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The protein structure prediction problem could be
solved using the current PDB library
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For single-domain proteins, we examine the completeness of the
structures in the current Protein Data Bank (PDB) library for use in
full-length model construction of unknown sequences. To address
this issue, we employ a comprehensive benchmark set of 1,489
medium-size proteins that cover the PDB at the level of 35%
sequence identity and identify templates by structure alignment.
With homologous proteins excluded, we can always find similar
folds to native with an average rms deviation (RMSD) from native
of 2.5 A with ~82% alignment coverage. These template structures
often contain a significant number of insertions/deletions. The
TAsSER algorithm was applied to build full-length models, where
continuous fragments are excised from the top-scoring templates
and reassembled under the guide of an optimized force field,
which includes consensus restraints taken from the templates and
knowledge-based statistical potentials. For almost all targets (ex-
cept for 2/1,489), the resultant full-length models have an RMSD to
native below 6 A (97% of them below 4 A). On average, the RMSD
of full-length models is 2.25 A, with aligned regions improved from
2.5 A to 1.88 A, comparable with the accuracy of low-resolution
experimental structures. Furthermore, starting from state-of-the-
art structural alignments, we demonstrate a methodology that can
consistently bring template-based alignments closer to native.
These results are highly suggestive that the protein-folding prob-
lem can in principle be solved based on the current PDB library by
developing efficient fold recognition algorithms that can recover
such initial alignments.

s of December 30, 2003, >23,000 solved protein structures

have been deposited in the Brookhaven Protein Data Bank
(PDB) (1). This number keeps increasing, with ~300 new entries
added each month. The size and completeness of the PDB is
essential to the success of template-based approaches to protein
structure prediction. These methods include comparative modeling
(2, 3) and threading (4-7), which are designed to infer an unknown
sequence’s structure based on solved, similarly folded protein
structures in the PDB. Because an accurate theory for the predic-
tion of protein structure on the basis of physical principles does not
yet exist, comparative modeling/threading approaches are the only
reliable strategy for high-resolution tertiary structure prediction
(8-10). On the other hand, the percentage of new folds in these new
entries, the topology of which has never been seen in the current
PDB library, keeps decreasing (e.g., the percentage of new folds was
27% in 1995 but 5% in 2001). The apparent saturation of new folds
immediately raises an important question: At least for single-
domain proteins, is the current structure library already complete
enough to in principle solve the protein tertiary structure prediction
problem at low-to-moderate resolutions?

By means of a variety of structure comparison tools (11-14), this
issue has been partially addressed by many authors (15-20). It was
demonstrated through systematic protein structure classification
(15-17) that protein fold space is highly dense, and all solved PDB
structures can be grouped into a very limited number of hierarchical
families. Several authors (17-20) found that many proteins from
different fold families share common substructures/motifs and the
protein fold space tends to be continuous. Especially, Kihara and
Skolnick (20) showed that (after excluding homologues) for >90%
of single-domain proteins below 200 residues, there exists at least
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one structure (actually many) in the PDB having an rms deviation
(RMSD) root to native below 4 A with ~79% alignment coverage.
This finding suggests that, at least at the level of structure align-
ments, the current PDB is almost a complete set of single-domain
protein structures. However, the alignments identified from struc-
ture superposition usually contain numerous gaps. Starting from
such alignments, it is still unknown in how many cases one could
successfully build full-length models useful for biological annota-
tion (21-23). It could be that such models, while bearing a structural
resemblance to the native state, might be sufficiently distorted that
they could not be used as starting templates to build physically
reasonable structures. Then our prior conclusion about the com-
pleteness of the PDB would be of purely academic interest, without
practical ramifications. If, however, biologically useful models could
be built, then the observation of the completeness of the PDB
would have immediate practical value, not the least being that the
protein structure prediction problem could in principle be solved on
the basis of the current PDB library, if a sufficiently powerful
fold recognition algorithm could be developed to recover such
alignments (21, 23, 25). It is the desire to explore this issue that
provided the impetus of the work described here. Certainly, the
requisite resolution required for different aspects of functional
analysis (ligand docking, active site identification, etc.) may vary
(21). Recent investigations show that the active sites of enzymes can
be successfully identified in about one-third of decoy structures of
3- to 4-A RMSD (24).

Another important issue faced by protein structure modelers is
related to the template refinement process. Until recently, protein-
modeling procedures usually drive the models farther from native,
compared with initial template alignments (810, 26). It is a hard
challenge to start from the structural (as opposed to threading-
based) alignments and improve upon them. To date, there has been
no systematic demonstration that this was possible. The exploration
of this issue provides the second motivation for this work.

In this work, using a recently developed modeling algorithm,
TASSER (27), we examine both issues, by building full-length models
from the templates identified by a state-of-the-art structure align-
ment algorithm (20), and by demonstrating that in many cases the
initial alignments are improved. To assess the generality of the
conclusion, the strategy will be applied to a comprehensive, large-
scale PDB test set, with homologous proteins removed from the
template library.

Methods

The protein structure modeling procedure used in this work consists
of template identification, force field construction, fragment as-
sembly, and model selection. A flowchart is presented in Fig. 1.

Template Identification. Templates are identified from the solved
structures in the PDB by structurally aligning the native of query
proteins to templates by using our Structure Alignment (SAL
algorithm (20). The alignment is performed by a Needleman-—
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Fig. 1. Overview of the TASSER structure prediction methodology that con-
sists of template identification (here by structure alignment), force field
construction, structure assembly, and model selection.

Wunsch dynamic program (28) with the score matrix defined as (29)
score(i,j) = 20/(1 + dfj /5), where dj is the spatial distance between
the ith and jth residues after an initial guessed superposition. A
number of iterations are performed until the structure alignment
converges. Various gap penalties are implemented, and the best
alignment is selected on the basis of the Z-score of the relative
RMSD of two aligned proteins (30).

Force Field Construction. The force field used in TASSER includes
four classes of terms: (i) C, and side-chain group (SG) regularities/
correlations from the statistics of the PDB, (if) propensities for
predicted secondary structure from PSIPRED (31), (iii) tertiary
consensus contact/distance restraints, and (iv) a protein-specific
SG pair potential, both extracted from the identified multiple
templates. The construction and implementation of the potentials
in i and ii have been described (32, 33). The tertiary restraints in i
are constructed as done by our threading program PROSPECTOR 3
(6); and the details of the new pair potential in iv are in the
Appendix.

Having all of the energy terms, optimization for the combination
weight factors was performed based on 100 training proteins
(outside the benchmark test set used here), each with 60,000
structure decoys, where we maximize the correlation between the
energy and RMSD from native to the decoys (32).

Structure Assembly. Full-length models are constructed by reassem-
bling the continuous fragments excised from the templates under
the guide of the optimized force field. These fragments are ele-
mental building blocks with internal conformations kept invariant
during modeling. Residues in gapped regions are generated from an
ab initio lattice modeling approach (32). These regions also serve as
linkage points for the rigid block movements. Conformational
space is searched by using parallel hyperbolic Monte Carlo sampling
(34), where the tertiary topology varies by continuous translations
and rotations of the rigid blocks. The magnitude of the move is
scaled by the size of the blocks. Forty to fifty replicas are used in the
simulations depending on protein size, and the trajectories in the 14
lowest temperature replicas are submitted to SPICKER (35) for
clustering. The final models are combined from members of the
structure clusters, ranked on the basis of cluster structure density.
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Fig.2. RMSD to native of the templatesidentified by the structure alignment
program sAL (20) versus the alignment coverage.

Results and Discussion

Benchmark of Targets and Templates. For test proteins, we develop
a representative benchmark set of all single-domain structures in
PDB with 41-200 aa. This target set contains 1,489 nonhomologous
proteins having 448, 434, and 550 «-, B-, and af3-proteins, respec-
tively (the other 57 are C,-only targets or have irregular secondary
structures). The template library consists of 3,575 representative
proteins from the PDB with a maximum 35% pairwise sequence
identity to each other; all templates are taken from this library.
Fig. 2 shows a summary of the resulting templates that have the
highest RMSD Z-score obtained from SAL (20) for all 1,489 test
proteins, where all templates with >25% sequence identity to the
target protein are excluded. The majority of targets have >70%
coverage and <4-A RMSD to native, which shows the significant
denseness of protein structure space. The average sequence identity
between template and target is 13% in the aligned regions.

Summary of Folding Results. Table 1 presents a summary of the
folding results, where, for each protein, the two templates with the
highest RMSD Z-score are used in TASSER. A detailed list of
templates and final models, as well as the simulation trajectories,
can be obtained by contacting J.S.

In Table 1, the second column shows the best templates in the top
two with the lowest RMSD to native in the aligned regions. On
average, the RMSD to native is 2.51 A with 82% coverage. The final
models show improvement over the initial template alignments.
Over the same aligned regions, the average RMSD to native is
reduced to 1.88 A. Many low-resolution templates have been shifted
by TASSER refinement to structures with an acceptable resolution
for biochemical function annotation (24). For example, there are
358 targets shifted from >3-A to <3-A RMSD to native, and 424
targets shifted from above to below 2 A.

For full-length models, almost all targets (except for 1a2kC and
1k5dB) have an RMSD to native below 6 A for the best of the top
five models, with an average rank of 1.7; 907% have an RMSD <4
A. The average RMSD to native is 2.25 A, comparable with the
accuracy of a low-resolution NMR or x-ray structure (25, 36, 37).
For the rank one cluster that has the highest structure density, the
average RMSD to native is 2.35 A.

As a reference, we also list in the right hand columns of Table
1 the results of refined models from the publicly available
comparative modeling program MODELLER (2, 3), using the same
templates from SAL. The average RMSD of the best of top five
models by MODELLER is 3.74 A (average rank of 2.9; here, the
rank of MODELLER models is decided by their objective function),
with 2.71 A in the aligned regions. In general, successful
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Table 1. Summary of templates by saL (20) and models built by TAsSER or MODELLER (2,3)

SAL TASSER MODELLER
Best* Align* Top five* Top one$ Align* Top five* Top ones
RMSD, A 2.510 1.877 2.246 2.352 2.708 3.740 4.318
Coverage, % 82 82 100 100 82 100 100
Nrmsp<6" 1,489 1,489 1,487 1,481 1,462 1,326 1,202
Nrmsp<5 1,472 1,489 1,481 1,464 1,395 1,195 1,060
Nrmsp<4 1,369 1,488 1,447 1,423 1,255 984 841
Nrmsp<3 1,064 1,422 1,259 1,206 1,008 647 551
Nrmsp<2 498 922 623 582 520 300 244
Nrmsp<1 46 83 52 49 37 20 15

*The template of the lowest RMSD to native.

The best model in top five by TASSER and MODELLER with the RMSD calculated in the aligned region.
*The best model in top five where the RMSD is calculated for the entire chain.

5The first model where the RMSD is calculated for the entire chain.

TNo. of targets with RMSD below the specified threshold (A).

modeling in MODELLER has a stronger dependence on the
template coverage than in TASSER. For example, if we look at
those targets with >90% coverage (437 in total), the average
RMSDs of the full-length models by TASSER and MODELLER are
fairly close, i.e., 1.56 A and 2.19 A, respectively. However, for
targets with initial alignment coverage <75% (386 in total), the
average RMSDs from native to_models using TASSER and
MODELLER are 2.92 A and 6.05 A, respectively, a significant
difference. Overall, in 1,120 targets, TASSER models have a lower
RMSD to native, where the alignment coverage in those targets
is on average 81%. For 102 targets, MODELLER does better,
where the coverage is on average 92%. Nevertheless, both
procedures lead to the conclusion that the structure alignments
produced by SAL can produce buildable models.

Improvements of Initial Alignment. In Fig. 3, we plot a detailed
comparison of the final models with respect to the template in the
aligned regions. In the majority of cases, TASSER models show
obvious improvement (see Fig. 3a). As shown in Fig. 3¢, for targets
having initial templates of aligned regions with an RMSD ranging
from 2 to 3 A, for ~61% of these cases, the models have at least a
0.5-A improvement; and for initial alignments with an initial RMSD
from3to4 A, in ~49% of cases, the final models improve by at least
1.0 A. This result is partly because the force field takes consensus
information from multiple templates, which can have higher accu-
racy/confidence than that from individual templates. In TASSER,
the local fragments from individual templates are rearranged under
the guide of the force field, and the global topology can therefore
move closer to native. This consensus information is further rein-
forced during the final model combination procedure of SPICKER
clustering (35). Another factor that contributes to the improvement
is the protein-like energy terms, representing an optimal combina-
tion of statistical potentials, hydrogen bonds, and secondary struc-
ture predictions that lead to better side-chain and backbone struc-
ture packing than in the initial template-based alignments (27, 32).

In Fig. 3 b and d, we also show the comparison between the
models generated by MODELLER and the initial template align-
ments. In the majority of cases, MODELLER keeps the topology of
models near the template, which is understandable because it was
designed to optimally satisfy the spatial restraints from templates
for homologous proteins (2, 3). However, in a few cases (~10%),
the MODELLER models can be >1 A worse than the initial templates.

Modeling Unaligned/Loop Regions. Because there is no spatial
information provided from the template alignments, modeling the
unaligned or loop regions is a hard, unsolved problem (3, 38, 39).
Here, we define an unaligned or loop region (including tails) as a
piece of continuous sequence that has no coordinate assignment in
the SAL template alignments. For each piece of those sequences,
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two types of accuracy are calculated (3): RMSDjqca denotes the
RMSD between native and the modeled loop with direct super-
position of the unaligned region; RMSDyjopa1 is the RMSD between
native and modeled loop after superposition of up to five neigh-
boring stem residues on each side of the loop (for tails, the
supposition is done on the side including five stem residues).
RMSD)cq measures the modeling accuracy of the local conforma-
tion, whereas RMSDyjoba1 measures both the accuracy of the local
conformation and the global orientation.

There are in total 11,380 unaligned/loop regions with size from
1-84 residues in the 1,489 targets. In Fig. 4, we show the average
values of RMSDjoca and RMSDyjobar 0f TASSER and MODELLER
models versus loop length L. In both cases, the accuracy of loop
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Fig. 3. Comparison of initial and final alignments to the target structure. (a)

Scatter plot of RMSD from native of the final models built by TAsSEr refinements
versus RMSD from native of the initial template alignments identified by sAL. The
same aligned regions are used in both RMSD calculations. (b) Similar data asin a,
but the models are from MODELLER refinements. (c) Fraction of targets with an
RMSD improvement “d" by TASSER greater than some threshold value. Here d =
(RMSD of template) — (RMSD of final model), where both RMSDs are calculated
over aligned regions. Each point in c is calculated with a bin width of 1 A. (d)
Similar data as in ¢, but the models are from MODELLER.
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Fig. 4. RMSDjgcal (@) and RMSDgjopal (b) of unaligned/loop regions as a
function of loop length (L). TASSER and MODELLER models are denoted by
triangles and circles, respectively. The lines connecting the points serve to
guide the eye. The dashed line in b denotes an RMSDgjobal cutoff of 7 A.

modeling decreases with increasing loop size. However, for all size
ranges, the loops in TASSER models have lower average RMSDIOCdl
and RMSDyjopar. If we make a cutoff of RMSDyiopar <7 A in Fig.
4b, MODELLER generates reasonable models for unaligned/loop
regions of length up to 10 residues; TASSER can have the same
accuracy cutoff for the loops up to 28 residues. If using a lower
RMSDyjobar cutoff, the acceptable loop size in both approaches will
decrease, and the difference between MODELLER and TASSER
becomes smaller.

Most unaligned regions/loops in SAL alignments are of small size,
which are relatively easier to model because of the limited config-
uration entropy. If we focus only on the unaligned loops of length
greater than or equal to four residues, there are 1,675 cases with an
average length of 8.8 residues. The distribution of modeling accu-
racy is summarized in Table 2. Consistent with Fig. 4a, the
distribution of RMSDjqc, is quite close using TASSER and MOD-
ELLER. However, TASSER shows an obviously better control of loop
orientations. For example, in one-third (549/1,675) of the cases,
1nclud1ng loops and tails, TASSER generates models of RMSDygjqbal
<3 A, whereas the fraction of MODELLER models having
RMSDyjopar <3 A is around one-seventh (244/1,675).

Representative Examples. In Fig. 5, three representative examples of
TASSER modeling results are provided: 1jm7A (an a-protein), 1b2iA
(a B-protein), and Ixer (an af-protein). In all three, the template
topologies in the core identified by SAL are quite similar to native
(<5 A) however, the local packing of the fragments and sometimes
the termini are misoriented. Rearrangement using the TASSER force
field results in a >2 A improvement in the aligned region.

In Fig. 6, we show the predicted structure of 1k5dB, one of the
two cases where TASSER failed to generate models with an RMSD
to native below 6 A. This is a Ran-binding protein (Ran-BP1), i.e.,
chain B of the Ran-RanBP1-RanGAP protein complex (40), whrch
has a long tail interacting with chain A (Ran). Because interactions
with partner chains are not included, we failed to model the
configuration of the tail; this case results in a full-length RMSD of
7.8 A to native. If we cut the first 22 residues in the N terminus
associated with intermolecular interactions, the core region of the
first model has a 1.4-A RMSD (Fig. 6c).
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Table 2. Result of modeling of unaligned/loop regions
(=4 residues) by TAssErR and MODELLER

TASSER MODELLER
RNISDIocaI* RMSDgIobaI* RMSDIocaI* RMSDgIobaI*
Nrmsp<6" 1,670 1,386 1,633 1,011
Nrmsp<s 1,664 1,199 1,603 800
Nrmsp<a 1,631 924 1,528 507
Nrmsp<3 1,527 549 1,342 244
Nrmsp<2 1,173 193 1,009 64
Nrmsp<1 519 18 498 10
RMSD, A 1.62 4.34 2.02 6.59

*See text for definitions of RMSDjocai and RMSDygjopal-
No. of targets with a RMSD below the specified threshold (A).

New Fold Targets in CASP5. We revisit the new fold targets in the
CASPS5 folding experiment (10), because, by definition, those
targets putatively adopt a novel tertiary topology (1). However, as
shown in Table 3, there are still more or less similar folds found in
PDB, although the sequence identity is very low (=7% on average).
The new entries in PDB released later than the CASPS prediction
season are not included in our template library. On average, these
templates have shorter alignments (=~73% coverage) with higher
RMSD (=3.8 A) than those identified for the benchmark proteins.
Still, acceptable models can be built from the initial template
alignments using TASSER, with an average RMSD from native of
2.87 A for the first predicted model.

Template/Native

Model/Native

Fig. 5. Representative examples showing the improvement of final models
with respect to their initial template alignments. The left column is the
superposition of the template alignments and native, and the right column is
that for refined models and native. The thin lines are native structures; the
thick lines signify templates or final models. Blue to red runs from N to C
terminus. The numbers in parentheses are the coverage of the templates or
models on which the denoted RMSD has been calculated.
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Fig. 6. A representative example of targets where the final model has an
RMSD to native >6 A. The native structure of 1k5dB is shown in white with thin
backbones; the predicted model of the highest cluster density in blue with
thick backbones. The red wire-frame in a denotes the partner chains in the
Ran-RanBP1-RanGAP complex. (a) 1k5dB in the entire complex. (b) Native
model superposition. (c) As in b but with the tail cut off.

Concluding Remarks

In this article, we examined the issues of whether all single-domain
proteins are foldable based on the set of solved structures currently
deposited in PDB (1) and whether the templates can be further
improved by rearranging the fragments. We used our structure
alignment algorithm, SAL (20), to identify the best possible target—
template pairs, and then attempted to build and refine the full-
length model using the template assembly/refinement algorithm
TASSER (27). This strategy was applied to a comprehensive PDB
benchmark set of 1,489 medium-size, single-domain proteins. With
homologous proteins excluded, similar folds can be found for all
benchmark proteins, and the majority have a RMSD to native <4
A over >70% of their sequence. On average, the RMSD between
template and native is 2.51 A with ~82% ahgnment coverage. After
TASSER, the average RMSD in the aligned region improves to 1.88
A. The average global RMSD of unaligned/loop/tail regions (=4
residues) generated by TASSER is 4.3 A. Almost all targets have at
least one full-length model in the top five with an RMSD to native

below 6 A (97% are below 4 A). The average RMSD to native is
2.25 A, comparable with the accuracy of low-to-moderate-
resolution experimental structures. In this sense, the answer to the
question of completeness of the current PDB library for model
construction of single-domain proteins is quite positive. Not only
can physically reasonable models be built, but, starting from struc-
tural alignments, there is a significant improvement in man
models; 349/1,489 targets have a RMSD improvement of >1.0 A
in the aligned region. Thus, it is suggestive that the barrier to
structure refinement noted in CASP5 (10) has been broken.

In contrast to previous approaches, there are several reasons that
contribute to the improvement of model quality compared with
initial templates. First, the force field includes multiple sources of
knowledge-based potentials and consensus tertiary restraints from
multiple templates. The consensus spatial information usually has
higher accuracy/confidence than that of individual templates.
Second, the combination of the different types of energy terms was
optimized on the basis of a large-scale set of structure decoys
(including 100 X 60,000 extrinsic targets/structures) to yield an
optimized potential that can provide better packing of the side-
chains and peptides. This improvement occurs because of a better
correlation between model quality and energy (the correlation
coefficient between RMSD and the combined potential for test
cases is ~0.7). Finally, templates usually contain unphysical align-
ments because chain connectivity was not considered in the initial
alignments. The reassembly procedure of TASSER that converts
these unphysical alignments into physical models also contributes to
the improvement in model quality relative to that of the initial
template alignment. Unlike many other comparative modeling
approaches, e.g., MODELLER (2), whose goal is to optimally satisfy
the spatial restraints of an initial template, the relative orientation
of template fragments, and therefore global topology in TASSER
models, can change. On the other hand, the local conformation of
the continuous fragments is kept rigid during the modeling proce-
dure, which helps the models retain the accuracy of well-aligned
regions from native and reduces the conformational entropy.

For the more realistic situation where templates/alignments are
identified by using our threading program PROSPECTOR 3 (6), the
success rate for the same benchmark set of targets proteins is about
two-thirds (where a foldable case is defined if one of top five
full-length models has an RMSD below 6.5 Ato native) (27). The
results reported here highlight the urgent need to develop more
efficient fold recognition algorithms that can provide acceptable
templates for the remaining one-third of proteins, as well as better
alignments to improve the overall quality of the predictions. In
previous work (27), we also observed an improvement in the models
relative to their initial template alignments, but because threading
models tend to be of poorer quality than those obtained from
structural alignments, it could be argued that the results are not that
significant (i.e., the predicted models might be poorer than the best
structural alignments). Here we have demonstrated that even when

Table 3. Folding results for the new fold targets in CASP5

PDB ID CASP5 ID Length RTari, A* (%) RMay;, At RS, A¥ R1, AS
1h40_ TO170 69 2.81(83) 1.57 1.70 (2) 1.79
1iznC T0162.3 168 5.82 (61) 3.28 3.05(2) 3.31
1mé6yB T01722 101 3.31(71) 2.62 2.79 (1) 2.79
Tnyn_ T0181 111 5.10 (74) 3.88 3.94 (1) 3.94
100uB T0187-1 165 3.61(56) 3.10 3.56 (1) 3.56
1012C T0186.3 36 2.16 (94) 1.71 1.82 (1) 1.82

Average 108.3 3.80 (73) 2.69 2.81(1.3) 2.87

ali, aligned.

*RMSD to native of the best template (RT) and the alignment coverage.
TRMSD from the final model (RM) to native over initial aligned regions.
*RMSD to native for the best model in the top five. The number in parentheses is the rank of the best model.

SRMSD to native for the rank-one model.
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Fig. 7. Side-chain contact probability for random chains as a function of
chain length. (a) Contact probability go(i,j,N/L) for the ith and jth residues at
given scaled contact-numbers, N/L, versus the distance |i — j| along the protein
chain, from simulations of an FJC of 50 linkers with excluded volume. The
Kuhn-length of the FJC is taken to be 11.4 A, according to experimental single
protein molecule stretching data (43). The definition of excluded volume is
introduced on the basis of the minimal observed C, distance in the PDB, i.e.,
no pair of linkers of the FJC could go closer than 4.5 A. Contacts are defined
based on a weighted average of C, distances for contacting residues in the
PDB, i.e., a contact occurs if two linkers are closer than 7.27 A. The curves are
the least square fits to the power-law at each given N/L. (b) The power yversus
the scaled contact-number N/L. Data are from the FJC of different lengths, i.e.,
50-, 100-, 200-, and 300-residue linkers, which correspond to the protein
lengths of 150, 300, 600, and 900 residues, respectively, because one Kuhn-
length here corresponds approximately to three C,—C, backbone lengths. The
error bars denote the power-law fitting errors of a. The curve denotes the least
square fit equation: y = —2.8 + 2.5\/N/L.

the best structural alignments are used, we can often improve the
models. This demonstration represents significant progress in the
field.

Because the average sequence identity between the target pro-
teins and the best templates identified here is only ~13%, much
lower than the “twilight zone” of sequence identity, correctly
aligning the sequence to these templates will be a major challenge.
This result is certainly true for our threading program, PROSPEC-
TOR 3, where for ~90% of targets, at least one correct fold can be
identified in a large scale test; however, only around 62% were
aligned correctly (6).

The results reported here provide a lower bound to the com-
pleteness and utility of the current PDB library. Certainly, the
structure alignment program SAL is not perfect. It is not guaranteed
to find the best structural alignment because the final alignment in
this algorithm is sensitive to the initial guessed superposition. In
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recent work (unpublished results), we found that using the align-
ment from other software [in particular, CE (14)] as the initial
alignment in SAL results in structure alignments of longer coverage
and lower RMSD to native. Better structure alignment algorithms
only serve to identify better templates from the PDB, which should
result in better final models than reported here. Nevertheless, even
now, it seems that the library of the solved protein structures is
complete at the level of single-domain proteins. This structure
completeness should have significant implications for both protein
structure prediction and structural genomics (21, 23).

Appendix: Multiple-Template-Based SG Pair Potential
The protein-specific pair potential in our force field (term iv in the

potential) is calculated from the identified multiple templates by
using
Vi, j)
q(, J) q(, )
—In —— — +{In—— PR
= Q(l,])QO(l,],N/L) Q(l’])q0(17]7N/L)
0

if (i, j) are in aligned regions
if (i, j) are in gapped regions,

(1]

where ¢(i, j) is the number of SG contacts between residues i and
jin all of the templates; Q(i, /) is the number of templates that have
both residue i and j aligned; and qo(i, j, N/L) is the expected
probability of contacts between residues i and j for a random chain
of size L having a given total contact number N. The average (. . .)
is over all aligned pairs of (i, ); the shift sets the potential in gapped
regions equal to the average magnitude of that in the aligned
regions.

To calculate go(i, j, N/L), we performed a Monte Carlo calcu-
lation of the freely jointed chain (FJC) model (41, 42) with excluded
volume. Fig. 7a shows the result for go(i, j, N/L) from a random
chain of 50 linkers. The contact probability of the FJC follows a
power-law over more than three orders of magnitude: go(i, J,
N/L) = |i — j|P™/L), Similar results are also obtained from the chains
with 100, 200, and 300 linkers (data not shown). In Fig. 7b, y as a
function of different scaled contact-numbers, (N/L), is presented.
The data are well fit by: y = —2.8 + 2.5V N/L.

Integration of the contact probability results in a power-law: P(i,
7 = 2wz qoC, j, N/L) ~ i — jI7'%%, which coincides with the
estimate from a Gaussian random chain with excluded volume that
has a power of —9/5 (41).
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