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ABSTRACT The protein structure prediction algorithm TOUCHSTONEX that uses sparse distance restraints derived from
NMR nuclear Overhauser enhancement (NOE) data to predict protein structures at low-to-medium resolution was evaluated as
follows: First, a representative benchmark set of the Protein Data Bank library consisting of 1365 proteins up to 200 residues
was employed. Using N/8 simulated long-range restraints, where N is the number of residues, 1023 (75%) proteins were folded
to a Ca root-mean-square deviation (RMSD) from native,6.5 Å in one of the top five models. The average RMSD of the models
for all 1365 proteins is 5.0 Å. Using N/4 simulated restraints, 1206 (88%) proteins were folded to a RMSD ,6.5 Å and the
average RMSD improved to 4.1 Å. Then, 69 proteins with experimental NMR data were used. Using long-range NOE-derived
restraints, 47 proteins were folded to a RMSD ,6.5 Å with N/8 restraints and 61 proteins were folded to a RMSD ,6.5 Å with N/4
restraints. Thus, TOUCHSTONEX can be a tool for NMR-based rapid structure determination, as well as used in other
experimental methods that can provide tertiary restraint information.

INTRODUCTION

The prediction of the three-dimensional structure of proteins

from their primary sequences has increased in importance as

additional genomes have been sequenced (Baker and Sali,

2001; Skolnick et al., 2000), but the application of pure ab

initio approaches to protein structures has been limited to

quite small proteins (Liwo et al., 1999; Simons et al., 2001;

Zhang et al., 2003). However, it has been found that in ab

initio protein structure prediction, sparse distance restraints

can be sufficient to guide folding to a correct structure, which

otherwise would be difficult to obtain (Kolinski and

Skolnick, 1998; Skolnick et al., 1997). Several articles have

been published on this subject (Aszodi et al., 1995; Bowers

et al., 2000; Connolly et al., 1994; Kolinski and Skolnick,

1998; Li et al., 2003; Skolnick et al., 1997; Smith-Brown

et al., 1993). For example, Smith-Brown et al. (1993)

modeled a protein as a chain of glycine residues using

a substantial number of tertiary restraints. Connolly et al.

(1994) used an off-lattice reduced representation of proteins

to estimate the tertiary structure from incomplete and

approximate nuclear Overhauser enhancement (NOE) dis-

tance data (0.5 long-range restraints per residue). Aszodi

et al. (1995) used a distance geometry-based method to

assemble protein structure using experimental tertiary

distance restraints supplemented by predicted interresidue

distance restraints extracted from multiple sequence align-

ments. On average, more than N/4 restraints, where N is the

number of residues, were required to obtain structures with

a root-mean-square deviation (RMSD) ,5 Å from native.

Skolnick and Kolinski used a high-coordination lattice-

reduced model of protein structure and a knowledge-based

force field (Kolinski and Skolnick, 1998; Skolnick et al.,

1997). Nine proteins up to 247 residues in length were folded

to moderate resolution with as few as N/7 long-range

restraints and some knowledge of the secondary structure.

Bowers et al. selected peptide fragments from proteins of

known structure based on sequence similarity and consis-

tency with the chemical shift and NOE data, and then

assembled proteins to high resolution using ;1 NOE

restraint per residue (Bowers et al., 2000). Most recently,

Li et. al. developed an algorithm, TOUCHSTONEX, which

folded 86% of proteins to moderate resolution with N/8 long-
range restraints using a test set of 125 proteins up to 174

residues in length (Li et al., 2003).

One of the most commonly used sets of distance restraints

come from NOE data generated from NMR experiments and

serve as the key element in NMR structure determination.

Although traditional NMR structure determination methods

require a large number of NOE restraints to define a high-

resolution structure, sparse NOE data are relatively easy to

obtain even in the early stage of NMR structure de-

termination process. As demonstrated in our recent publica-

tion (Li et al., 2003), TOUCHSTONEX incorporates

a limited number of distance restraints into the force field

as an NOE-specific pairwise interaction. The algorithm was

evaluated using 125 proteins of various secondary structure

types and lengths up to 174 residues. Using as few as N/8
long-range contact restraints randomly selected from the

native protein structure, where N is the number of residues,

108 proteins (86%) were folded to ,6.5 Å from the native

protein structures within the top five lowest energy clusters.

One-hundred three (82%), 86 (69%), 64 (51%), 41 (33%),

and 9 (7%) proteins were folded to,6.0 Å, 5.0 Å, 4.0 Å, 3.0

Å, and 2.0 Å, respectively. The average Ca-RMSD of the
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lowest RMSD cluster centroids for all 125 proteins (folded

and unfolded) is 4.4 Å. Moreover, three proteins with limited

experimental NOE data—Z-domain of staphylococcal pro-

tein A (58 residues) (Tashiro et al., 1997), the C-terminal

BRCA-1-like domain from Thermus thermophilus DNA

ligase BRCT (92 residues) (G. Sahota, S. Goldsmith-

Fischman, B. Dixon, Y. J. Yuang, J. Aramini, C. Yin, R.

Xiao, A. Bhattacharya, D. Monléon, G. V. T. Swapna, S.

Anderson, B. Honig, A. N. A Monteiro, G. T. Montelione,

and T. Tejero, unpublished data), and the human melanoma

inhibitory activity protein MIA (108 residues) (Lougheed

et al., 2001)—were folded to low-to-medium resolution

structures.

The evaluation of the algorithm based on the 125-protein

test set in the previous article was not comprehensive. One

reason is that the protein set covers only a very limited

number of the topologies adopted by proteins. Considering

that there are ;500 fold families in the CATH protein

structure classification database, the 125 proteins can by no

means cover all the representative topologies in the current

Protein Data Bank (PDB). Another reason is that due to the

small size of the 125-protein set, there is a danger of

overtuning the parameters. Before applying the algorithm on

a genomic scale, a much larger and truly representative

testing set should be used. In this article, we further evaluate

TOUCHSTONEX on a representative PDB protein set

of proteins up to 200 residues in length. The set consists of

1365 proteins that cover the whole PDB at the level of

sequence identities ,35%. By testing the algorithm on this

protein set, a better understanding of how the algorithm will

perform in large-scale applications will be provided.

We predicted the structures of these 1365 proteins using

randomly selected long-range contact restraints from the

native protein structure. We then focused on 69 proteins in

this set that have experimental NMR data. These proteins

have more complicated topologies than the three proteins

with NMR data examined in the previous article (Li et al.,

2003). We predicted the structures of these proteins using

NOEs mainly involving the main-chain atoms and some-

times also NOEs involving side-chain methyl groups. These

NOEs tend to be assigned early in the NMR structure

determination process. The results will give a real-life

performance test of the algorithm.

METHODS

Protein model, force field, and implementation of
NOE-specific pairwise interaction

The protein model, the force field, and the implementation of NOE-specific

pairwise interaction have been described in detail in our previous

TOUCHSTONEX article (Li et al., 2003) as well as in another article

(Zhang et al., 2003). Here, we only give a brief description. The CABS

model, which is a lattice-based reduced protein model, represents each

amino acid by up to three united atom groups—the Ca, Cb, and side-chain

center of mass. NOE-derived contact restraints are incorporated into the

force field as a square-well penalty. Appropriate to the type of NOE restraint,

a penalty is added between the side-chain centers of mass, between the side-

chain center of mass and the Ca, or between Cas as appropriate. The overall

force field also consists of other knowledge-based terms to produce protein-

like behavior, including various short-range interactions, hydrogen bonding,

one-body, pairwise, and multibody long-range interactions. Besides the

NOE-specific penalty, the force field has another penalty term that

incorporates predicted contact restraints (Kihara et al., 2001) from the

threading algorithm PROSPECTOR_3 (Skolnick et al., 2004).

Protein set

The protein set consists of 1365 representative proteins selected from the

PDB. There are two selection criteria: 1), the size of the protein must be from

41 to 200 residues and 2), their pairwise sequence identity must be ,35%.

The final 1365 proteins include 392 a-proteins, 429 b-proteins, 536

a/b-proteins, and an additional eight proteins with little regular secondary

structure. This protein set is the same as the one used in our recent articles

(Skolnick et al., 2004; Zhang and Skolnick, 2004a), but excludes the

proteins that have fewer than N/4 long-range side-chain contacts, where N is

the number of the residues (see the following section for the generation of

restraints).

From this protein set, there are 69 proteins (5 a-proteins, 30 b-proteins,

and 34 a/b-proteins) that have experimental NMR data in the PDB (ftp://

ftp.rcsb.org/pub/pdb/data/structures/divided/nmr_restraints/); these were

used to test the algorithm with experimental NMR restraints.

Generation of long-range contact restraints

For the set of 1365 proteins, simulated contact restraints are randomly

selected from side-chain contacts in the native protein structure. Two side

chains that have at least one pair of heavy atoms within 4.5 Å are considered

to be in contact. The simulated restraints are also termed ‘‘the correct

restraints’’ in contrast to the predicted and sometimes inexact restraints

generated by PROSPECTOR_3.

For the 69 proteins with experimental NMR data, NOE-derived contact

restraints were used. The proton NOE data selected are mainly between

main-chain atoms (Ha, HN), because these NOEs tend to be recognized first

during the NMR structure determination process. NOEs between side-chain

methyl groups are also selected sometimes (e.g., for a-proteins), because

these NOEs are also relatively easy to identify in the early stages of the NMR

structure determination process. The atomic level NOE data are then

converted into contact restraints between residues.

For both simulated and NOE-derived contact restraints, only long-range

restraints (contact partners at least five residues apart along the protein chain)

were used.

Conformational updates and Monte Carlo
sampling scheme

Conformational updates invoke five kinds of Ca-chain movements: the basic

2- and 3-bond movements, 4-, 5-, and 6-bond movements, 6–12 bond

transitions, multibond sequence shifts, and chain end movements (Zhang

et al., 2003). The conformational sampling scheme uses a newly developed

parallel hyperbolic sampling method (Zhang et al., 2002) that differs from

the regular replica exchange sampling method by flattening the local high-

energy barriers by a nonlinear transformation to alleviate the problem of

‘‘ergodicity breaking’’. The folding protocol consists of an annealing part

followed by an isothermal run (Li et al., 2003). Usually a calculation takes

up to 48 h of CPU time on a 1.26-GHz Pentium III processor for a protein of

no more than 200 residues.
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Structure clustering, ranking, and evaluations

Twenty-four thousand structures selected from various temperature replicas

are clustered. The clusters are ranked according to the cluster density. For

each cluster, optimally aligning the structures and computing their average

coordinates determine a centroid. The centroids are compared with the

native protein structure, and their Ca coordinate root-mean-square

deviations (Ca-RMSD) from native are calculated. A protein is considered

to have been successfully folded if there is at least one cluster centroid with

a Ca-RMSD from native ,6.5 Å in the top five lowest energy clusters. The

lowest Ca-RMSD cluster centroid is considered to be the best structure.

Different from our previous TOUCHSTONEX article (Li et al., 2003),

which used a clustering algorithm developed by Betancourt et al.

(Betancourt and Skolnick, 2001), a newly developed clustering algorithm,

SPICKER (Zhang and Skolnick, 2004b) was used here to cluster the

structures. We found that for the 1365 protein set, SPICKER could on

average identify 10–13% more proteins with a Ca-RMSD ,6.5 Å from

native in the top five lowest energy clusters than the previous clustering

algorithm. The average RMSD of the best structure in the top five lowest

energy clusters was between 0.8 and 0.9 Å better.

When comparing the cluster centroids of the proteins with NMR data

with the native structures, the nonflexible part of the structures is considered.

The nonflexible part of the native protein structure is determined either from

the conserved part of the overlapped models (when there are several NMR

models) or from the temperature factors (when there are temperature factors

for NMR models).

RESULTS AND DISCUSSION

Structure prediction of 1365 benchmark proteins
using simulated restraints

Structure prediction results for the 1365 benchmark protein

set can be found on web site: http://www.bioinformatics.

buffalo.edu/touchstonex/benchmark1365.

A summary of the results from the structure prediction of

the 1365 benchmark proteins is shown in Table 1. Column

four lists the prediction results using N/8 simulated correct

(but randomly chosen) long-range contact restraints as well

as the predicted contact restraints generated from the

threading algorithm PROSPECTOR_3. One-thousand

twenty-three (75%) proteins out of the 1365 protein set

were foldable, i.e., there is at least one cluster whose centroid

Ca-RMSD from native is ,6.5 Å in the top five lowest

energy clusters. Nine-hundred sixty (70%), 817 (60%), 627

(46%), 333 (24%), and 42 (3%) proteins were folded to

a RMSD from native,6.0 Å, 5.0 Å, 4.0 Å, 3.0 Å, and 2.0 Å,

respectively. The average RMSD of the lowest RMSD (best)

cluster centroids in the top five clusters is 5.0 Å for all 1365

proteins. The best cluster ranks 2.4 on average.

Compared with the results in the previous TOUCHSTO-

NEX article (Li et al., 2003), the results shown here are

somewhat worse; for N/8 restraints the average RMSD is 4.4

Å, and 86% are foldable. The reason is obvious: the protein

set used in the previous article was much smaller and the

proteins were not as large and complicated. The 1365

proteins in this set cover various types of proteins in PDB

amenable for ab initio folding (#200 residues) with pairwise

sequence identity,35%. The results for this large protein set

are more objective and realistic.

When more restraints are used, as expected, there is

a significant improvement in the overall results. Table 1,

column six, shows the prediction results using N/4 correct

long-range contact restraints together with the predicted

contact restraints. One-thousand six (88%) proteins were

folded to a RMSD from native,6.5 Å in the top five lowest

energy clusters, which is 183 (13%) more target proteins

folded than when only N/8 correct restraints were used. One-
thousand one-hundred fifty-nine (85%), 1034 (76%), 827

(61%), 474 (35%), and 71 (5%) proteins were folded to

a RMSD from native,6.0 Å, 5.0 Å, 4.0 Å, 3.0 Å, and 2.0 Å

respectively, which are also much higher than those using

N/8 correct restraints. The average RMSD of the best cluster

centroids in the top five clusters is 4.1 Å, which is 0.9 Å

TABLE 1 Summary of the structure prediction results of 1365 benchmark proteins using simulated restraints

Predicted restraints

N/8 simulated

restraints*

N/8 simulated

restraints and

predicted

restraints*

N/4 simulated

restraints*

N/4 simulated

restraints and

predicted

restraints*

Best RMSDy Best rankz Best RMSDy Best rankz Best RMSDy Best rankz Best RMSDy Best rankz Best RMSDy Best rankz

Average of 1365 6.72 2.5 5.87 2.1 5.03 2.4 4.37 2.2 4.11 2.2

RMSD , 6.5§ 754 (55.2%) 904 (66.2%) 1023 (74.9%) 1199 (87.8%) 1206 (88.4%)

RMSD , 6.0§ 699 (51.2%) 807 (59.1%) 960 (70.3%) 1132 (82.9%) 1159 (84.9%)

RMSD , 5.0§ 580 (42.5%) 582 (42.6%) 817 (59.9%) 976 (71.5%) 1034 (75.8%)

RMSD , 4.0§ 425 (31.1%) 323 (23.7%) 627 (45.9%) 698 (51.1%) 827 (60.6%)

RMSD , 3.0§ 229 (16.8%) 127 (9.3%) 333 (24.4%) 317 (23.2%) 474 (34.7%)

RMSD , 2.0§ 32 (2.3%) 10 (0.7%) 42 (3.1%) 56 (4.1%) 71 (5.2%)

RMSD , 1.0§ 0 (0.0%) 1 (0.1%) 1 (0.1%) 1 (0.1%) 1 (0.1%)

*N, number of residues.
yBest RMSD, RMSD of the best (lowest RMSD) cluster centroid.
zBest rank, rank of the best (lowest RMSD) cluster.
§The number of proteins predicted to various RMSD resolution.

RMSD, coordinate root-mean-square deviation for Ca atoms in Å.
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lower compared to that using N/8 correct restraint. The best

cluster on average ranks 2.2, which is lower than that using

N/8 correct restraints with rank 2.4.

Fig. 1, A and B, shows the RMSD of the best cluster

centroid obtained using N/8 and N/4 restraints as a function

of protein size for four types of proteins in this set—

a-proteins, b-proteins, a/b-proteins, and proteins with little

secondary structure. The detailed distribution of RMSD for

this protein set can be seen clearly. There is no obvious

correlation between best RMSD and protein length or type.

Good predicted structures can be obtained even for large

proteins and difficult b-proteins.

As a control, column two lists the prediction results using

only the predicted contact restraints from PROSPECTOR_3.

Seven-hundred fifty-four (55%) proteins were folded to

a RMSD from native ,6.5 Å in the top five lowest energy

clusters. The average RMSD of the best cluster centroids in

the top five clusters using only predicted restraints is 6.7 Å.

The best cluster on average ranks 2.5. By comparing with the

results when additional N/8 (column four) and N/4 (column

six) correct restraints were used, a general trend can be seen.

The more the correct restraints, the more proteins are folded

for a given RMSD range, the lower the average RMSD is and

the better the best cluster ranks. Fig. 2 shows the RMSD

improvement using N/8 or N/4 correct restraints together

with the predicted restraints over the RMSD using only the

predicted restraints for each protein. A very strong cor-

relation can be seen, i.e., there is a larger improvement for

higher RMSD structures whereas there is a smaller improve-

ment for lower RMSD structures.

Because the predicted restraints generated by the thread-

ing algorithm PROSPECTOR_3 are not perfect (on average

46% correct), when the number of correct restraints is large

enough predicted restraints should not be used. An important

fact we observed here is that the predicted restraints are

necessary for better results for the predictions using N/8
correct restraints as well as using N/4 correct restraints. As

can be seen from Table 1, the results using N/8 correct

restraints without any predicted restraints (column three) are

FIGURE 1 RMSD of the best (lowest RMSD) cluster centroid from

structure prediction of 1365 benchmark proteins using simulated restraints

as a function of protein length for four types of proteins—a-proteins,

b-proteins, a/b-proteins, and l protein (little secondary structure). (A)

N/8 simulated restraints; (B) N/4 simulated restraints. N is the number

of residues.

FIGURE 2 RMSD improvement of 1365 benchmark proteins using

simulated restraints as a function of RMSD of the best (lowest RMSD)

cluster centroid from structure prediction using only predicted restraints. The

RMSD improvement is the RMSD difference of the best (lowest RMSD)

cluster centroid using both simulated restraints and predicted restraints and

the prediction using only predicted restraints. (A) N/8 simulated restraints;

(B) N/4 simulated restraints. N is the number of residues.
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TABLE 2 Structure prediction results of 69 proteins using experimental restraints

Without experimental

restraints

N/8 experimental

restraints*

N/4 experimental

restraints*

ID N* Typey Best RMSDz Best rank§ Nmain_chain
{ Nmethyl

k Best RMSDz Best rank§ Nmain_chain
{ Nmethyl

k Best RMSDz Best rank§

1a1tA 55 a 6.42 3 7 0 6.56 5 14 0 5.79 5

1kmaA 55 a 7.42 5 7 0 7.3 5 14 0 4.63 1

1bno_ 87 a 3.71 1 1 10 3.51 2 1 21 2.88 2

1fadA 95 a 3.22 2 1 11 3.12 1 1 23 3.04 1

1f16A 192 a 4.96 2 1 23 3.38 5 1 47 3.67 3

1l3yA 41 b 5.58 5 5 0 4.8 3 10 0 5.13 2

1qdp_ 42 b 6.21 3 5 0 6.95 1 11 0 5.1 5

1i2uA 44 b 4.49 1 6 0 3.46 4 11 0 2.28 4

1zaq_ 44 b 6.12 3 6 0 6.21 4 11 0 5.84 2

1g9pA 45 b 10.36 1 6 0 9.09 5 11 0 6.01 5

1e8pA 46 b 7.33 1 6 0 3.77 5 12 0 3.81 1

1hx2A 60 b 5.33 3 8 0 5.21 1 15 0 4.12 5

1jgkA 66 b 2.4 1 8 0 2.6 2 17 0 2.8 1

1dx8A 70 b 9.04 4 9 0 6.67 1 18 0 6.88 1

1fgp_ 70 b 9.08 1 9 0 6.95 1 18 0 4.61 2

1g47A 70 b 5.53 1 9 0 4.59 4 18 0 4.88 3

1ghj_ 79 b 2.06 3 10 0 2 1 20 0 2.14 1

1iyu_ 79 b 2.42 3 10 0 2.52 2 20 0 2.42 3

1f53A 84 b 8.04 4 11 0 8.01 5 21 0 5.49 2

1couA 85 b 9.72 1 11 0 7.91 1 21 0 7.27 1

1g4fA 86 b 10.55 1 11 0 6.9 1 22 0 5.62 1

1g6eA 87 b 10.67 5 11 0 5.21 4 22 0 3.71 1

1ewwA 90 b 12.11 5 11 0 8.49 5 23 0 7.7 2

1j8kA 94 b 2.13 1 12 0 2.03 1 24 0 2.1 5

1nct_ 98 b 2.62 1 12 0 2.86 1 25 0 2.67 2

2ezm_ 101 b 11.64 2 13 0 9.34 4 25 0 6.45 3

1c8pA 102 b 2.78 2 13 0 2.77 5 26 0 2.89 3

1jt8A 102 b 7.51 1 13 0 6.87 4 26 0 6.99 3

1d2bA 126 b 10.32 1 16 0 6.72 1 32 0 4.86 1

1k8hA 133 b 12.72 5 17 0 10.48 4 33 0 6.38 3

1k0sA 151 b 6.57 1 19 0 5.68 2 38 0 4.65 5

1xnaA 151 b 14.66 1 19 0 9.22 1 38 0 5.2 1

1cx1A 153 b 9.27 1 19 0 4.15 4 38 0 4.04 3

1clh_ 166 b 3.37 1 21 0 3.25 1 42 0 3.2 5

1cz4A 185 b 4.61 1 23 0 4.5 1 46 0 4.11 5

1jkzA 46 ab 3.3 1 6 0 3.25 1 12 0 3.7 1

1ncs_ 47 ab 3.84 5 6 0 3.34 4 12 0 2.89 1

1tih_ 53 ab 5.6 1 7 0 5.34 5 13 0 4.66 3

1dax_ 64 ab 2.58 1 8 0 2.5 1 16 0 2.6 1

1g25A 65 ab 4.15 1 8 0 3.18 1 16 0 3.03 1

1f0zA 66 ab 4.82 1 8 0 4.04 2 17 0 3.55 1

1ha6A 70 ab 5.72 5 9 0 5.69 3 18 0 5.2 5

1afi_ 72 ab 1.65 1 9 0 1.58 1 18 0 1.61 1

1bo0_ 76 ab 6.48 4 10 0 5.37 2 17 2 4.52 2

1dcjA 81 ab 2.72 1 10 0 2.6 1 20 0 2.57 4

1ip9A 85 ab 5.3 3 11 0 5.02 3 21 0 3.48 3

1khmA 89 ab 4.07 4 11 0 3.69 3 22 0 4.62 5

1hqi_ 90 ab 6.74 1 11 0 6.17 2 23 0 5.82 1

1mnl_ 91 ab 8.52 2 11 0 6.91 1 23 0 5.75 3

1jh3A 99 ab 7.03 1 12 0 4.49 2 25 0 4.13 4

1g10A 102 ab 5.7 2 13 0 4.73 2 26 0 4.46 5

1jrmA 104 ab 8.86 4 13 0 7.26 1 26 0 5.22 2

1ghtA 105 ab 6.1 2 13 0 4.26 2 26 0 3.25 5

1eiwA 111 ab 5.85 1 14 0 3.2 1 24 4 2.62 4

1ji8A 111 ab 10.82 2 12 2 10.56 3 12 16 4.04 1

1qndA 123 ab 7.79 5 15 0 5.19 1 31 0 5.12 1

1dc7A 124 ab 2.64 1 16 0 2.7 1 31 0 2.61 1

1eo1A 124 ab 10.37 5 16 0 7.87 5 31 0 6.58 1

1hpwA 129 ab 7.89 5 16 0 7.82 5 32 0 6.75 4

(Continued)
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much worse than the results when predicted restraints are

also used (column four). One-hundred nineteen (9%), 153

(11%), 235 (17%), 304 (22%), 206 (15%), and 32 (2%)

fewer proteins were folded to a RMSD from native ,6.5 Å,

6.0 Å, 5.0 Å, 4.0 Å, 3.0 Å, and 2.0 Å, respectively. The

average RMSD of the best cluster centroid is 0.8 Å larger.

This is even true when using N/4 correct restraints (column

five versus column six), although not as significant as the N/8
case. Seven (1%), 27 (2%), 58 (4%), 129 (9%), 157 (12%),

and 15 (1%) fewer proteins were folded to a RMSD from

native ,6.5 Å, 6.0 Å, 5.0 Å, 4.0 Å, 3.0 Å, and 2.0 Å,

respectively. The average RMSD of the best cluster centroids

is 0.3 Å larger. As the number of correct restraints increases,

the dependence of the results on the predicted restraints

becomes weaker. However, the predicted restraints are

necessary to use even when there are as many as N/4 correct

restraints. The predicted restraints contribute to better struc-

tural detail to refine structures to the 3.0–4.0-Å RMSD range.

Structure prediction of 69 proteins using
experimental restraints

For the 69 proteins with experimental NMR data in the PDB,

we generated a set of N/8 contact restraints and a set of N/4
contact restraints from the complete NOE data. These sets of

restraints come from mostly main-chain–main-chain NOE

data and sometimes also side-chain methyl–side-chain

methyl NOE data. The numbers of main-chain restraints

and side-chain methyl restraints used for each protein are

listed in Table 2. The overall structure prediction results

using these sets of restraints, together with the results using

no experimental restraints are also shown in Table 2. Struc-

ture prediction results for the 69 proteins using NMR data

can be found on our web site at http://www.bioinformatics.

buffalo.edu/touchstonex/nmr_folding.

Overall, from these 69 proteins, 41 proteins were folded to

a RMSD from native ,6.5 Å in the top five lowest energy

clusters without using any experimental restraints (Table 2,

column two). The average RMSD of the best cluster

centroids from the top five clusters for all the proteins is

6.35 Å. On adding N/8 experimental restraints (Table 2,

column three), the average RMSD of the best cluster

centroids from the top five clusters improve to 5.2 Å.

Forty-seven proteins were folded to ,6.5 Å from native in

the top five clusters. 45, 36, 25, 12, and 1 proteins were

folded to ,6.0 Å, 5.0 Å, 4.0 Å, 3.0 Å, and 2.0 Å,

respectively. When N/4 experimental restraints are used

(Table 2, column four), the average RMSD further improved

to 4.4 Å. Sixty-one proteins were folded to ,6.5 Å from

native in the top five clusters. Proteins (58, 45, 29, 17, and 1)

were folded to ,6.0 Å, 5.0 Å, 4.0 Å, 3.0 Å, and 2.0 Å,

respectively. Fig. 3 shows the RMSD improvement using N/

TABLE 2 (Continued)

Without experimental

restraints

N/8 experimental

restraints*

N/4 experimental

restraints*

ID N* Typey Best RMSDz Best rank§ Nmain_chain
{ Nmethyl

k Best RMSDz Best rank§ Nmain_chain
{ Nmethyl

k Best RMSDz Best rank§

1mut_ 129 ab 4.35 1 16 0 4.41 1 32 0 4.33 1

1gd5A 130 ab 4.02 2 16 0 3.9 1 33 0 3.6 1

1tbd_ 134 ab 12.71 1 17 0 10.98 1 34 0 10.31 5

1c05A 159 ab 12.08 3 20 0 8.56 1 34 6 7.67 1

1bxdA 161 ab 2.81 2 20 0 3.09 2 40 0 2.77 5

1ao8_ 162 ab 2.77 3 20 0 2.92 4 41 0 2.96 1

1f3yA 165 ab 4.96 5 21 0 4.97 3 41 0 3.69 3

1ak6_ 174 ab 5.55 4 22 0 4.95 1 44 0 4.26 1

1dgqA 188 ab 2.47 1 24 0 2.38 1 47 0 2.87 1

1ds9A 198 ab 7.21 1 25 0 5.26 2 50 0 5.6 1

Average of 69 6.35 2.3 5.24 2.4 4.44 2.5

RMSD , 6.5** 41 47 61

RMSD , 6.0** 36 45 58

RMSD , 5.0** 27 36 45

RMSD , 4.0** 18 25 29

RMSD , 3.0** 13 12 17

RMSD , 2.0** 1 1 1

*N, number of residues.
yType, protein secondary structure type.
zBest RMSD, RMSD of the best (lowest RMSD) cluster centroid.
§Best rank, rank of the best (lowest RMSD) cluster.
{Nmain_chain, number of main-chain–main-chain experimental restraints.
kNmethyl, number of side-chain methyl–side-chain methyl experimental restraints;

**The number of proteins predicted to various RMSD resolution.

RMSD, coordinate root-mean-square deviation for Ca atoms in Å.
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8 or N/4 experimental restraints versus the RMSD using no

experimental restraints for the 69 proteins. The trend is very

similar to Fig. 2 with simulated restraints, i.e., a larger

improvement for higher RMSD structures and a smaller

improvement for lower RMSD structures.

The structure prediction results shown above using

experimental NOE-derived restraints are generally compa-

rable to the results using simulated restraints for these 69

proteins. Using N/8 simulated restraints, the average RMSD

of the best cluster centroid from the top five lowest energy

clusters for the 69 proteins is 5.0 Å, which is only 0.2 Å

lower than that using the N/8 experimental restraints. Using

N/4 simulated restraints, the average RMSD for the 69

proteins is 4.2 Å, which is also 0.2 Å lower than that using

N/4 experimental restraints. A major reason for the slightly

worse results with experimental restraints is the type of

restraints used. For most proteins, the experimental restraints

are mainly main-chain restraints. The main-chain restraints

are mainly observed in b-sheet structures, and thus are

important for b-sheet structure prediction. However, they

usually are not observed often in helical structures.

Therefore, sometimes the helical part of the structure cannot

be predicted well. For example, the protein 1c05A was

folded to 3.5 Å using N/4 simulated restraints and was not

foldable using N/4 experimental restraints. 1c05A is a 159-

residue elongated RNA binding protein consisting of two

distinct subdomains; one is all helical and the other includes

a b-sheet (Markus et al., 1999). In our predicted model of

1c05A using N/4 experimental NOE-derived restraints,

although the RMSD of the whole protein is 7.7 Å, the

RMSD of the b-sheet-containing subdomain is low (3.2 Å).

The high overall RMSD mainly comes from the helical

subdomain, which has a RMSD of 8.9 Å. The experimental

restraints used consist of 34 main-chain restraints and only

six side-chain methyl restraints. The helical subdomain only

has five restraints, which are not enough to define a

reasonably good structure. Another example is protein 1tbd_,

it was folded to 4.4 Å using N/4 simulated restraints and was

not foldable using N/4 experimental restraints. This protein

is a 134-residue ab-sandwich-type DNA-binding protein

with a central five-stranded antiparallel b-sheet flanked by

two helices on both sides of the b-sheet (Luo et al., 1996).

The b-sheet was predicted fairly well, but the arrangement

of the helices was predicted incorrectly. The experimental

restraints consist of 34 main-chain restraints and no side-

chain methyl restraints. Contrary to the situation when

experimental restraints are used, the simulated restraints,

however, do not have this problem.

CONCLUSIONS

We have tested the sparse distance restraint-assisted structure

prediction algorithm, TOUCHSTONEX, on a large, repre-

sentative PDB benchmark set of 1365 proteins. Using N/8
simulated correct long-range contact restraints, where N is

the number of residues, 1023 (75%) proteins were folded to

a RMSD from native ,6.5 Å in the top five lowest energy

clusters. Of those, 627 (46%) proteins were folded to

a RMSD from native ,4.0 Å. The average RMSD of the

lowest RMSD cluster centroid structures in the top five

lowest energy clusters for all 1365 proteins is 5.0 Å. When

the number of the correct restraints was increased to N/4,
1206 (88%) proteins were folded to a RMSD from native

,6.5 Å in the top five lowest energy clusters, 827 (61%)

were folded to a RMSD ,4.0 Å. The average RMSD of the

lowest RMSD structures was further improved to 4.1 Å.

These results show significant improvement compared to the

prediction without using any experimental restraints, where

754 (55%) proteins were folded to ,6.5 Å from native and

the average RMSD is 6.7 Å. However, the results also show

that the predicted restraints play an important role even when

the number of correct restraints is as large as N/4.
We further tested TOUCHSTONEX by predicting

structures for 69 proteins with experimental NMR data from

the PDB. Using N/8 long-range experimental restraints, 47

proteins were folded to a RMSD from native ,6.5 Å in the

top five lowest energy clusters. Proteins (45, 36, 25, and 12)

were folded to a RMSD from native ,6.0 Å, 5.0 Å, 4.0 Å,

FIGURE 3 RMSD improvement of 69 proteins using experimental

restraints as a function of RMSD of the best (lowest RMSD) cluster

centroid from structure prediction using only predicted restraints. The

RMSD improvement is the RMSD difference of the best (lowest RMSD)

cluster centroid using both experimental restraints and predicted restraints

and the prediction using only predicted restraints. (A) N/8 experimental

restraints; (B) N/4 experimental restraints. N is the number of residues.
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and 3.0 Å, respectively. The average RMSD of the lowest

RMSD cluster centroids in the top five lowest energy clusters

is 5.2 Å. When N/4 experimental restraints were used, 61

proteins were folded to a RMSD from native ,6.5 Å.

Proteins (58, 45, 29, and 17) were folded to a RMSD from

native ,6.0 Å, 5.0 Å, 4.0 Å, and 3.0 Å, respectively. The

average RMSD is 4.4 Å. For these 69 proteins, the results

using experimental restraints are generally comparable to the

results using simulated restraints.

To summarize, the results shown in this article provide an

objective and realistic evaluation of TOUCHSTONEX. The

algorithm proved to be an efficient method to predict protein

structures of medium-to-low resolution using sparse distance

restraints, such as but not limited to NOE data from NMR

experiments. The resulting medium-to-low resolution struc-

tures can be used directly for structural and functional

analyses, or they can serve as an initial model for further

refinement. Because the 1365-protein test set is comprehen-

sive and representative for the whole PDB for structures up

to 200 residues in length, and experimental NOE-derived as

well as simulated restraints were used, it is expected that the

algorithm will perform comparably well in real-life applica-

tion. We hope that the algorithm can be an alternative and

complimentary tool for NMR-based structure determination

in the early stage when only limited NOE data are available,

and thus contribute to the acceleration of structural genomics

projects. We also hope that the algorithm will be applied to

other experimental methods that can provide tertiary restraint

information. At the same time, there are continuing efforts in

our group to improve the protein-folding algorithm. Using

more advanced algorithms, the results of protein structure

prediction with sparse NMR restraints are expected to

improve.

This research was supported by NIH grant GM-37408 of the Division of

General Medical Sciences of the National Institutes of Health.
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