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ABSTRACT The recently developed TASSER
(Threading/ASSembly/Refinement) method is ap-
plied to predict the tertiary structures of all CASP6
targets. TASSER is a hierarchical approach that
consists of template identification by the threading
program PROSPECTOR_3, followed by tertiary
structure assembly via rearranging continuous tem-
plate fragments. Assembly occurs using parallel
hyperbolic Monte Carlo sampling under the guide of
an optimized, reduced force field that includes
knowledge-based statistical potentials and spatial
restraints extracted from threading alignments.
Models are automatically selected from the Monte
Carlo trajectories in the low-temperature replicas
using the clustering program SPICKER. For all 90
CASP targets/domains, PROSPECTOR_3 generates
initial alignments with an average root-mean-square
deviation (RMSD) to native of 8.4 Å with 79% cover-
age. After TASSER reassembly, the average RMSD
decreases to 5.4 Å over the same aligned residues;
the overall cumulative TM-score increases from 39.44
to 52.53. Despite significant improvements over the
PROSPECTOR_3 template alignment observed in
all target categories, the overall quality of the final
models is essentially dictated by the quality of
threading templates: The average TM-scores of
TASSER models in the three categories are, respec-
tively, 0.79 [comparative modeling (CM), 43 targets/
domains], 0.47 [fold recognition (FR), 37 targets/
domains], and 0.30 [new fold (NF), 10 targets/
domains]. This highlights the need to develop novel
(or improved) approaches to identify very distant
targets as well as better NF algorithms. Proteins
2005;Suppl 7:91–98. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

Since their start in 1994, the biennial CASP experi-
ments have stimulated progress in protein structure pre-
diction,1,2 with the following general trends apparent in
the recent CASP experiments. First, despite considerable
progress on the ab initio/new fold (NF) predictions,3–5

comparative modeling (CM),6 and threading/fold-recogni-
tion (FR)7,8 remain the only methods that provide reliable
and accurate models. Second, generating models that are
closer to native than the template alignments remains a

challenging problem for most structural refinement ap-
proaches.9 Third, for the template-based modeling (includ-
ing CM and FR), metapredictions,10,11 which combine
consensus information from different algorithms/servers,
consistently outperform the predictions from individual
algorithms/servers. Finally, human-expert knowledge com-
bined with biochemical information (function, mutations,
catalytic residues, etc.) could be helpful in both structural
assembly and template/model selection.12,13

On the other hand, the rapidly increasing gap between
the number of known sequences and known structures
creates the crucial need to develop robust, automated
computational methods for proteome-scale structure pre-
dictions.14,15 Despite their advantages, current metaser-
ver approaches need to coordinate and exploit the compu-
tational resources of different laboratories. This makes the
automation of large-scale protein structure prediction
difficult to achieve because of differences in the available
computational resources among different laboratories and
the difficulty in collecting large-scale predictions from
disparate groups. Similarly, it is not feasible to apply
human-expert based approaches on a proteome scale.

Recently, we developed a new methodology, Threading/
ASSembly/Refinement (TASSER),16 for automated ter-
tiary structure prediction, that generates full-length mod-
els by rearranging continuous fragments identified by our
threading algorithm PROSPECTOR_3.17 The method was
tested on large-scale benchmarks, with templates gener-
ated by both threading16,18 and structural alignments.19

For weakly/nonhomologous proteins, about two thirds of
single-domain proteins could be folded. Often, the final
models are considerably closer to native than the tem-
plates. Since the methodology employs templates selected
from our in-house PROSPECTOR_3 program, TASSER
has been used for the genome-scale protein structure
modeling on Escherichia coli and other genomes.16,20 In
this round of CASP, we implemented TASSER for all
targets in a similar way as we did in the benchmarks.16,18
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Special emphasis is put on the comparison of final models
and threading templates. The results obtained by the
automated implementation of our method in CASP6 there-
fore allow an independent assessment of the quality of the
models generated by TASSER.

METHODS AND MATERIALS

Since TASSER methodology has been described previ-
ously,16–18,21 here we just outline the essentials.

For a given target, we first thread the sequence through
a representative template library (at a 35% pairwise
sequence identity cutoff) of the Protein Data Bank (PDB).22

Threading is done by PROSPECTOR_3,17 an iterative
sequence–structure alignment approach whose scoring
function consists of sequence profiles, secondary structure
propensities from PSIPRED,23 and consensus contact pre-
dictions generated from the alignments in the prior thread-
ing iterations. Targets are categorized as Easy/Medium/
Hard on the basis of the score significance and alignment
consistency.17

Based on the threading alignments, target sequences
are split into threading template aligned regions and
unaligned regions. parallel hyperbolic Monte Carlo sam-
pling24 (PHS) is exploited to assemble full-length protein
models by rearranging the continuous aligned fragments
(building blocks) excised from the threading templates.
PHS logarithmically flattens local high-energy barriers,
allowing the simulation to tunnel more efficiently through
energetically inaccessible regions to low-energy valleys.
During assembly, the building blocks are kept rigid and
off-lattice to retain their geometric accuracy; unaligned
regions are modeled on a cubic lattice by an ab initio
procedure5 and serve as the linkage points of the rigid-
body rotations. Movements are guided by an optimized
force field,5 which includes knowledge-based statistical
potentials describing short-range backbone correlations,
pairwise interactions, hydrogen bonding, secondary struc-
ture propensities from PSIPRED,23 and consensus contact
restraints extracted from PROSPECTOR_3 identified tem-
plates/alignments. For a given template, an initial full-
length model is built up by connecting the continuous
template fragments (greater than or equal to five residues)
by a random walk of C�–C� bond vectors of variable
lengths from 3.26 Å to 4.35 Å. If a template gap is too big to
be spanned by a specified number of unaligned residues, a
big C�–C� bond will remain at the end of the random walk,
and a springlike force that acts to draw sequential frag-
ments close will be applied in subsequent Monte Carlo
simulations, until a physically reasonable bond length is
achieved.

Up to the 10 top-scoring templates in Easy (high confi-
dence) targets and up to the 20 top-scoring templates for
the Medium/Hard (low confidence) targets are used in
TASSER. Depending on size, 40–80 replicas are exploited
in PHS (larger proteins need more replicas). The 14
low-temperature replica trajectories are clustered by
SPICKER,21 and the five highest structural density clus-
ters are selected. Since TASSER models include only C�

and side-chain centers of mass, the remaining backbone
and side-chain atoms are added by PULCHRA.25

RESULTS

Sixty-four targets were assessed in CASP6; these were
split into 90 targets/domains by the assessors.

Overall Results

Table I summarizes TASSER predictions for all 90
targets/domains, together with the threading alignments
from PROSPECTOR_3. Columns 5–7 show the root-mean-
square deviation (RMSD) to native of PROSPECTOR_3
templates and final models in the same aligned regions. In
the majority of cases, the final models have lower RMSD
than the threading templates. On average, the threading
templates have 79% of the residues aligned, with an
average RMSD to native of 8.4 Å. For the same aligned
residues, the average RMSD of the best models (rank 1
model) is 5.4 (6.4) Å, which demonstrates that TASSER
brings the threading templates closer to native by �2–3 Å.
If we only consider the 38 targets whose threading tem-
plate RMSD is below 6 Å, the average RMSDs of threading
templates and final models are 3.2 Å and 2.3 Å respec-
tively, in the aligned regions. Columns 8 and 9 are the
RMSD to native of full-length TASSER models. On aver-
age, the difference between the rank 1 model and the best
of five models is about 1 Å, which shows that there is still
room for improvement in the model selection strategy.

RMSD is usually not sensitive to the global topology,
because some local errors (e.g., tail misorientation) can
give a high RMSD.26 In columns 10–12 of Table I, we list
the Template Modeling Score (TM-score) of the PROSPEC-
TOR_3 templates and the final models.27 The value of
TM-score is between [0, 1], with a TM-score � 1 indicating
an identical structure pair and a TM-score � 0.17 indicat-
ing random structure pairs.27 Since smaller distances are
weighted more strongly than larger distances, the TM-
score is more sensitive to global topology than to local
modeling errors.27

The cumulative TM-score of threading templates, the
rank 1 models, and the best submitted models are 39.44,
49.32, and 52.53, respectively, which indicates an overall
TM-score improvement of 24–33% in the TASSER refine-
ment procedures. A trivial part of the TM-score improve-
ment is because of the length extension of the final models
created by filling in the gapped regions. In a recent
unpublished test of 1489 benchmark proteins, as used in
Zhang and Skolnick,16 we used MODELLER6 to fill the
gaps of 1489 threading templates from PROSPECTOR_3.
The cumulative TM-scores of the 1489 PROSPECTOR_3
templates and MODELLER models are 706.8 and 731.7,
respectively. Since MODELLER builds the full-length
models by optimally satisfying the spatial restraints from
templates and the topology of threading aligned regions
are essentially unchanged, an increase of 3.5% (�731.7/
706.8–1) represents the portion of TM-score improvement
due to the length extension. Therefore, TASSER modeling
results in more than a 20% TM-score increase relative to
the threading templates, due to the improvement in model
accuracy by fragment reassembly.
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In Figure 1(a and b), we compare the threading tem-
plates and final models using both the RMSD and TM-
score. Again, we see the improvements of final models over
threading templates in the majority of the cases, with no
obvious dependence on target difficulty. But the overall
quality of Easy targets [e.g., CM targets are mainly located
at the right-top corner of Fig. 1(b)] is still clearly better
than that of hard targets [e.g., NF targets mainly at the
left-below corner of Fig. 1(b)]. In Figure 1(c and d), we also
compare the RMSD and TM-score of the best structure
alignment of the threading template to the best model for
the set of residues identified by the structural alignment
algorithm SAL.28 In around half of the cases (57/90), the
RMSD of the models is lower than that of the best
structural alignments in the aligned regions. This indi-
cates that the improvements in those targets come from
the fragment rearrangement rather than from refining the
threading alignments. This represents significant progress
relative to the previous CASPs, where improvement over
the best template alignment was not observed.

Loop Modeling

There are 348 unaligned loops (defined as an unaligned
region in the PROSPECTOR_3 alignment) in the 64 target
chains. We only count those loops where the native coordi-
nates of both the loop and stem regions (five neighboring
residues on both sides) are available. In general, loop
modeling results consistent with the benchmark18 are
found, with accuracy decreasing with increasing length.
An RMSD below 6 Å for all loops defined both with respect
to the stems and considering the internal loop geometry
was found.

Examples

Although all TASSER models are automatically gener-
ated in CASP6, as indicated in Table I, TASSER obviously
performed better for some targets than others. In Figure 2,
we select five successful examples from the NF, FR, and
CM categories where TASSER has significantly improved
the aligned regions of threading templates and the overall
quality of TASSER models are the best, or among the best,
of all CASP6 groups (see http://bioinformatics.buffalo.edu/
new_buffalo/people/zhang6/casp6/ or http://prediction-
center.genomecenter.ucdavis.edu/casp6/).

T0201 is an NF target with 94 residues. PROSPEC-
TOR_3 has seven inconsistent template hits. As shown in
Figure 2(a), the best TM-score alignment is from 1irsA,
which is 13.3 Å from native for the 63 matched residues.
Although the template topologies are quite different from
native, the local secondary structures in all templates are
correct. TASSER takes the continuously aligned frag-
ments from all the templates and rearranges them. Fifty-
four percent of the trajectories belong to the first cluster,
with an average RMSD of 5.1 Å to the cluster centroid,
which gives a C-score � 0.21. The C-score is an indicator of
likelihood of success for TASSER models; higher C-score
values indicate higher confidence in the quality of the
model (the definition of C-score is given in Eq. (1) in Zhang
and Skolnick16). Based on the PDB benchmark results,18

74% of cases with this C-score have an RMSD to native
below 6.5 Å. As shown in Figure 2(a), the RMSD of the first
submitted model for T0201 is 4.9 Å (4.8 Å over the
threading aligned regions) and a TM-score � 0.51.

T0212 is a 216-residue FR/A (analogy) target. PROSPEC-
TOR_3 does not have significant hits, with four weakly
scoring templates. The highest TM-score alignment is
from 1rouA, which has an RMSD to native of 13 Å [Fig.
2(b)]. Using TASSER, 32% of the structures are in the first
cluster, with an average RMSD of 5.9 Å to the centroid.
The divergence of the trajectories gives a C-score � �0.5;
52% of targets with this C-score have an RMSD to native
below 6.5 Å. Indeed, the best submitted model is 6.1 Å from
native (4.7 Å in the threading aligned regions). While the
topology of the final model is drawn significantly closer to
native than that in the threading templates, the loop and
tail regions still need improvement.

T0251 is a 102-residue FR/H (homology) target. PROS-
PECTOR_3 finds seven templates: 1h75A, 1b4qA, 1ego_,
1eejA, 1j0fA, 1h75A, and 1ego_, with the best alignment
from 1b4qA having a TM-score � 0.44 (RMSD � 5.8 Å over
83 matched residues). PROSPECTOR_3 categorizes T0251
as an Easy target, and the global topology of the align-
ments is correct except for some errors around the loops
[Fig. 2(c)]. TASSER takes the consensus contact restraints
from all the templates and rearranges the fragments. The
Monte Carlo trajectories highly converge; 78% of the
structures belong to the first cluster, with an average
RMSD of 2.4 Å to the centroid. This results in a C-score �
1.9: 98% of targets with this C-score in the PDB bench-
mark have an RMSD � 6.5 Å.18 The actual RMSD of the
first model is 3.1 Å in both full-length and aligned regions.
The TM-score � 0.67, which is more than 10% higher than
the best prediction of other groups. This is a typical
example of a successful prediction where the threading
alignments are in consensus, and TASSER achieves signifi-
cant further refinement.

T0267, a 175-residue CM/Hard target, is a good case to
examine TASSER’s ability to refine loops. PROSPEC-
TOR_3 provides 10 different alignments from five tem-
plates, the best of which is from 1vhsA, with a 4.4 Å RMSD
over 160 residues. The main alignment errors are in four
loop regions: Loop I (T22–L39, 8.9 Å to native), Loop II
(P55–P58, 7.0 Å), Loop III (A82–Y88, 10.9 Å), and Loop IV
(E154–K160, 5.2 Å). Here, the loop RMSD is calculated
based on the global TM-score superposition. After TASSER
reassembly, all the loops improve with the RMSD of the
loops in the final model: 2.3 Å (Loop I), 3.8 Å (Loop II), 4.1 Å
(Loop III), and 3.2 Å (Loop IV) [Fig. 2(d)]. The average
RMSD of these loops is reduced from 8.0 Å (in the
template) to 3.3 Å (in the model). The overall RMSD to
native of the submitted TASSER model is 2.5 Å, and the
TM-score is 0.87.

T0231 is a CM/Easy target (with 142 residues). PROS-
PECTOR_3 has strong consensus alignments from 1ahq_,
1m4jA, and 1hqz1, with Z scores � 30, the best of which is
from 1ahq_, with an RMSD of 2.8 Å over 128 aligned
residues. After TASSER refinement, the best final model
has a RMSD to native of 1.25 Å (1.1 Å in the aligned
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TABLE I. Summary of TASSER Models of 90 CASP6 Targets/Domains

ID Type Lch/Ln Cov

RMSD to native TM-score

R_Ta R_M1a R_MBa R_M1 R_MB TM_T TM_MI TM_MB

T0204 CM/easy 351/297 0.98 4.8 3.7 3.4 (3) 3.7 3.4 (3) 0.825 0.866 0.866 (3)
T0229_1 CM/easy 138/24 1.00 0.8 0.7 0.7 (1) 0.9 0.9 (1) 0.524 0.530 0.530 (1)
T0229_2 CM/easy 138/102 0.93 2.1 2.1 2.0 (2) 2.2 2.2 (1) 0.776 0.798 0.798 (1)
T0231 CM/easy 142/137 0.93 2.8 1.3 1.1 (3) 1.4 1.3 (3) 0.770 0.929 0.943 (3)
T0233_1 CM/easy 362/66 1.00 1.4 1.3 1.2 (4) 1.3 1.2 (4) 0.840 0.864 0.877 (4)
T0233_2 CM/easy 362/265 0.96 2.1 1.6 1.6 (4) 1.7 1.7 (4) 0.893 0.951 0.952 (4)
T0240 CM/easy 90/90 0.81 8.3 5.3 5.3 (1) 6.6 6.6 (1) 0.378 0.492 0.492 (1)
T0244 CM/easy 301/296 0.86 8.8 8.1 7.0 (5) 8.4 7.3 (5) 0.642 0.767 0.778 (5)
T0246 CM/easy 354/354 0.99 2.3 1.9 1.5 (2) 2.0 1.5 (2) 0.905 0.931 0.955 (2)
T0247_1 CM/easy 364/150 0.99 4.0 4.2 3.9 (2) 4.3 4.3 (2) 0.785 0.785 0.789 (2)
T0247_2 CM/easy 364/135 0.95 2.0 1.9 1.9 (1) 2.0 2.0 (1) 0.845 0.881 0.881 (1)
T0247_3 CM/easy 364/76 0.95 2.2 2.0 2.0 (5) 2.5 2.4 (5) 0.768 0.772 0.776 (5)
T0264_1 CM/easy 294/116 0.94 2.4 1.9 1.9 (5) 2.0 2.0 (5) 0.810 0.877 0.877 (1)
T0266 CM/easy 152/150 0.96 2.5 1.6 1.6 (1) 1.6 1.6 (1) 0.836 0.904 0.904 (1)
T0268_1 CM/easy 285/172 0.98 1.6 1.1 1.1 (1) 1.2 1.2 (5) 0.906 0.952 0.952 (5)
T0268_2 CM/easy 285/109 0.96 1.5 1.5 1.4 (3) 1.6 1.6 (1) 0.869 0.896 0.896 (1)
T0269_1 CM/easy 250/158 0.96 2.4 2.0 1.8 (2) 2.1 1.9 (2) 0.866 0.904 0.916 (2)
T0271 CM/easy 161/161 0.88 2.2 2.2 2.1 (4) 4.9 4.9 (3) 0.766 0.798 0.802 (3)
T0274 CM/easy 159/156 0.96 3.1 3.2 3.0 (3) 3.3 3.2 (3) 0.834 0.868 0.874 (2)
T0275 CM/easy 137/135 0.99 3.5 2.6 2.6 (1) 2.7 2.7 (1) 0.733 0.829 0.829 (1)
T0276 CM/easy 184/168 1.00 2.7 2.3 2.3 (3) 2.3 2.3 (3) 0.816 0.854 0.855 (3)
T0277 CM/easy 119/117 0.94 3.1 1.6 1.6 (2) 1.6 1.6 (2) 0.795 0.899 0.900 (2)
T0280_1 CM/easy 208/113 0.96 2.8 2.8 2.7 (3) 2.9 2.7 (3) 0.757 0.753 0.772 (5)
T0282 CM/easy 332/323 0.82 4.3 2.3 2.3 (5) 4.6 3.9 (4) 0.707 0.844 0.848 (4)
T0235_1 CM/easy 499/309 0.68 11.4 4.3 3.3 (4) 4.7 3.7 (4) 0.462 0.747 0.851 (3)

Ave/Cum CM/easy 256/167 0.94 3.4 2.5 2.4 (3) 2.9 2.7 (3) 19.108 20.691 20.913 (3)
T0196 CM/hard 116/89 0.96 9.5 4.6 4.4 (3) 4.7 4.5 (3) 0.715 0.780 0.781 (2)
T0199_1 CM/hard 338/74 0.85 3.5 3.2 1.6 (4) 3.3 1.8 (4) 0.573 0.707 0.797 (4)
T0200 CM/hard 255/255 0.80 7.0 4.9 4.8 (5) 8.1 8.1 (1) 0.547 0.680 0.680 (5)
T0205 CM/hard 130/103 0.80 2.6 1.8 1.8 (1) 7.5 3.3 (4) 0.641 0.726 0.726 (1)
T0208 CM/hard 357/344 0.76 12.5 9.5 7.5 (4) 10.4 10.1 (5) 0.411 0.619 0.689 (4)
T0211 CM/hard 144/136 0.91 4.5 3.7 3.6 (4) 4.0 3.9 (4) 0.629 0.725 0.725 (1)
T0222_1 CM/hard 373/264 0.87 5.0 3.6 3.6 (3) 4.2 4.2 (1) 0.686 0.822 0.822 (1)
T0223_1 CM/hard 206/114 0.77 16.8 3.0 3.0 (1) 3.3 3.3 (1) 0.209 0.735 0.735 (2)
T0226_1 CM/hard 290/182 0.50 27.7 3.6 3.3 (5) 12.6 11.4 (2) 0.130 0.606 0.642 (5)
T0232_1 CM/hard 236/81 0.94 3.0 2.4 2.3 (2) 2.6 2.4 (2) 0.716 0.773 0.793 (2)
T0232_2 CM/hard 236/146 0.86 3.4 6.7 4.1 (5) 8.2 4.8 (5) 0.631 0.496 0.648 (5)
T0234 CM/hard 165/135 0.91 6.9 4.1 3.9 (3) 4.3 4.1 (3) 0.602 0.680 0.691 (3)
T0264_2 CM/hard 294/173 0.77 5.0 3.9 3.4 (3) 5.1 4.9 (2) 0.606 0.694 0.701 (3)
T0265 CM/hard 109/102 0.93 7.5 6.7 6.0 (4) 8.2 7.4 (4) 0.599 0.627 0.650 (5)
T0267 CM/hard 175/174 0.91 4.3 2.5 2.0 (5) 2.6 2.5 (5) 0.672 0.847 0.870 (5)
T0269_2 CM/hard 250/61 0.90 7.1 7.4 6.2 (2) 8.7 8.0 (2) 0.415 0.398 0.420 (4)
T0279_1 CM/hard 261/127 0.92 3.4 2.7 2.6 (3) 3.0 2.9 (3) 0.720 0.771 0.776 (3)
T0279_2 CM/hard 261/121 0.96 3.2 2.5 2.5 (2) 2.5 2.5 (2) 0.688 0.774 0.774 (5)

Ave/Cum CM/hard 233/149 0.85 7.4 4.3 3.7 (3) 5.7 5.0 (3) 10.190 12.460 12.920 (3)
T0197 FR/H 179/166 0.20 6.8 6.9 6.1 (3) 17.5 15.0 (2) 0.114 0.234 0.364 (2)
T0199_2 FR/H 338/134 0.78 9.0 9.3 8.9 (4) 11.0 9.7 (4) 0.416 0.486 0.549 (4)
T0202_1 FR/H 249/123 0.85 15.2 10.0 10.0 (1) 9.8 9.8 (1) 0.224 0.546 0.546 (1)
T0203 FR/H 382/365 0.64 7.7 13.7 7.5 (2) 14.5 10.6 (2) 0.424 0.531 0.599 (2)
T0206 FR/H 220/138 0.62 15.0 10.1 10.1 (1) 14.1 11.5 (4) 0.149 0.224 0.249 (4)
T0213 FR/H 103/103 0.97 14.0 5.3 5.3 (1) 5.3 5.3 (1) 0.200 0.544 0.544 (1)
T0214 FR/H 110/110 0.91 13.3 12.5 9.2 (2) 13.6 9.9 (2) 0.224 0.214 0.279 (2)
T0222_2 FR/H 373/64 0.00 0.0 0.0 0.0 (4) 13.8 2.1 (4) 0.000 0.160 0.775 (4)
T0223_2 FR/H 206/92 0.00 0.0 0.0 0.0 (4) 10.9 10.9 (1) 0.000 0.217 0.282 (4)
T0224 FR/H 87/87 0.97 5.5 4.2 4.2 (1) 4.3 4.3 (1) 0.513 0.627 0.627 (1)
T0227 FR/H 121/84 0.73 11.3 9.7 9.4 (4) 12.3 12.0 (4) 0.208 0.233 0.249 (4)
T0228_1 FR/H 429/157 0.71 20.2 9.3 8.6 (2) 8.7 8.4 (2) 0.135 0.484 0.484 (1)
T0228_2 FR/H 429/235 0.72 14.9 5.2 5.2 (1) 17.1 12.9 (5) 0.218 0.547 0.547 (1)
T0237_1 FR/H 445/149 0.74 19.6 20.4 16.2 (5) 20.1 17.5 (5) 0.120 0.170 0.197 (5)
T0237_2 FR/H 445/101 0.35 10.8 10.5 9.2 (4) 14.0 14.0 (3) 0.137 0.190 0.192 (3)
T0237_3 FR/H 445/55 0.00 0.0 0.0 0.0 (4) 7.0 7.0 (1) 0.000 0.352 0.352 (1)
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regions) and a TM-score � 0.943. The major modeling
error is in the loop (Y75–S83), with an RMSD of 3.4 Å to
native (4.1 Å in the template). In Figure 2(e), we also
present the best structural alignment between native and
the PROSPECTOR_3 template by TM-align,26 which has
an RMSD � 1.8 Å. Therefore, the best final model is even
closer to native than the structural alignment.

DISCUSSION

TASSER has been exploited to automatically generate
models for all categories of CASP6 targets. Consistent
with the large-scale PDB benchmark tests,16,18 over all

target categories, the final models are often closer to native
than the best of the threading templates (sometimes even
better than the best structural alignment between the
target and template). One of the reasons contributing to
the improvement over the template alignment is the
long-range tertiary restraints taken from the consensus of
multiple threading templates, which are generally of
higher accuracy than the individual template alignments.
Second, the knowledge-based energy terms (which include
hydrogen bonding, secondary structure predictions, short-
range correlations, and pairwise side-chain interactions)
were optimized based on a large number of difficult decoys,

TABLE I. Continued

ID Type Lch/Ln Cov

RMSD to native TM-score

R_Ta R_M1a R_MBa R_M1 R_MB TM_T TM_MI TM_MB

T0243 FR/H 93/88 0.27 5.6 1.4 1.4 (1) 3.7 3.7 (1) 0.172 0.617 0.617 (1)
T0249_1 FR/H 209/73 0.89 3.5 2.4 2.4 (1) 2.4 2.4 (1) 0.603 0.702 0.702 (1)
T0249_2 FR/H 209/77 0.86 13.2 5.2 4.1 (3) 4.9 4.1 (3) 0.180 0.533 0.591 (3)
T0251 FR/H 102/99 0.82 5.8 3.1 3.1 (1) 3.1 3.1 (1) 0.444 0.672 0.672 (1)
T0262_2 FR/H 256/97 0.89 17.6 13.6 5.8 (4) 14.9 7.2 (4) 0.164 0.206 0.468 (4)
T0263 FR/H 101/97 0.93 5.0 3.7 3.7 (1) 3.8 3.8 (1) 0.482 0.665 0.665 (1)

Ave/Cum FR/H 251/122 0.63 9.7 7.1 5.9 (2) 10.3 8.4 (2) 5.127 9.154 10.550 (2)
T0198 FR/A 235/225 0.48 14.5 9.2 9.2 (1) 25.6 17.4 (2) 0.187 0.347 0.347 (1)
T0199_3 FR/A 338/82 0.59 8.7 9.1 9.1 (3) 12.3 11.2 (4) 0.173 0.178 0.236 (4)
T0209_1 FR/A 239/108 0.94 15.8 16.6 13.7 (5) 16.5 14.2 (5) 0.166 0.212 0.212 (1)
T0212 FR/A 126/124 0.77 13.0 6.5 4.7 (2) 7.8 6.1 (2) 0.232 0.342 0.482 (2)
T0215 FR/A 76/53 0.98 8.1 5.1 3.6 (2) 5.2 3.9 (2) 0.259 0.423 0.500 (2)
T0230 FR/A 104/102 0.85 6.8 9.2 5.5 (4) 10.0 5.8 (4) 0.423 0.564 0.564 (1)
T0235_2 FR/A 499/43 0.91 14.9 13.4 13.4 (1) 13.2 13.2 (1) 0.119 0.191 0.286 (5)
T0239 FR/A 98/98 0.95 14.1 9.6 9.1 (5) 9.8 9.3 (5) 0.183 0.326 0.350 (2)
T0248_1 FR/A 294/79 1.00 8.8 11.8 7.7 (2) 11.8 7.7 (2) 0.279 0.361 0.414 (3)
T0248_3 FR/A 294/87 0.97 9.0 14.9 8.0 (3) 14.9 7.9 (3) 0.257 0.270 0.317 (3)
T0262_1 FR/A 256/72 0.85 10.3 10.1 9.3 (2) 10.6 9.7 (2) 0.261 0.264 0.264 (1)
T0272_1 FR/A 211/85 0.00 0.0 0.0 0.0 (4) 10.1 8.6 (2) 0.000 0.236 0.314 (2)
T0272_2 FR/A 211/99 0.29 11.3 5.1 4.4 (2) 13.5 13.5 (1) 0.147 0.229 0.229 (1)
T0280_2 FR/A 208/51 0.08 0.6 0.9 0.5 (4) 8.9 8.9 (1) 0.073 0.202 0.233 (4)
T0281 FR/A 70/70 0.99 8.1 10.4 7.8 (5) 10.5 8.2 (5) 0.324 0.335 0.381 (5)

Ave/Cum FR/A 217/92 0.71 9.6 8.8 7.1 (3) 12.0 9.7 (3) 3.083 4.480 5.129 (2)
T0201 NF 94/94 0.67 13.3 4.8 4.8 (1) 4.9 4.9 (1) 0.262 0.508 0.508 (1)
T0209_2 NF 239/57 1.00 13.2 10.8 10.3 (2) 10.8 10.3 (2) 0.249 0.239 0.305 (3)
T0216_1 NF 435/209 0.64 28.1 21.2 19.1 (5) 22.9 19.6 (5) 0.104 0.153 0.213 (5)
T0216_2 NF 435/213 0.79 23.5 20.0 17.9 (5) 20.1 18.2 (3) 0.177 0.171 0.228 (4)
T0238 NF 251/181 0.83 19.6 17.0 17.0 (1) 20.7 19.8 (2) 0.189 0.238 0.292 (5)
T0241_1 NF 237/117 0.76 17.5 12.5 12.5 (1) 13.0 13.0 (1) 0.179 0.216 0.217 (3)
T0241_2 NF 237/119 0.94 20.0 17.3 15.2 (3) 17.4 15.3 (3) 0.149 0.229 0.252 (4)
T0242 NF 116/115 0.98 20.3 13.1 12.1 (5) 13.2 12.1 (5) 0.177 0.239 0.289 (5)
T0248_2 NF 294/87 0.87 8.6 13.5 7.8 (5) 14.1 8.2 (5) 0.270 0.265 0.350 (3)
T0273 NF 187/186 0.84 16.1 15.4 11.3 (2) 15.4 11.7 (2) 0.176 0.285 0.361 (2)

Ave/Cum NF 253/138 0.83 18.0 14.6 12.8 (3) 15.3 13.3 (3) 1.932 2.543 3.015 (4)
Ave/Cum All 243/137 0.79 8.4 6.4 5.4 (3) 8.2 6.9 (3) 39.440 49.328 52.527 (3)

ID, target or domain identification; Type, categories of each target/domain: new fold (NF), fold recognition/analogy (FR/A), fold recognition/
homology (FR/H), comparative modeling/hard (CM/Hard), and comparative modeling/easy (CM/Easy); Lch, number of residues in the released
sequences modeled by TASSER; Ln, number of residues in the solved structures for the targets/domains; Cov, fraction of the aligned residues
defined with respect to Ln in PROSPECTOR_3 alignments; R_Ta, RMSD of the best initial template; R_M1a, RMSD of the first submitted model
(calculated in the aligned regions); R_MBa, RMSD of the best submitted model (calculated in the aligned regions), with rank of the best model in
parentheses; R_M1, RMSD of the first submitted model (for the entire chain); R_MB, RMSD of the best submitted model (for the entire chain),
with the rank of the best model in parentheses; TM_T, TM-score of the best initial template; TM_M1, TM-score of the first submitted model;
TM_MB, TM-score of the best submitted model; Ave/Cum, average or cumulative score of all targets/domains.
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and substantial correlation (an average correlation coeffi-
cient of �.7) of total energy and RMSD was achieved.5 The
interaction between the predicted side-chain contact re-
straints and the inherent potentials is the major driving
force for fragment rearrangement and the improvement in
the overall quality of the structural prediction.

One of the problems of TASSER, although not assessed
in CASP6, is that it fails to correctly predict the relative
orientation of protein domains when the domain orienta-
tion in the threading template is incorrect. In a recent
benchmark test on 258 multidomain PDB proteins,18 172
(67%) of them have the structure of individual domains
correctly predicted (� 6.5 Å); however, only 112 (43%) have
the correct relative domain orientation. A similar example
in CASP6 is T0198 [see Fig. 3(a)], where the local conforma-
tions of the individual domains in the first TASSER model
are well predicted (both below 5 Å) but the global RMSD is

26 Å from native (TM-score � 0.35) because of a mistake in
the domain orientation. TASSER does generate a model in
the top 10 clusters that has the correct orientation [Fig.
3(b)], but its free energy is too high to be selected by
SPICKER. In this context, including pairwise statistical
potentials specific for the domain interface might help.

Another problem is that we often failed to split multido-
main targets into individual domains. The danger of
threading multidomain sequences is that one domain may
dominate the alignment scoring function; therefore, the
algorithm will fail for other domains if these domains
belong to different template structures. For example,
T0223 has two structurally similar domains: the N-
terminal (T0223_1) is a CM target, and the C-terminal
(T0223_2) is a FR target. Based on TM-align,26 the best
structural analogs of both domains should be from 1nox_.
However, because the N-terminal domain dominates the

Fig. 1. Comparison between the final TASSER models and the threading templates with alignments from both threading (by PROSPECTOR_3) and
structural alignments (by SAL). (a) RMSD to native of the best submitted models versus RMSD to native of the best threading alignments, calculated over
the same threading aligned regions. (b) TM-score of the best submitted models versus TM-score of the best threading alignments. (c) RMSD to native of
the best models versus RMSD to native of the best structural alignments, calculated in the same structural aligned regions. (d) TM-score of the best
models versus TM-score of the best structural alignments.
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sequence profile, PROSPECTOR_3 failed to provide align-
ments for the C-terminal. Domain parsing problems also
influence the performance of TASSER in ab initio model-
ing. Figure 3(c) shows an example for T0209_2 (N-terminal
domain of T0209, an NF target) where in CASP6 we folded
it together with T0209_1 (C-terminal domain), giving a
TM-score � 0.24. When we reran T0209_2 separately
under the assumption that we had correctly parsed the
domains, the model was much better, with a TM-score �
0.53 [Fig. 3(d)]. To partly address this issue, one ongoing
approach is to iterate PROSPECTOR_3 by redoing the
alignments for the missed domains in the subsequent
steps; the hope is to provide TASSER with alignments and
restraints of all domains, as well as reliable domain
parsing information.

In addition to the domain parsing/orientation problem,
TASSER also has problems with generating high-resolu-
tion models for large single-domain proteins (e.g., � 130
residues) when threading fails to provide reasonable align-
ments. This partially highlights the inability of the inher-
ent TASSER force field to handle larger proteins. For
example, for T0197 (179 residues, single domain), PROS-
PECTOR_3 provides an alignment for only 36 residues,
and TASSER needs to generate the conformation of the
remaining 141 residues from scratch. This results in a
TASSER model 15 Å away from native (TM-score � 0.36).

We also noticed that in around 10% of the targets (e.g.,
T0226, T0249, T0272, and T0282), there are local distor-
tions of secondary structure in the structurally diverse
regions because we submitted the models from the cluster
centroid. A simple solution is to use the individual decoy
closest to the cluster centroid instead of the cluster cen-
troid itself, since all the individual decoys are proteinlike,
without local distortions. In practice, there are no observ-
able differences between the TM-scores of these choices.
We are also developing methods to refine the TASSER

Fig. 2. Successful examples of TASSER modeling in different categories. For each target, on the left is the superposition of the threading template
(thick backbone) and native (thin backbone); on the right is the final model (thick backbone) and native (thin backbone). Blue to red goes from the N- to
the C-terminus. The numbers below the superposition are the RMSD over the aligned regions and RMSD over the full-length molecule, respectively.

Fig. 3. Two failed examples of TASSER modeling. Superposition is
shown for model (thick backbone) and native (thin backbone), with blue to
red running from N- to C- terminus. (a) The first submitted model of T0198
(TM-score � 0.35), where the domain orientation is mispredicted. (b)
Prediction for T0198 with correct domain orientation (TM-score � 0.53)
but not selected by SPICKER because of its high free-energy. (c) The first
submitted model for T0209_2 (C-terminal domain of T0209), where
TASSER models the two domains together. (d) The predicted model for
T0209_2 after CASP6 when TASSER models the C-terminal domain
separately, under the assumption that we had known the domain border
of the target.
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models using atomic potentials that could help to remove
the problem of local distortion of cluster centroids. Algo-
rithms for the structure-based detection of biologically
relevant sites (e.g., active sites29) could in principle benefit
from CM models with less geometrical errors.

Overall, there is considerable improvement in the perfor-
mance of TASSER compared with our TOUCHSTONE
predictions in CASP5.30 The advantage of the current
approach is that TASSER directly exploits and manipu-
lates the continuous fragments from templates in an
off-lattice system; this reduces the conformational entropy
and yet helps retain the geometric accuracy of the well-
aligned fragments. Moreover, the relative orientation of
the fragments is flexible, which allows for global improve-
ment over the template when a reasonable force field is
used. This strategy gave obviously improved performance
in both the CM and FR categories. Improvements also
arise from use of PROSPECTOR_3 compared with the
previous generation of the algorithm,31 because of the
introduction of a variety of more specific pair potentials
and rigorous scoring cutoffs. Furthermore, TASSER has a
better hydrogen bond scheme and implementation of ter-
tiary restraints and pair potentials that provides much
higher specificity and accuracy. The clustering approach is
also better and is now designed to identify the lowest free
energy state. Nevertheless, as indicated in both PDB
benchmark tests and in CASP6, the success rate for
weakly/nonhomologous single-domain proteins is only
around two thirds. To successfully predict the structure of
the remaining one third of single-domain proteins (essen-
tially those lacking reasonable alignments to solved struc-
tures), as well as to deal with multidomain proteins, are
the major issues that must be addressed in future TASSER
development.
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