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ABSTRACT
Motivation: Several protein function prediction methods
employ structural features captured in three-dimensional (3D)
descriptors of biologically relevant sites. These methods are
successful when applied to high-resolution structures, but their
detection ability in lower resolution predicted structures has
only been tested for a few cases.
Results: A method that automatically generates a library of
3D functional descriptors for the structure-based prediction
of enzyme active sites (automated functional templates, 593
in total for 162 different enzymes), based on functional and
structural information automatically extracted from public data-
bases, has been developed and evaluated using decoy struc-
tures.The applicability to predicted structures was investigated
by analyzing decoys of varying quality, derived from enzyme
native structures. For 35% of decoy structures, our method
identifies the active site in models having 3–4 Å coordinate root
mean square deviation from the native structure, a quality that
is reachable using state of the art protein structure prediction
algorithms.
Availability: See http://www.bioinformatics.buffalo.edu/
resources/aft/
Contact: skolnick@buffalo.edu

INTRODUCTION
One basic step in the process of learning how a living organ-
ism works is the determination of the biochemical functions
of all the proteins encoded by its genome (Alberts et al.,
1994). Although the biochemical function of a protein does
not necessarily determine its biological role in the cell, it
does provide an excellent starting point for further investiga-
tions. This kind of large-scale functional assignment requires
the application of predictive methods, since the exhaustive
experimental characterization of complete proteomes is not
currently feasible.

The most commonly used approaches to the prediction of
protein function are based on the transfer of annotation from

∗To whom correspondence should be addressed.

homologous sequences (Bork et al., 1994; Koonin et al.,
1996). However, as was extensively analyzed by Todd et al.
(2001), the functional promiscuity exhibited by many pro-
tein families limits the success of annotation transfer between
homologs. If uncertain functional assignments are used as an
origin for successive predictions, the homology-based annota-
tion strategy may lead to a propagation of errors (Galperin
and Koonin, 1998). Quality evaluations of functional assign-
ments have shown that this type of homology-based inference
is a common source of error in genome annotation (Devos
and Valencia, 2001; Iliopoulos et al., 2003). Different groups
studied the sequence identity threshold that allows the transfer
of function as defined by the Enzyme Commission (EC) num-
bers (Barrett, 1997), but the specific value for this threshold
is still the subject of controversy (Devos and Valencia, 2000;
Rost, 2002; Tian and Skolnick, 2003; Todd et al., 2001; Wilson
et al., 2000). By comparing domain pairs at varying levels
of sequence similarity extracted from SCOP (Murzin et al.,
1995), Wilson et al. (2000) established that over 90% of the
pairs conserved the first three EC components at 30–40%
sequence identity. The same result was found by Devos
and Valencia (2000), by analyzing pairs of aligned enzyme
sequences from the FSSP database (Holm and Sander, 1994).
Similarly, by sequence comparison of members of CATH
superfamilies (Orengo et al., 1997), Todd et al. (2001) con-
cluded that above 30% sequence identity, the first three EC
components may be predicted with an accuracy of at least
90%, but below that threshold, structural data are essen-
tial to determine the function. Recently, Rost (2002) argued
that these groups overestimated the extent of conservation of
enzyme function because their datasets were either too biased,
or too small. By performing an analysis over data whose bias
was reduced by clustering of similar sequences, he found that
even at 50% sequence identity, the transfer of three or four EC
components is <30% accurate (Rost, 2002). However, when
Tian and Skolnick (2003) reduced the bias by classifying the
enzymes not only according to the level of sequence similarity,
but also considering functional similarity, they observed that
40% sequence identity is enough to transfer the first three EC
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components with an accuracy of at least 90%. Thus, most
of analyses agreed that 40% sequence identity allows the
transfer of the first three EC components with an accuracy
of at least 90%. However, to increase this level of accuracy,
the development of other methods is required.

Because structure is more conserved than sequence, pro-
tein function prediction should, in principle, benefit by the
addition of structural information (Skolnick et al., 2000).
However, as mentioned before, divergent and convergent
evolution have resulted in a non-unique relationship between
function and fold, that is, fold type by itself is not enough
for correct function prediction (Hegyi and Gerstein, 1999).
Several protein function prediction methods take advantage
of more detailed structural features, captured in libraries of
three-dimensional (3D) descriptors of biologically relevant
sites (Fetrow and Skolnick, 1998; Hamelryck, 2003; Jonassen
et al., 1999; Kleywegt, 1999; Liang et al., 2003; Oldfield,
2002; Pennec and Ayache, 1998; Russell, 1998; Wallace
et al., 1997; Zhao et al., 2001). These methods based on
structural templates are successful when applied to high-
resolution structures, but their ability to detect functional
sites in lower resolution predicted structures has only been
tested for a few specific descriptors (Fetrow and Skolnick,
1998; Wei et al., 1999). Therefore, it is unclear how
applicable is this approach to the large-scale function pre-
diction involving a complete library of structural templates
and medium-to-low resolution protein models. Given recent
improvements in the performance of protein structure pre-
diction algorithms (Bonneau et al., 2002; Skolnick et al.,
2003; Zhang et al., 2003), a template-based method for pro-
tein function prediction that does not require high-resolution
structures would be very advantageous and of immediate
practical value.

Here, we present a method for large-scale protein function
prediction based on structural descriptors, termed ‘automated
functional templates’ (AFTs) that focuses on the recognition
of enzyme active sites in predicted protein structures. Concep-
tually similar to fuzzy functional forms (FFFs) (Fetrow and
Skolnick, 1998), the AFTs are defined by pairwise distances
between atoms and pseudo-atoms related to functionally
important residues. However, as opposed to the FFFs, the
AFTs are automatically generated; therefore, they are read-
ily implemented on a large scale. By relying on functional
and structural information automatically extracted from the
Swiss-Prot and Protein DataBank (PDB), the method gener-
ates 593 descriptors for 162 different enzymes. The algorithm
first evaluates the specificity of each AFT on a represent-
ative set of PDB high-resolution structures, and then sets
confidence intervals for the identification of putative active
sites in functionally uncharacterized structures. To investig-
ate its applicability to predicted structures, we perform an
all-against-all scanning of the 593 AFTs over a set of 593 000
decoy structures exhibiting up to a 10 Å Cα coordinate root
mean square deviation (crmsd) from the native structure. The

decoys are derived from 593 native structures of enzymes
whose active sites are true positives for each of the AFTs
in the functional descriptor library. To illustrate the pos-
sible annotation scenarios for the application of the AFT
approach, we present two examples of function prediction for
Escherichia coli proteins. The result of this analysis provides
for the first time a comprehensive view of the expected success
rate of a function prediction method based on structural tem-
plates, when applied to the identification of functional sites in
predicted protein structures.

SYSTEMS AND METHODS
Structural and sequence databases
Structural information is obtained from the April 15, 2003
PDB (http://www.rcsb.org/pdb/). To reduce database redund-
ancy, a list containing the largest sequence-unique subset
of PDB chains is retrieved from the April 3, 2003 evalu-
ation of automatic (EVA) protein structure prediction web-
site (http://cubic.bioc.columbia.edu/eva/res/weeks.html). The
resulting representative subset of the PDB contains 2965
chains, where no pair has more than 33% identical residues
over more than 100 aligned residues.

Swiss-Prot Release 41.2 and TrEMBL Release 23.4 of
March 28, 2003 (http://us.expasy.org/sprot/) are the sources of
all the sequence and functional information. Although there
are many other sequence databases available, Swiss-Prot is
chosen because of its high level of annotation and minimal
redundancy.

The standard system for enzyme classification is based
on the EC numbers, which consist of four components: the first
three components (class, subclass and sub-subclass) define
the reaction catalyzed by the enzyme, and the fourth compon-
ent is a unique identifier or serial number that can represent
the type of chemical bond, molecular mechanism or substrate
specificity (Barrett, 1997). An EC number/Swiss-Prot cross
reference table is compiled by parsing the annotated EC num-
bers in the DEscription (DE) lines of all Swiss-Prot entries.
EC numbers with missing components (e.g. EC 3.4.11.-) are
ignored.

We created a PDB/Swiss-Prot cross reference table based
on the April 5, 2003 database offered by the IMB Jena Image
Library of Biological Macromolecules (http://www.imb-
jena.de/ImgLibPDB/pages/SWP/index.php). This database
not only contains more cross references than either PDB or
Swiss-Prot, but also corrects some obvious errors found in the
DataBase REFerence (DBREF) section of many PDB files.
For example, although the PDB entry 1JAN incorrectly refers
to the Swiss-Prot entry COG8_HUMAN, the IMB Jena data-
base provides the right cross reference, i.e. MM08_HUMAN.
The IMB Jena database only links Swiss-Prot entries to PDB
id codes, and not to individual protein chains. Therefore,
for each Swiss-Prot—PDB cross reference, the chain iden-
tifier information is obtained by detecting the best alignment

1088

http://www.rcsb.org/pdb/
http://cubic.bioc.columbia.edu/eva/res/weeks.html
http://us.expasy.org/sprot/
http://www.imbjena.de/ImgLibPDB/pages/SWP/index.php


Automated templates for enzyme active sites

between the Swiss-Prot sequence and the sequences of every
chain present in the corresponding PDB file.

Representation of an AFT
An automated functional template or AFT consists of
the spatial arrangement of N functional building blocks
(3 ≤ N ≤ 5). A functional building block is composed of the
Cα atom of a functional residue, the two Cα atoms of its N- and
C-terminal adjacent residues, and (for non-glycine residues)
one pseudo-atom corresponding to its side-chain centroid
(SC). An AFT is defined by the amino acid types of 3–5 func-
tional residues, and the set of pairwise distances between the
atoms and pseudo-atoms that constitute the functional build-
ing blocks. The range of the number of functional building
blocks forming an AFT, as well as the reduced description
of the amino acids are chosen after optimization for sensit-
ivity (true positive rate), specificity (true negative rate) and
calculation speed.

Outline of the AFT building process
The AFTs are based on the 3D arrangement of residues that
are important for defining the molecular function of a given
enzyme. A summary of the procedure for building an AFT
is shown in Figure 1. The algorithm consists of three basic
steps: (i) retrieval of functionally important substructures from
all PDB structures associated with a specific EC number;
(ii) generation of tentative distance-based templates describ-
ing the active site and (iii) a specificity assessment of the
AFTs. It should be stressed that the whole procedure is fully
automated. The details are provided here.

Retrieval of functionally important
substructures from PDB
First, in order to data mine for functional residues, we col-
lect all the Swiss-Prot entries that refer to a given EC number.
Entries linked to more than one EC number are ignored (e.g.
viral polyproteins), because in the annotation provided by
Swiss-Prot there are no links between functional residues
and particular EC numbers. We extract information about
the residues that are potentially important for the enzymatic
activity from the feature table (FT) lines of the Swiss-Prot
entries. Each FT line contains a key name that describes
a region of interest, as well as two numbers indicating the
position of the region in the sequence. We collect functional
residue information from FT lines containing the following
key names: (a) ACT_SITE, indicating amino acids involved
in the enzyme activity; (b) METAL, referring to metal binding
sites; (c) BINDING, referring to binding sites for any pros-
thetic group or co-enzyme and (d) SITE, indicating any other
interesting site in the sequence.

For each functional residue, we store: (a) the accession
number of the originating Swiss-Prot entry; (b) the sequence
position; (c) the type of amino acid; (d) the FT key name; and,
after mapping the residues in all the cross referenced PDB

Fig. 1. Overview of the procedure for building an AFT.

chains; (e) the coordinates necessary for the AFT generation.
We exclude all PDB structures for which either of the fol-
lowing applies: (a) the coordinates of at least three functional
residues are unavailable; (b) coordinates of at least one residue
annotated as an ACT_SITE are unavailable; (c) any functional
residue is mutated; (d) the structure is a theoretical model and
(e) the experimental technique used to solve the structure is
NMR and a minimized or averaged model is not provided.
Many heteromultimeric enzymes have catalytic residues in
different polypeptides, with active sites located at the subunit
interface (Bartlett et al., 2002). These cases are beyond the
scope of this study; therefore, we rule out PDB structures
exhibiting functional residues distributed across two or more
chains.

After this first step is applied to all existent EC numbers,
we obtain the coordinates of 15 561 functional building blocks
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from 3506 PDB chains. These protein structures are linked to
a total of 395 Swiss-Prot sequences representing 214 different
enzymes.

Generation of a tentative AFT
The second step of the algorithm consists of processing the
gathered functional information to build provisional AFTs.
Since the goal is to select amino acids involved in a common
active site, we require all the AFT functional residues to be
within interacting distance. The residues are defined as poten-
tially interacting if their SC pseudo-atoms are within 17 Å.
After applying this filter, and depending upon the EC number
analyzed, we end up with a family ranging from 1 to 207 func-
tional substructures. Each functional substructure belongs to
a different PDB chain and is composed of 3–12 functional
building blocks.

When more than five functional residues are available, we
select a subset of five, according to the following prefer-
ence rules designed to increase the biological significance
of the functional descriptor: (a) maximize the number of
functional substructures containing the five residue subset;
(b) maximize the number of residues annotated under the key
name ACT_SITE; (c) minimize the average distance between
residues and (d) minimize the pairwise distance root mean
square deviation (drmsd) between substructures.

If the amino acid types and the structure of at least three
functional residues are not conserved through all functional
substructures (using a drmsd threshold of 0.3 Å), we define
subfamilies by complete linkage clustering so that both cri-
teria are satisfied. Then, we create a tentative template for
the family, or one for each subfamily if clustering was neces-
sary. The template is defined by the amino acid types of the
3–5 functional residues, plus the set of averaged distances
between every possible pair of atoms or pseudo-atoms that
define the functional building blocks.

We opt for a template based on averaged distances instead
of one based on averaged coordinates, to be able to recognize
mirror images of known functional sites. This is important
since there are at least two reported cases of isoenzymes dis-
playing mirror image active sites: carbonic anhydrase (EC
4.2.1.1) (Kimber and Pai, 2000) and methionine sulfoxide
reductase (EC 1.8.4.5) (Lowther et al., 2002).

The averaged distances are calculated hierarchically, to
avoid bias toward overrepresented structures. First, we aver-
age the pairwise interatomic distances from functional sub-
structures belonging to different chains of the same PDB
entry, then those from representatives of different PDB entries
linked to the same Swiss-Prot sequence, and finally those
from representatives of different Swiss-Prot sequences. We
define the ‘positive dataset’ as the collection of all the sub-
structures utilized to build the AFT. The size of the positive
dataset ranges from 1 to 51 (for the AFT associated with EC
1.11.1.5, cytochrome c peroxidase) with an average value of
3.8 substructures per AFT.

Fig. 2. Specificity parameters of an AFT.

After this second step is applied to all existent EC numbers,
we obtain 605 provisional AFTs associated with 167 enzymes.

Validation of an AFT
In the final step of the procedure, we evaluate the ability of
an AFT to specifically detect the enzyme active site for which
the AFT was designed, and we establish criteria to recognize
significant predictions. First, we prepare a ‘negative dataset’
from the representative subset of PDB by removing all the
positive structures, i.e. PDB chains from which the posit-
ive dataset was extracted. We also remove the structures of
enzymes whose EC numbers share the first three components
with the EC number under analysis.

We scan the negative structures for sets of residues that
satisfy the amino acid type requirements of the tentative
AFT, and we calculate the drmsd from the AFT of every
detected hit. For a given AFT, the number of hits in the neg-
ative dataset ranges from 5 × 105 to 5 × 1010, depending
upon the number of residues and the sequence complexity of
the functional descriptor. As shown in Figure 2, we define
drmsdNeg as the drmsd from the AFT of a hit in the negative
dataset, and drmsdMinNeg as the minimum drmsdNeg detec-
ted in the negative dataset. Similarly, drmsdPos is defined
as the drmsd from the AFT of a substructure in the pos-
itive dataset, and drmsdMaxPos as the maximum drmsdPos

detected in the positive dataset (Fig. 2). Our criterion to pro-
mote a tentative AFT to a validated AFT is the existence of
a gap of at least 0.2 Å between the distributions of drmsd
for the negative and the positive hits, i.e. we require that
drmsdMinNeg − drmsdMaxPos > 0.2 Å.

We propose two drmsd cutoffs for establishing the signific-
ance of a match to an AFT: (i) a restrictive cutoff calculated as
the average of drmsdMinNeg and drmsdMaxPos, and (ii) a per-
missive cutoff defined so that the expected number of false
positive matches is less than 0.005 per negative structure.
After testing different schemas to evaluate the significance
of a hit to decoy structures (see below), we found that the cur-
rent concept of permissive cutoff provides an adequate balance
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between sensitivity and specificity for the application of the
AFTs to low resolution structures. Based on the restrictive and
the permissive cutoffs, we define high confidence and medium
confidence intervals of drmsd (Fig. 2).

After the last step of the algorithm is applied to all existent
EC numbers, we obtain 593 validated AFTs associated with
162 enzymes.

Generation of decoy structures
In order to generate the decoys structures, we first select one
representative positive protein for each of the 593 AFTs. Then,
we use these representative structures as starting points for
parallel hyperbolic Monte Carlo simulations of CABS model
(Zhang et al., 2002). Only Cα atoms and SC pseudo-atoms are
modeled. For each protein, we randomly select 1000 decoys,
equally distributed in 10 bins according to their crmsd to the
native structure, i.e. [i − 1 Å, i Å], i = 1, 2, . . . , 10. To avoid
structural redundancy, we add a filter in the decoy selection
procedure so that the crmsd of any pair of structural decoys
in the ith bin is > i/2 Å. For the purpose of native-like decoy
generation, contact information from native structures is par-
tially incorporated as loose tertiary restraints into the CABS
force field. Therefore, the low (high) crmsd decoys are mainly
from low (high) temperature replicas.

During the generation of the decoys, we have an energy term
in our force field, which puts a propensity to the predicted sec-
ondary structure. The purpose of this energy term is to help
the decoy conformations keep protein-like local structures.
However, if other interactions, such as short-range correlation,
distant restraints, or steric clashes, do not favor the predicted
secondary structures, the local conformations can still be dif-
ferent from the predicted or native secondary structures. For
the side-chain construction, two kinds of rotamers have been
used, corresponding to residues with extended or helical sec-
ondary structure. Depending on the local backbone structures,
the appropriate side-chain packing is produced under the guide
of the CABS potential. Therefore, although on average the
protein-like secondary structure and the side-chain packing
are well preserved in the decoy conformations, variation is
still allowed because of the local structure flexibility in CABS
model. As the quality of the models deteriorate, the protein-
like secondary structure and the side-chain packing become
worse. The global and local structural features of these decoys
closely resemble those of the predicted protein structures gen-
erated by the TOUCHSTONE II (Zhang et al., 2003) and
TASSER (Zhang and Skolnick, 2003) ab initio algorithms.

RESULTS AND DISCUSSION
Overview of the obtained AFTs
The different stages of AFT generation are described in
Systems and methods section, and outlined in the flowchart
of Figure 1. The application of our procedure to all known
enzymes results in 605 AFTs associated with 167 different

Table 1. List of the 162 enzymes defined by the 593 AFTs

Class 1 Class 3 Class 4
1.1.1.23 3.1.1.3 3.1.1.7 3.1.1.45 3.1.1.47 4.1.1.50
1.1.1.27 3.1.1.61 3.1.1.74 4.1.2.13
1.1.1.28 3.1.2.22 4.1.3.7
1.1.1.29 3.1.3.1 3.1.3.2 3.1.3.16 4.2.1.1
1.1.1.37 3.1.11.2 4.2.1.11
1.1.1.95 3.1.21.1 3.1.21.4 4.2.1.24
1.1.3.15 3.1.26.4 4.2.99.18
1.1.3.38 3.1.27.1 3.1.27.3 3.1.27.4 3.1.27.5 4.6.1.1
1.3.99.1 3.1.31.1 Class 5

1.4.3.6 3.2.1.1 3.2.1.3 3.2.1.4 3.2.1.10 5.1.2.2
1.7.2.2 3.2.1.17 3.2.1.18 3.2.1.60 3.2.1.68 5.3.1.5

1.11.1.5 3.2.1.91 3.2.1.135 5.3.3.1
1.11.1.6 3.3.2.3 3.3.2.6 5.4.2.1
1.11.1.7 3.4.11.5 3.4.11.10 3.4.11.18 5.5.1.1

1.11.1.10 3.4.16.5 3.4.16.6 Class 6
1.11.1.11 3.4.17.1 3.4.17.2 3.4.17.8 3.4.17.15 6.3.2.4
1.14.99.1 3.4.17.18 6.3.5.2

1.15.1.1 3.4.19.3 3.4.19.12
1.17.4.1 3.4.21.1 3.4.21.4 3.4.21.5 3.4.21.6

Class 2
2.1.1.6 3.4.21.7 3.4.21.9 3.4.21.10 3.4.21.12
2.1.4.1 3.4.21.20 3.4.21.21 3.4.21.22 3.4.21.26
2.1.4.2 3.4.21.32 3.4.21.35 3.4.21.36 3.4.21.37

2.3.1.41 3.4.21.39 3.4.21.42 3.4.21.46 3.4.21.47
2.3.2.13 3.4.21.50 3.4.21.59 3.4.21.62 3.4.21.64
2.4.1.19 3.4.21.66 3.4.21.68 3.4.21.69 3.4.21.71
2.4.2.36 3.4.21.73 3.4.21.79 3.4.21.80 3.4.21.81
2.7.1.11 3.4.21.82 3.4.21.87 3.4.21.88 3.4.21.97
2.7.1.37 3.4.22.1 3.4.22.2 3.4.22.14 3.4.22.16
2.7.1.40 3.4.22.17 3.4.22.25 3.4.22.30 3.4.22.38
2.7.1.50 3.4.22.39 3.4.22.40 3.4.22.43

2.7.2.8 3.4.24.7 3.4.24.11 3.4.24.16 3.4.24.17
2.7.7.7 3.4.24.21 3.4.24.23 3.4.24.26 3.4.24.27

2.7.7.19 3.4.24.28 3.4.24.29 3.4.24.34 3.4.24.40
2.7.9.1 3.4.24.42 3.4.24.65 3.4.24.69
2.8.1.1 3.5.1.1 3.5.1.38 3.5.1.52

3.5.2.6
3.5.4.4 3.5.4.5
3.8.1.5

enzymes. After the sensitivity and specificity assessment step,
the number is reduced to 593 AFTs for 162 enzymes, whose
EC numbers are shown in Table 1. The fractions of enzymes
listed in Table 1 belonging to each EC class are similar to
those from Release 30 of the Enzyme nomenclature data-
base, of March 2003 (http://us.expasy.org/enzyme/), with
some overrepresentation of class 3.

As shown in Table 2, the validated AFTs cover 24% of
the known sub-subclasses of enzymes, but only 4% of the
total number of existent enzymes as defined by the four com-
ponents of the EC number. However, since our procedure
is strictly structure-dependent, it is also useful to refer our
results to the number of enzymes with at least one solved
structure. In that case, the percentage increases to 19%. In
Systems and methods section, we explain all the reasons that
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Table 2. Fraction of known enzymes covered by the AFTs

Components in
the EC number

Known
enzymesa

Enzymes with
known structureb

Enzymes with
tentative AFTsc

Enzymes with
validated AFTsd

n1. - . - . - 6 6 (100%)e 6 (100%)e 6 (100%)e

n1.n2. - . - 59 52 (88%) 27 (46%) 27 (46%)
n1.n2.n3. - 211 160 (76%) 54 (26%) 54 (24%)
n1.n2.n3.n4 3780 871 (23%) 167 (4%) 162 (4%)

aNumber of known enzymes at the corresponding level of nomenclature definition.
bNumber of enzymes with at least one available PDB structure.
cNumber of enzymes described by at least one of 605 non-validated AFTs.
dNumber of enzymes described by at least one of 593 validated AFTs.
ePercentage of the number of known enzymes.

account for the failure of our approach in producing AFTs for
the remaining structurally characterized enzymes. The main
causes are: (a) insufficient functional annotation in Swiss-Prot
and (b) insufficient structural information in the PDB.

Significant cutoffs for active site detection
The application of the AFTs to identify putative active sites
requires a criterion to assess the significance of a hit. Thus, we
compute a restrictive and a permissive drmsd cutoff for each
AFT, as detailed in Systems and methods section. Figure 3
shows the cumulative relative frequency of the cutoffs for
the 593 validated AFTs. The restrictive (permissive) cutoffs
range from 0.12 to 1.73 Å (0.53 to 3.67 Å), with a median
value of 0.76 Å (1.88 Å). Hits whose drmsd from the AFT
are below the restrictive or the permissive cutoffs are con-
sidered of high or medium confidence, respectively (Fig. 2).
The choice of a specific drmsd cutoff is a trade-off between
sensitivity and specificity. The negative and the positive data-
sets include only experimentally determined structures, and
by definition, the scanning of these structures using restrict-
ive cutoffs achieves sensitivity and specificity values of 100%
(see Systems and methods section). It is expected that the scan-
ning of high-resolution structures of uncharacterized enzymes
using restrictive cutoffs would results in similar values of sens-
itivity and specificity, provided that an AFT for the active
site is available. Such restrictive cutoffs cannot, in general,
be applied to low-resolution structures due to their higher
chance of having a distorted active site. Thus, the use of the
permissive cutoffs, which sacrifice specificity for sensitivity,
allows the method to be applied to the detection of active sites
in low-resolution structures.

Several AFTs have low-restrictive cutoffs due to one of the
main limitations of the EC classification system: the descrip-
tion of the enzyme function is based on overall reaction,
even though the structure–function correlation is higher at
the level of partial chemical reactions (Babbitt, 2003). For
example, our library includes an AFT for 1,4-α-d-glucan glu-
canohydrolase (EC 3.2.1.1) that has a good permissive cutoff
(2.3 Å), but a poor restrictive cutoff (0.2 Å) as a consequence

Fig. 3. Distribution of the drmsd cutoffs for active site identification.

of drmsdMinNeg (0.3 Å) being too close to drmsdMaxPos (0.1 Å).
The negative hit that defines the drmsdMinNeg belongs to cyc-
lomaltodextrin glucanotransferase (EC 2.4.1.19), an enzyme
that degrades starch to cyclodextrins by formation of a 1,4-α-
d-glucosidic bond. Thus, although even the first components
of the EC numbers are different in these enzymes, they
catalyze related partial reactions, which is reflected in the
structural similarity exhibited by their active sites.

As mentioned in Systems and methods section, for calcula-
tion of the drmsd cutoffs, we remove from the negative set the
structures of enzymes whose EC numbers share the first three
components with the EC number under analysis. This is done
because enzymes that belong to the same EC sub-subclass
exhibit highly related active sites. For example, Wallace et al.
(1996) developed a single functional descriptor able to spe-
cifically recognize the active site shared by as many as 13
different serine proteases (EC 3.4.21.-). Therefore, although
each AFT is associated with a specific four-component EC
number, the enzymes of the same sub-subclass were not
considered as false positive hits during the validation pro-
cess, implying a specificity of the AFT at the first three EC
components level.

Detection of active sites in decoy structures
To estimate the applicability of our method to predicted pro-
tein structures with different levels of resolution, we scan the
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Fig. 4. Application of AFTs to decoy structures. The 593 000 decoys are distributed in bins according to: (A and B) the global Cα crmsd
from the native structure, or (C and D) the local drmsd from the active site substructure. (A and C) Fraction of decoys correctly annotated
versus ranking of the best true positive hit at different rmsd intervals. (B and D) Fraction of decoys correctly annotated (top 1 hit) versus rmsd
interval. The recognition by an AFT matching the first three components of the true EC number is considered a true positive hit.

complete AFT library against decoy structures, using per-
missive drmsd cutoffs. For each AFT, we first select one
representative structure from the set of positive structures
utilized for its construction, and then generate 1000 decoys
as described in Systems and methods section. After an all-
against-all scanning of the 593 descriptors over the 593 000
decoys, we rank the medium confidence hits for each decoy in
terms of increasing drmsd from the AFTs. In other words, for
each decoy we generate a list of possible functions, ranked by
the degree of structural similarity between the putative active
site and the corresponding AFT. Then, we calculate the overall
fraction of decoys whose function at the level of the first three
EC components is correctly assigned in the top 1–10 rank-
ing positions. We present the result of this analysis for two
different partitions of the 593 000 decoys: (i) according to
their global crmsd from the native structures (Fig. 4A and B),
and (ii) according to the local drmsd from the substructure
recognized by the corresponding AFT in the native structure
(Fig. 4C and D). The same analysis using restrictive cutoffs or
different definitions of the permissive cutoff shows a severe
drop in the fraction of decoys correctly assigned (data not
shown), confirming that permissive cutoffs are more appro-
priate for biochemical function prediction in low-resolution
structures. The global crmsd reflects an averaged distortion

for the entire structure, but a substructure belonging to a
set of models of a given global crmsd, still spans a con-
siderable range of local distortions. In particular, functional
substructures such as active sites tend to be better defined than
randomly selected substructures. Thus, even though the per-
missive cutoffs range from 0.53 to 3.67 Å drmsd, they can
partially detect distorted functional substructures in models
whose global Cα crmsd from the native structure are in the
interval of 3–4 Å. However, the lower the permissive cutoff
of the AFT, the higher the quality of the model should be in
order to generate significant results.

The graphs presented in Figure 4 allow us to estimate the
expected success rate of our method when it is applied to
predicted structures. For instance, for models in the range of
3–4 Å Cα crmsd from the native structure, one can expect a
correct functional assignment in 35% of the cases (Fig. 4A
and B); if the top 5 hits are considered, that success rate
increases to 48% (Fig. 4A). As a result of local similarit-
ies shared by a subset of the active sites recognized by our
AFT library, the top hit detects at least one true functional
residue in 76% of the decoys belonging to the abovemen-
tioned range of crmsd, independent of the correctness of the
functional assignment. Similarly, for models with local dis-
tortions in the range of 1.5–2.0 Å drmsd from the active site
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Fig. 5. Application of AFTs to predicted structures. Models for E.coli proteins b2999 (A) and b2326 (B). The spheres represent the location
of the hits by an AFT for EC 3.1.1.45 (C) in protein b2999 and an AFT for EC 3.4.24.69 (D) in protein b2326. Light gray spheres correspond
to Cα atoms and dark gray spheres denote the SC pseudo-atoms.

(typically corresponding to 2.5–3.4 Å crmsd), success rates
of 56% (Fig. 4C and D) and 73% (Fig. 4C) can be expected
for the top 1 and top 5 hits, respectively.

Detection of active sites in predicted structures
In order to illustrate the scenarios of function annotation in
which our approach can be useful, we present two examples
of the application of AFTs to predicted structures of E.coli
proteins. Both models (Fig. 5A and B) were generated using
TASSER, a new hierarchical approach to protein structure
prediction that consists of the template identification by
threading, followed by the assembly of tertiary structures via
rearranging continuous template fragments under the guide
of an optimized Cα and side chain based potential (Zhang
and Skolnick, 2003). Foldability estimators calculated by
TASSER indicate that the model for b2999 (Fig. 5A) is of very
high quality, and the model for b2326 (Fig. 5B) is of low qual-
ity, consistent with its absence of strong threading templates.
In order to retrieve the most up-to-date annotation for these test

cases, we consulted two different databases: (i) GenProtEC
(Riley, 1998) of September 17, 2003 that includes information
from multiple sources including sequence similarity to ortho-
logs as defined by Darwin (Gonnet et al., 2000), identification
of groups with similar protein sequence within E.coli that are
clustered by transitive relationships, and updated literature
references; and (ii) Swiss-Prot Release 42.1 and TrEMBL
Release 25.1 of October 24, 2003.

The first example corresponds to protein b2999 or
ORF_F136, the 136 amino acid product of the E.coli gene
YGHX. The functional assignment for b2999 in GenProtEC
is ‘putative enzyme with alpha/beta-hydrolase-like domain’;
and TrEMBL (entry Q46849) shows no information about
function, but displays cross-references to: (i) Gene Onto-
logy (Ashburner et al., 2000) term GO:0016787, which
corresponds to ‘hydrolase activity (EC 3.-.-.-) inferred from
electronic annotation’ and (ii) PFAM (Bateman et al., 2002)
PF01738, dienelactone hydrolase family (EC 3.1.1.45).
A Blast search of b2999 against EXProt (Ursing et al., 2002),
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a database of proteins with experimentally verified function,
shows that the best hit is in fact a dienelactone hydrolase
(Swiss-Prot O67988). However, the identity between both
sequences over the region aligned by BLAST is 29% (37/127
residues), a value below the 40% sequence identity threshold
required to transfer the first three EC components to an unchar-
acterized sequence (Tian and Skolnick, 2003). When we scan
our model for b2999 (Fig. 5A) with the AFT library, we find a
hit (with a 0.81 Å drmsd) below the permissive cutoff (1.86 Å
drmsd) for the AFT associated with EC 3.1.1.45 (Fig. 5C).
Therefore, our predicted function for this target is carboxylic
ester hydrolase (EC 3.1.1.-). This test case exemplifies one of
the situations in which the AFT approach can be advantage-
ous, i.e. when the level of sequence identity is sufficient to
detect an evolutionary relationship and build a good model,
but not enough for a confident homology-based functional
annotation. In this case, the AFT method generates a high
confidence prediction, by verifying the compatibility between
a known active site and the spatial arrangement of the putative
active site residues in the model.

The second example corresponds to protein b2326 or yfcM,
the 182 amino acid product of the E.coli gene YFCM. The
functional assignment for b2326 in GenProtEC is ‘unknown’;
and neither Swiss-Prot (entry P76938) nor the databases
cross-referenced by Swiss-Prot shows any information about
function. A Blast search of b2326 against EXProt does not
produce any significant hit. The scanning of the model for
b2326 (Fig. 5B) with the AFT library produces a hit (with a
1.50 Å drmsd) below the permissive cutoff (2.22 Å drmsd) for
the AFT associated with EC 3.4.24.69 (Fig. 5D). Thus, our
functional annotation for this target is metalloendopeptidase
(EC 3.4.24.-). This test case represents a different scenario for
the application of the AFT method; i.e. when absolutely no
functional information can be transferred by homology, and
no structural relatives can be easily recognized. In this case,
the confidence of the functional prediction is limited by the
estimated quality of the model. Still, the prediction can be
useful as a hint for experimentalists interested in a specific
target.

The main advantage of the AFT approach is that, as oppos-
ite to the annotation transfer based on homology that depends
on global parameters such as sequence identity, the AFT
focuses on the 3D arrangement and amino acid type of a few
putative active site residues. Thus, our method is potentially
able to detect new relationships between active sites and fold
types. As pointed out by Todd et al. (2001) we are likely
to observe even more extensive and unexpected variations in
function within many superfamilies in the future. On the other
hand, the most important limitations of the AFT strategy are:
(i) its dependency of the quality of the protein model, which
cannot always be assessed and (ii) the reduced number of
different EC numbers for which experimental structures are
available, which limits the number of AFTs and consequently
the number of predictions in a large-scale analysis.

CONCLUSION
We have described a method that automatically generates a
library of functional 3D descriptors (automated functional
templates or AFTs) for the structure-based prediction of
enzyme active sites. We have shown that 593 AFTs specific-
ally recognize, at the level of the first three components of
the EC number, the experimentally determined structures cur-
rently available for 162 different enzymes. We have performed
a large-scale test to measure the scope of the AFT approach on
low-resolution structures. Previously, based on the analysis of
calcium-binding sites, Wei et al. (1999) questioned the utility
of predicted protein structures for identification of functional
active sites. However, in 35% of the cases, our method can
correctly identify the biochemical function of enzymes whose
models are in the range of 3–4 Å crmsd from the native struc-
ture, a quality that is reachable using state of the art ab initio
algorithms for protein structure prediction (Zhang et al.,
2003; Zhang and Skolnick, 2003). For instance, 46% of the
sequences belonging to a benchmark set composed by 1489
non-homologous proteins with 41–200 residues, the TASSER
algorithm can generate models whose global Cα atom crmsd
is below 4 Å (Zhang and Skolnick, 2003). Our next step will
be to apply the AFT method on a large-scale to predicted
structures of proteins with uncharacterized biochemical func-
tion. By greatly reducing the number of functions to be tested,
the predictions generated by our approach would significantly
accelerate experimental screening for the determination of
enzyme activity.
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