison to the

2.1 Å RMSD given by PROSPECTOR_3. The average

RMSD of the template to native becomes better by 0.7 Å,

when we use the alignment provided TM-align instead of the
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threading alignment; however, the average alignment cov-

erage drops by 2% (97–95%) for the structural alignment.

For the full-length final models (897 proteins in the Easy

set), a similar calculation shows that the average RMSD of

the final models evaluated in the aligned region is 1.5 Å,

(Table 1 under column Maln in the row TMalign A) with TM-

align, which is better than the RMSD obtained without using

the structural alignment, 1.9 Å. In Table 1 (row TMalign A),

comparison of the average RMSD for the template (under

column Taln), with the final model (under column Maln) for

the higher sequence identity range, shows marginal im-

provement in the RMSD for the model. This reflects the fact

that models of this quality are at the limit of the resolution of

TASSER.

Using the threading alignment of template to native and

structural alignment of template (threading aligned region) to

native, we extracted the residues of the target sequence that

are identically aligned by both threading and structural align-

ment, with respect to the template. These common aligned

residues cover ;95% of the threading aligned region. Thus,

as would be expected, there is good agreement between the

threading and structural alignments. The other ;5% of res-

idues, which show disagreements in the alignment are,

mostly, in the loop region at the start or end of the secondary

structures and at the N- or C-termini of the protein. For these

(;5% of the residues that are aligned in threading), the

average shift per residue between the structural and threading

alignments is 2.1. Furthermore, using the set of residues that

TABLE 1 Summary of results from PROSPECTOR_3, refinement by nonoptimized TASSER, and comparison with the best

structural alignment between the template/model to native

Sequence Identity

ÆCoverage (in %)æ* ÆRMSD to native (in Å)æy

N Template selected Tali Taln Maln Tali Mali Ment Taln Maln

35–40% Easy set 269 Top2 1 consensus 96 2.5(1.6) 1.9(1.2) 2.2(1.4)

TMalign A 94 95 1.7(0.4) 1.6(0.4)

TMalign F 95 98 1.7(0.4) 1.7(0.4)

Medium 1 Top five 55 1.3 2.7 7.6

TMalign A 55 51 1.3 2.4

TMalign F 55 63 1.3 3.2

40–50% Easy set 219 Top2 1 consensus 97 2.4(2.3) 2.0(2.1) 2.4(2.2)

TMalign A 94 95 1.6(0.5) 1.5(0.5)

TMalign F 95 98 1.5(0.5) 1.6(0.5)

50–60% Easy set 150 Top2 1 consensus 97 2.0(1.5) 1.9(1.7) 2.3(2.3)

TMalign A 95 95 1.4(0.6) 1.4(0.5)

TMalign F 95 97 1.4(0.6) 1.6(0.5)

60–70% Easy set 111 Top2 1 consensus 97 1.9(1.7) 1.8(1.6) 2.2(2.2)

TMalign A 95 96 1.2(0.5) 1.4(0.5)

TMalign F 96 98 1.2(0.5) 1.5(0.5)

70–80%z Easy set 60 Top2 1 consensus 97 2.2(2.6) 2.0(1.9) 2.4(2.2)

TMalign A 94 95 1.2(0.7) 1.5(0.6)

TMalign F 95 97 1.2(0.7) 1.5(0.6)

Medium 2 Top five 83 5.0 1.8 4.8

TMalign A 73 83 2.2 1.6

TMalign F 73 90 2.1 2.0

80–90% Easy set 88 Top2 1 consensus 97 1.8(2.0) 1.9(1.5) 2.1(1.6)

TMalign A 95 95 1.1(0.6) 1.5(0.7)

TMalign F 96 98 1.1(0.6) 1.6(0.7)

Medium 1 Top five 86 2.4 7.0 11.5

TMalign A 79 62 1.9 1.6

TMalign F 81 64 2.0 1.7

N, number of targets in the category.

*Alignment coverage on average for the best template that has highest TM-score to native is under the column Tali. The coverage for the structural alignment

of the best template to native and the final model to native is under columns Taln and Maln, respectively.
yRMSD of the best initial template and best model among top five clusters, Tali, template structure with RMSD calculated over aligned region; Mali model

with RMSD calculated over aligned residues; Ment, model with the RMSD calculated over the entire chain. Taln and Maln refer to the structural alignment of

the best template to native and the final model to native, respectively. TMalign (A) and TMalign (F) refer to the best structural alignment using TM-align for

the aligned region of the template/model (by PROSPECTOR_3) to the native and full-length template/model to the native, respectively. Taln and Maln refer to

the structural alignment of the best template to native and the final model to native, respectively. The number in parentheses is the standard deviation for the

given average RMSD.
zAnomaly in the 70–80% range is because of two targets (1mvkA and 1tud_), which have a very high RMSD of 12.5 Å and 10.9 Å, respectively, from

native. If we do not consider them, the average RMSD is reduced to 1.8 Å, and the trend of decreasing RMSD with increasing sequence identity is preserved.

These two proteins have very few secondary structures and are small proteins.
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are aligned to the template by threading, we calculated the

average RMSD between the final TASSER model to the

native structure. The obtained average value is 1.9 Å. If

we consider these residues in the structural alignment, 98.6%

are aligned on average with an average RMSD of 1.5 Å. Of

the residues that contribute to the structural alignment, 97%

are identical to those of the TASSER model. For the remain-

ing 3%, the average shift in alignment from the TASSER

model is 1.7 residues.

Next, we have used TM-align for the structural align-

ment of the full-length template or full-length model to native

(for the Easy set) to see if there is any improvement in the

alignment by including all residues in the template whether

or not they are aligned by PROSPECTOR_3. The result is

listed in Table 1 in the row TMalign F under the columns Taln

and Maln for template and final model, respectively. The

structural alignment, using either the aligned region of the

template or the full-length template to the native, results in an

alignment coverage of ;95% and an average RMSD of 1.4

Å. This implies that including the unaligned region of the

template does not result in any improved alignment com-

pared to the one that is restricted to the threading aligned

region. The threading alignment has apparently extracted the

best portion of the template proteins. In a similar comparison

for the final models, when we include the unaligned region in

the structural alignment, the average RMSD of the full-

length model shows an increase of 0.1 Å (from 1.5 Å, only

considering the aligned region) to 1.6 Å and an increase in

average alignment coverage of ;3% (from 95% to 98%) for

the full-length model. We also looked at the standard devia-

tion of the average RMSD from TM-align and the direct

superposition of the threading aligned region. In general,

TM-align shows less variation compared to the one obtained

using direct superposition of equivalent residues. Most

sequences in the Medium set show a trend similar to that

observed for the Easy set of proteins.

On average, a standard TASSER run needs ;29 h of CPU

time on a 1.28-GHz PIII Pentium processor for the sequences

with the lengths ranging between 41–200 residues. Longer

sequences take more CPU time in comparison to the short

sequence (a 200-residue protein needs ;74 h, whereas a

43-residue protein takes ;4 h). The clustering procedure,

SPICKER, needs an additional average CPU time of ;47 m on

a 1.28-GHz PIII Pentium processor for one sequence. Hence,

with the parameters used here, TASSER is not suitable for fast

comparative modeling. To reduce the simulation time, we

next turn to the optimization of the run time parameters.

Over a broad initial RMSD range, TASSER can
refine the structure over the template

We explored the RMSD as a function of the number of total

MC steps from 250 to 25000. A general decreasing trend

could be observed which increases slightly after a certain

number of MC steps (Fig. 1 A). We have investigated the

reason for the minimum in RMSD. The targets are divided

into five bins of 1 Å based on the RMSD of the template to

the native, ranging from 0 to 5 Å. The dependence of average

RMSD on total simulation time is shown in Fig. 1, B–F, for

targets in the 35–40% and 80–90% sequence identity ranges.

As shown in Fig. 1, B–F, except for the 0–1-Å bin (Fig. 1 B),

the average RMSD of the final model (aligned region) to the

native decreases with increasing number of MC steps and

then reaches a plateau. For structures whose initial template

has an RMSD from native in the range 0–1 Å, the RMSD

does not improve—rather it becomes worse. This is simply

due to the inherent resolution of the TASSER potential which

is ;1.2 Å. There are ;16% of targets in this category and

with, as would be expected, more such proteins in the high

sequence identity range. The combined trend shown by

targets in the 0–1-Å category and the other targets give rise to

the observed trend of an average RMSD decrease followed

by a slight increase with the total number of MC steps as in

Fig. 1 A. Nevertheless, on average, the net trend is to improve

the RMSD over the initial template alignment. A similar trend

is observed for the other sequence identity ranges as well.

Optimization of TASSER parameters

As an initial step to find the minimum number of MC steps

(Nswap 3 Nstep), we proceeded to optimize TASSER using

the RMSD calculated over the aligned region as the criterion

to identify the minimum number of MC steps required to

reach convergence. Based on a series of runs and the simu-

lation time dependence of the RMSD, we fixed Nstep at 25

and searched for an optimal Nswap. The selection of opti-

mized Nswap was made empirically for the various sequence

identity ranges based on the plot of RMSD as a function of

the total number of MC steps and the approximate CPU time

required for each run. We selected Nswap ¼ 80 (MC steps ¼
2000) for all the six sequence identity categories. Using

Nstep ¼ 25 and Nswap ¼ 80 gives comparable average RMSD

results in ;17 min of CPU time as compared to the original

29 h, with the requisite CPU time, and the average CPU time

for clustering using SPICKER is reduced to ;7 min. Next,

we examined the effect of reducing Nrun from 5 to 1 On

average, the RMSD with Nrun ¼ 1 is slightly worse by ;2%

in comparison to Nrun ¼ 5. Using this, Nrun is set to 1, which

resulted in nearly the same result as Nrun ¼ 5. This also

resulted in reduction of the CPU time for structure clustering

from ;7 min (Nrun ¼ 5) to 16 s when Nrun ¼ 1. Thus, the

various optimized parameters are Nrun ¼ 1, Nstep ¼ 25, and

Nswap ¼ 80 for homologous sequences, which on average

requires a CPU time of 17.26 min per sequence.

Comparison of TASSER-Lite with MODELLER

We compared the results from TASSER-Lite refined models

for the homologous sequences in the Easy set with the

widely used homology modeling tool, MODELLER (version
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8v0) (14,22). We provided MODELLER with the same input

alignment from PROSPECTOR_3, and five models were

generated per sequence. The best model for MODELLER is

the one with the lowest RMSD from the native structure in

the aligned region. The criterion shows the upper bound of

refinement for both procedures. A summary of the RMSD for

the final models obtained using MODELLER and TASSER-

Lite is tabulated in Table 2. TASSER-Lite improves the

RMSD in the aligned region by ;10%, whereas MODELLER

improves by ;1.2%. This is mainly because MODELLER

FIGURE 1 (A) Representative plot of the average RMSD (aligned region) of the final model to the native versus the total number of MC steps in the

TASSER run simulation (Nstep¼ 25) for 35–40% and 80–90% sequence identity categories. The RMSD of the MC step¼ 0 corresponds to the average RMSD

of the template to the native structure. The arrow indicates the minimum for each sequence identity range in A. The targets in the 35–40% and 80–90%

categories are divided into five bins of 1 Å based on the RMSD of the template to the native, ranging from 0 to 5 Å. B–F show the same plot as in A for the five

bins 0–1 Å, 1–2 Å, 2–3 Å, 3–4 Å, and 4–5 Å, respectively.
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produces models by optimally satisfying tertiary restraints

and threading templates govern the final model. However,

TASSER allows movements in the relative orientation of

template fragments that can generate a final model that could

be significantly different from the initial template. TASSER

does not improve the RMSD (in the aligned region) with

respect to the initial templates for high sequence identity

targets, where the distance between the target and template

structure is below the inherent resolution of the TASSER

potential. As observed before in Fig. 1 B, TASSER’s ability

to improve over the initial templates for targets with an

RMSD of the template to native in the 0–1-Å range is lim-

ited. The number of cases increases in the high sequence

identity ranges. For such targets, TASSER-Lite might not

improve over the initial templates; however it will result in

final models within ;1 Å.

In Fig. 2, A and B, we show a detailed comparison of the

RMSD over the set of residues initially aligned to the template

to native of the final model compared to the initial alignment

(from PROSPECTOR_3) provided by TASSER and MOD-

ELLER, respectively. As is evident, the RMSD of the final

models relative to the initial template alignments improves

more when TASSER is used as compared to MODELLER. In

551 cases, TASSER improves the quality of the aligned re-

gions and moves them closer to native. For example, 1dt0A

has an initial RMSD of 4.3 Å (template: 1ap5A) from threading

in the aligned region (Fig. 3 A). After refinement by TASSER,

the final model has an RMSD of 1.4 Å (2.2 Å) in the aligned

region (over the entire chain) (Fig. 3 B), whereas in the case

of MODELLER, the final model RMSD has not deviated

from the initial template, with a final RMSD of 4.2 Å in the

aligned region. However, a single case need not be represen-

tative, so we examine the more general case below.

The fraction of the targets having an RMSD improvement,

dbetter, above a given threshold is plotted as a function of the

initial RMSD of the aligned residues in Fig. 4 A. As evident

from the figure, TASSER is able to improve the models for

various initial RMSD values. For example, ;54% of very

good templates with an initial 2–3-Å RMSD improve by at

least 0.5 Å. Even for an initial RMSD of�4–5 Å, 42% of the

targets improve by at least 2 Å. However, as shown in Fig. 4 B,

MODELLER does not show such an improvement in the

RMSD. Furthermore, we compared the corresponding overall

decrease in RMSD over the aligned region. Fig. 5 A shows

the plot of the fraction of targets whose RMSD becomes

worse by at least the given threshold, dworse, against various

initial RMSD values. In comparison to MODELLER (Fig. 5 B),

the increase in RMSD is on average smaller for the TASSER

models than for those generated by MODELLER. This indi-

cates that even when TASSER is unable to refine some models

over their initial template, in general, it does not make the

final models worse. The investigation of 259 targets in which

the RMSD over the aligned region has increased for the final

model in comparison to the initial template by TASSER

showed that in most of the cases (174), the native structures

have extended tails, have a ligand bound, or are involved in a

protein-protein interaction. The latter cases could need other

partners to generate the native structure.

A detailed comparison of the TM-score of the full-length

final models to native compared with the initial threading

aligned region for TASSER and MODELLER are shown in

TABLE 2 Summary of the comparison of the final model

generated by either TASSER (using various parameters) or

MODELLER with the initial template

Sequence identity and conditions used

ÆRMSD to nativey (in Å)æ

Tali Mali Ment

35–40%

*Standard TASSER run 2.5 1.9 2.2

Nrun ¼ 5 (Nswap ¼ 80, Nstep ¼ 25) 2.5 1.9 2.1

Nrun ¼ 3 (Nswap ¼ 80, Nstep ¼ 25) 2.5 1.9 2.2

Nrun ¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 2.5 1.9 2.2
zNrun¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 2.5 2.0 2.2

MODELLER 2.5 2.3 2.8

40–50%

*Standard TASSER run 2.4 2.0 2.4

Nrun ¼ 5 (Nswap ¼ 80, Nstep ¼ 25) 2.4 1.9 2.3

Nrun ¼ 3 (Nswap ¼ 80, Nstep ¼ 25) 2.4 1.9 2.3

Nrun ¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 2.4 2.0 2.3
zNrun¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 2.4 2.2 2.5

MODELLER 2.4 2.3 3.0

50–60%

*Standard TASSER run 2.0 1.9 2.3

Nrun ¼ 5 (Nswap ¼ 80, Nstep ¼ 25) 2.0 1.7 2.2

Nrun ¼ 3 (Nswap ¼ 80, Nstep ¼ 25) 2.0 1.7 2.2

Nrun ¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 2.0 1.8 2.1
zNrun¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 2.0 2.1 2.6

MODELLER 2.0 1.9 2.8

60–70%

*Standard TASSER run 1.9 1.8 2.2

Nrun ¼ 5 (Nswap ¼ 80, Nstep ¼ 25) 1.9 1.8 2.1

Nrun ¼ 3 (Nswap ¼ 80, Nstep ¼ 25) 1.9 1.8 2.1

Nrun ¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 1.9 1.8 2.2
zNrun¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 1.9 2.1 2.5

MODELLER 1.9 1.9 2.7

70–80%

*Standard TASSER run 2.2 2.0 2.4

Nrun ¼ 5 (Nswap ¼ 80, Nstep ¼ 25) 2.2 2.0 2.4

Nrun ¼ 3 (Nswap ¼ 80, Nstep ¼ 25) 2.2 2.0 2.4

Nrun ¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 2.2 2.0 2.4
zNrun¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 2.2 2.2 2.6

MODELLER 2.0 2.2 3.2

80–90%

*Standard TASSER run 1.8 1.9 2.1

Nrun ¼ 5 (Nswap ¼ 80, Nstep ¼ 25) 1.8 1.7 1.9

Nrun ¼ 3 (Nswap ¼ 80, Nstep ¼ 25) 1.8 1.7 1.9

Nrun ¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 1.8 1.7 1.9
zNrun¼ 1 (Nswap ¼ 80, Nstep ¼ 25) 1.8 2.0 2.2

MODELLER 1.8 2.0 2.5

*Standard TASSER run has Nswap ¼ 1000, Nstep ¼ 200, and Nrun ¼ 5.
yRMSD of the best initial template and best model among top five clusters,

Tali, template structure with RMSD calculated over aligned region; Mali

model with RMSD calculated over the aligned residues; Ment, model with

RMSD calculated over the entire chain.
zThe first rank models are used for calculation.
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Fig. 6, A and B, respectively. The improvement in the TM-

score of the final model over the initial aligned template is

relatively greater for TASSER in comparison to MODEL-

LER. Thus, as suggested before, the final models generated

by TASSER are closer to the native.

In the analysis here, the final best model selection among

top five cluster centroids is based on the lowest RMSD over

the aligned region (by PROSPRCTOR_3) between the model

and native. However, in the real cases, when the structure of

the target is unknown, the cluster centroid with the highest

cluster density, usually the rank-one model, is reported as the

final model if only one model can be chosen (36). The best of

the top five models ranked on the basis of cluster density, the

selected model has an average rank of 1.5, as is also evident

from the fact that most of the targets (;79%) have the rank-

one model as the selected (best) model. Further, we compared

the average RMSD in the aligned region of the rank-one

model with the best model (Table 2). On average, in the

aligned region the average RMSD of the rank-one model is

worse (2.1 Å) than the best (1.9 Å) model. We calculated the

RMSD difference (D) in the aligned region between the

rank-one model and best model. The average (standard de-

viation) for D is 0.2 Å (1.9 Å). The high standard deviation

suggests that for some of the targets the difference D is large.

For 21 targets, D . 3 Å. This provides a plausible explana-

tion for the observed poorer average RMSD with the rank-

one model, despite the fact that the average rank is 1.5 for the

best model.

Next, we considered the percentage of cases in which the

RMSD shows an improvement in the aligned region over the

initial template for the selected (best) model and rank-one

model. For the selected (best) model, this is observed in 61%

of cases, whereas for the rank-one model the improvement of

RMSD (over the aligned region) is seen in 57% of the cases.

For 10% of the targets, the best model is not the rank-one

model; however, even the rank-one model shows an im-

provement in the RMSD over aligned region with respect

to the initial template. This shows that the rank-one model

shows an improvement in the RMSD with respect to the ini-

tial alignment. For both the rank-one model and best model

FIGURE 3 Example of the improvement of the final

model with respect to the initial template by TASSER. (A)

Superimposition of the native structure 1dt0A with tem-

plate (from 1ap5A) with an initial RMSD of 4.3 Å over the

aligned region. (B) Final model of 1dt0A superimposed on

the native structure with an RMSD of 2.2 Å (1.4 Å over

aligned region). The thin lines are the native structure, and

the thick line is either template or final model. Blue to red

runs from the N- to the C-terminus.

FIGURE 2 (A) Scatter plot of the RMSD of the final model (by TASSER) to native versus RMSD of the initial alignment (by PROSPECTOR_3) to native.

The same aligned region is used in both the RMSD calculations. (B) Similar data as in A, but with the models from MODELLER. (Circle, triangle, square,

downward triangle, diamond, and solid triangle correspond to data points for targets in the sequence identity range of 35–40%, 40–50%, 50–60%, 60–70%,

70–80%, and 80–90%, respectively.)
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comparison, in ;10% of the cases, the RMSD for the final

model remains invariant with respect to the initial template.

A detailed table summarizing the results is provided at http://

cssb.biology.gatech.edu/skolnick/files/tasserlite/tasserlite_

data.html. Thus, the rank-one model is a reasonable choice

for real world protein structure prediction.

In all the above calculations, the cluster centroid structures

were used. Subsequently, we generated full-atom models

using PULCHRA and compared it with the cluster centroid

model, which shows an average deviation of 0.4 Å. This

indicates that the above results could be used even for the

full-atom models generated after PULCHRA.

The accurate modeling of loops has been a long-standing

problem in comparative modeling (25). Here, we compare

the results of the unaligned loop and tail regions generated by

both TASSER and MODELLER. An unaligned loop (tail)

region is defined as a piece of continuous sequence that has

no coordinate assignments in the middle (terminus) of a target

protein in the PROSPECTOR_3 threading alignments. There

are 712 unaligned regions ranging from 1 to 31 residues in

length in the 897 proteins. Most loops (;97%) are #10

residues in length. We calculated two types of modeling

errors for each loop (25): RMSDlocal (the RMSD between the

native and model after direct superposition of the unaligned

region) and RMSDglobal (the RMSD obtained after the super-

position of up to five neighboring residues). The former

provides the modeling accuracy of the local conformation

of the loop, and the latter value examines both the local

FIGURE 5 (A) Fraction of the targets with an increase in RMSD dworse by TASSER lower than some threshold value. Here, dworse ¼ (RMSD of template-

RMSD of final model). Each point in A is calculated with a bin width of 1 Å; however, the last point includes all the templates with RMSD . 10 Å. (B) Similar

data as in A, but the models are from MODELLER.

FIGURE 4 (A) Fraction of the targets with an RMSD improvement dbetter by TASSER greater than some threshold value. Here, dbetter¼ (RMSD of template-

RMSD of final model). Each point in A is calculated with a bin width of 1 Å; however, the last point includes all the templates with RMSD . 10 Å. (B) Similar

data as in A but with the models from MODELLER.
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conformation and the global orientation of the loop regions.

RMSDlocal and RMSDglobal increase with increasing length

of the loop in the final models in both TASSER and

MODELLER protocols. However, the average deviation of

the RMSDglobal from RMSDlocal for the TASSER models (0.8

Å) is less in comparison to the average deviation (1.5 Å) than

those generated using MODELLER. For example, the average

deviation of RMSDglobal from RMSDlocal for seven residue

loops is 0.9 Å for TASSER, whereas for MODELLER it is

1.7 Å. This suggests that the global loop orientations are

relatively better predicted by TASSER.

There are 607 unaligned regions either at the N- or

C-terminus as given by the alignment of PROSPECTOR_3

with lengths ranging from 1 to 46 residues. Most tails

(;94%) are shorter than or equal to 10 residues in length. On

average, the RMSDglobal is ;14% greater than RMSDlocal in

the final TASSER models, whereas for the same comparison

using MODELLER, the increase is ;23%, which suggests

that TASSER better predicts the overall tail orientation in

comparison with MODELLER. For example, the TASSER

final model for a 20-residue tail in 1qkkA has an RMSDlocal

of 2.3 Å and an RMSDglobal of 3.6 Å, whereas the same 20-

residue tail model from MODELLER has an RMSDlocal and

an RMSDglobal of 7.2 Å and 9.5 Å, respectively.

On average, the CPU time for MODELLER is ;1.8 min

per sequence. Although TASSER requires more CPU time

(;17 min), the final models are more accurate in comparison

to the models generated by MODELLER. Hence, such accu-

rate models could be used for more precise protein function

prediction such as identification of ligand binding substrate

specificity.

With the optimized condition of TASSER, we have a fast

and efficient modeling tool referred to as TASSER-Lite. This

tool is publicly available on the world wide web (http://

cssb.biology.gatech.edu/skolnick/webservice/tasserlite/index.

html) for use by the scientific community.

CONCLUSIONS

We performed a systematic assessment of TASSER for

modeling homologous sequences and showed that in many

cases, TASSER could refine the initial template to generate

models that are closer to the native structure. The CPU time

for a standard TASSER run is reduced from ;29 h to ;17 min

for one sequence. Furthermore, on comparing TASSER-Lite

with the widely used modeling tool (MODELLER), we showed

that TASSER performs, on average, better than MODELLER

in improving both the aligned and unaligned regions of the

targets. Hence, TASSER-Lite forms an effective and fast

modeling tool for the homologous sequences.
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