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ABSTRACT We evaluate tertiary structure predictions on medium to large size proteins by TASSER, a new algorithm that
assembles protein structures through rearranging the rigid fragments from threading templates guided by a reduced Ca and
side-chain based potential consistent with threading based tertiary restraints. Predictions were generated for 745 proteins 201–
300 residues in length that cover the Protein Data Bank (PDB) at the level of 35% sequence identity. With homologous proteins
excluded, in 365 cases, the templates identified by our threading program, PROSPECTOR_3, have a root-mean-square
deviation (RMSD) to native , 6.5 Å, with .70% alignment coverage. After TASSER assembly, in 408 cases the best of the top
five full-length models has a RMSD , 6.5 Å. Among the 745 targets are 18 membrane proteins, with one-third having
a predicted RMSD , 5.5 Å. For all representative proteins less than or equal to 300 residues that have corresponding multiple
NMR structures in the Protein Data Bank, �20% of the models generated by TASSER are closer to the NMR structure centroid
than the farthest individual NMR model. These results suggest that reasonable structure predictions for nonhomologous large
size proteins can be automatically generated on a proteomic scale, and the application of this approach to structural as well as
functional genomics represent promising applications of TASSER.

INTRODUCTION

The protein structure prediction problem, that is, deducing

the tertiary structure of a protein from its primary amino acid

sequence, has attracted considerable interest in this post-

genomic era (Baker and Sali, 2001; Skolnick et al., 2000a).

At present, the success rate of structure prediction is dictated

by two factors: First, the structure of smaller proteins is

easier to predict than those of larger proteins. Given sec-

ondary structure assignments (that can be deduced from

sequence alone with more than 80% accuracy using state-of-

the-art predictors; Jones, 1999; Karplus et al., 1998), the

number of ways to assemble the secondary structure blocks

into tertiary models increases exponentially with the in-

creasing number of such blocks. Second, since in principle

similar sequences have similar folds (Holm and Sander,

1996), solved homologous protein structures can be

exploited to greatly increase the accuracy of the predicted

models (Marti-Renom et al., 2000). Therefore, in bench-

marking tests to establish the applicability of an approach to

weakly/nonhomologous proteins, such homologous struc-

tures should be carefully excluded.

Until now, most benchmark tests of protein structure

prediction algorithms focused on small to medium size

proteins. For example, based on an ab initio approach

designed to globally optimize their potential energy function,

Scheraga et al. could build models of root-mean-square

deviation (RMSD) to native below 6 Å for protein fragments

of up to 61 residues (Liwo et al., 1999). Using ROSETTA,

Baker et al. report 73 successful structure predictions out of

172 target proteins with lengths below 150 residues, with

a RMSD , 7 Å in the top five models (Simons et al., 2001).

In recent works, we developed a threading template

assembly/refinement approach, TASSER, and benchmarked

TASSER on a comprehensive benchmark set of 1489 single-

domain proteins in the Protein Data Bank (PDB) with length

below 200 residues. We find that 990 targets can be folded

by the approach; i.e., they have a RMSD , 6.5 Å in at least

one of the top five models (Zhang and Skolnick, 2004a).

Despite these important efforts, structure prediction on larger

proteins with length greater than 200 residues, which is the

range of protein lengths adopted by many enzymes and other

functionally important proteins, has not previously been

systematically explored. Although the Critical Assessment

of Techniques for Protein Structure Prediction (CASP)

provides a periodic and critical test of all size ranges of

proteins (Moult et al., 2001, 2003), because of the relatively

small number of targets in various specific categories, a

comprehensive general trend still remains to be established.

In this work, we employ a representative benchmark set of

all structures in the PDB ranging from 201 to 300 residues in

length and present the results of the large-scale testing of

TASSER for tertiary structure prediction on these medium to

large size proteins. For the first time, folding simulations of

multiple-domain proteins and membrane proteins are exam-

ined in a series of systematic tests. Finally, a direct comparison

of the accuracy of the TASSER predicted models to the spatial

uncertainty of NMR experimental structures is made.

METHODS

The threading template assembly/refinement procedure, TASSER, consists

of threading template identification, fragment assembly, and final model

combination (Zhang and Skolnick, 2004a). A flowchart is presented in Fig. 1.
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Threading

The structure templates for a query sequence are selected from the PDB

library (Berman et al., 2000) by our threading program PROSPECTOR_3

(Skolnick et al., 2004). The program is an iterative sequence/structure

alignment approach, and all the alignments are generated using a Needle-

man-Wunsch type of global alignment algorithm (Needleman and Wunsch,

1970). The scoring function of PROSPECTOR_3 consists of close and

distant sequence profiles (Skolnick and Kihara, 2001), secondary structure

propensities from PSIPRED (Jones, 1999), pair potentials (Skolnick et al.,

2000b), and consensus contact predictions generated from the alignments in

the previous threading iterations. Depending on the different methods used

to generate the pair potentials (quasichemical based, local sequence

fragment based, and orientation independent, or local sequence fragment

based and orientation dependent) and the ways of calculating the Z-score

alignment significance (the energy in standard deviation units relative to

mean), there are six classes of alignments returned at the end of

PROSPECTOR_3 iterations.

To select the final template alignments for TASSER assembly, we

establish two sets of Z-score cutoffs based on benchmarking statistics

(Skolnick et al., 2004): Zstruct, above which ;95% of templates have their

best structure alignment with a RMSD to native , 6.5 Å over the aligned

regions, and Zgood, above which ;80% of threading-predicted alignments

have a RMSD , 6.5 Å in aligned regions. If a target has a template with a

Z-score . Zgood or two templates with consensus alignments both having a

Z-score . Zstruct, the target is assigned to the Easy set (note that Easy does

not imply the results are trivially found; in a benchmark test, approximately

half the proteins in the Easy set are not identified by PSI-BLAST; Frishman

et al., 2003; Kawabata et al., 2002; Zhang and Skolnick, 2004a); if a target

has a single template (or has multiple templates lacking a consensus

structure) where Zgood . Z-score . Zstruct, the target is assigned as to the

Medium set; all others are Hard targets.

TASSER force field

A protein’s conformation is described by its Ca atoms and side-chain centers

of mass (SG), called the CAS model. The force field employed in TASSER

modeling consists of three classes of terms: 1), statistical potentials from the

PDB database (Kolinski and Skolnick, 1998; Zhang et al., 2003), including

long-range SG-pair interactions, local Ca correlations, hydrogen-bond, and

hydrophobic burial interactions; 2), propensities for predicted secondary

structures from PSIPRED (Jones, 1999); and 3), protein specific SG-pair

potentials and tertiary contact restraints extracted from the threading

templates by PROSPECTOR_3 (Skolnick et al., 2004).

The combination of all the energy terms was optimized by maximizing

the correlation between the CAS energy and RMSD of decoy structures to

native, on the basis of 100 training proteins outside the benchmark test set,

each with 60,000 structure decoys (Zhang et al., 2003).

Compared with previous energy potential (Zhang et al., 2003; Zhang and

Skolnick, 2004a), to increase the hydrogen-bond geometrical specificity, the

hydrogen bond used in this work is constructed by including backbone N

and CO groups rather than using just the Ca approximation. Protein specific

pair interactions are derived on the basis of a freely jointed chain model

simulation (our unpublished results) rather than using the quasichemical

approximation (Skolnick et al., 2000b). These changes increase the

correlation of the energy with RMSD (the average correlation coefficient

between energy and RMSD in the decoy structures of 100 training proteins

increases from 0.69 to 0.75); this also improved the performance of

TASSER simulations.

On- and off-lattice model and structure assembly

A protein chain in TASSER modeling is divided into aligned and unaligned

regions based on its PROSPECTOR_3 alignments, where the aligned regions

are modeled off lattice for maximal accuracy and the unaligned regions are

simulated on a cubic lattice system for computational efficiency (Fig. 2).

FIGURE 1 Flowchart of the TASSER structure prediction methodology

that consists of template identification by threading, fragment assembly, and

fold selection.

FIGURE 2 Schematic representation of a piece of polypeptide chain in the

combined on- and off-lattice CAS model. Each residue is described by its Ca

and side-chain center of mass (SG). Although Ca’s of unaligned residues

(white) are confined to the underlying cubic lattice system with a lattice

space of 0.87 Å, Ca’s of aligned residues (yellow) are excised from threading

templates and traced off lattice. SGs are always off lattice (red) and

determined using a two-rotamer approximation (Zhang et al., 2003).
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For a given template, an initial full-length model is built up by connecting

the continuous template fragments (greater than or equal to five residues) by

a random walk of Ca–Ca bond vectors of variable lengths from 3.26 Å to

4.35 Å. Only excluded volume and geometric constraints of virtual Ca–Ca

bond angles (65�–165�) are considered during the initial model building

procedure. The side-chain center of mass is determined by a two-rotamer

approximation that depends on whether the local backbone configuration is

extended or compact. To guarantee that the last step of this random walk can

quickly arrive at the first Ca of the next template fragment, the distance l

between the current Ca and the first Ca of the next template fragment is

checked at each step of the random walk, and only walks with l, 3.54n are
allowed, where n is the number of remaining Ca–Ca bonds in the walk. If

a template gap is too big to be spanned by a specified number of unaligned

residues, a big Ca–Ca bond will remain at the end of the random walk, and

a spring-like force that acts to draw sequential fragments close will be

applied in subsequent Monte Carlo simulations until a physically reasonable

bond length is achieved.

The initial full-length models are submitted to parallel hyperbolic

Monte Carlo sampling (Zhang et al., 2002) for assembly/refinement. Two

kinds of conformational updates are implemented: Off-lattice movements

of the aligned regions involve rigid fragment translations and rotations that

are controlled by the three Euler angles. The fragment length normalizes

the movement amplitude so that the acceptance rate is approximately

constant for different size fragments. The lattice confined residues are

subjected to two to six bond movements and multibond sequence shifts

(Zhang et al., 2003). Overall, the tertiary topology varies by the rear-

rangement of the continuously aligned substructures, where the local confor-

mation of the off-lattice substructures remains unchanged during assembly.

Both movement of the aligned and the gap regions are guided by the same

CAS force field.

Clustering

Forty replicas are employed in the Monte Carlo simulation. Structures

generated in the 14 lowest temperature replicas are submitted to an iterative

structural clustering program, SPICKER (Zhang and Skolnick, 2004b), for

clustering. The final models are combined from the clustered structures and

ranked by the structure density D, i.e., D ¼ M=ÆRMSDæ, where M is the

multiplicity of structures in a SPICKER cluster and ÆRMSDæ denotes the
average RMSD of the structures to the cluster centroid.

RESULTS AND DISCUSSION

Benchmark protein set

To construct a benchmark set, we group all protein entries in

the PDB having from 201 to 300 residues in length based on

their sequence similarity with a pairwise sequence identity

cutoff of 35% and randomly select one protein from each

group. The resulting representative benchmark set includes

745 proteins: 112, 132, and 501 of them are a-, b-, and ab-

proteins, respectively; 258 of them have more than one do-

main according to DomainPhaser (Guo et al., 2003); and 18

are transmembrane proteins. The list of target proteins can be

found on our website at http://www.bioinformatics.buffalo.

edu/abinitio/745.

Threading

After homologous template proteins with sequence identity

.30% are excluded from the library, 593 target proteins are

assigned by PROSPECTOR_3 as the Easy set. The average

coverage of template alignments for these Easy targets is

83%, with an average RMSD to native of 5.9 Å on the

aligned regions (see Table 1). There are 418 Easy targets that

have a RMSD to native below 6.5 Å; 363 of them have

alignment coverage higher than 70%.

There are 150 Medium targets identified by PROSPEC-

TOR_3 where the average sequence identity between target

and template is 11.5%. In Medium set targets, the global fold

of the identified template (as assessed by structural superpo-

sition) is generally correct (Skolnick et al., 2004), but often

there are significant alignment errors. As expected, the

threading alignments only focus on some local substructures

for the targets in this category. The average threading align-

ment coverage is 45%, and in 45 cases the aligned substruc-

tures have a RMSD to native below 6.5 Å (Table 1).

TABLE 1 Summary of threading results from PROSPECTOR_3 and final models by TASSER

ÆRMSD to nativeæ§ Nfold
{

N* Template selectedy Æcovaliæz Tali Mali Mful Tali Mali Mful

Easy set 593 (80%) Top two plus consensus 83% 5.9 Å 4.7 Å 6.4 Å 418 (363) 481 396 (67%)

Medium set 150 (20%) Top five 45% 12.4 Å 9.3 Å 15.7 Å 45 (2) 71 12 (8%)

Hard set 2 (0.3%) Top 20 41% 17.3 Å 13.1 Å 18.1 Å 0 (0) 0 0 (0%)

Single domain 487 (65%) 76% 7.2 Å 5.4 Å 7.7 Å 307 (258) 377 296 (61%)

Multiple domain 258 (35%) 73% 7.4 Å 6.1 Å 9.5 Å 156 (107) 175 112 (43%)

Membrane proteins 18 (2%) 71% 10.7 Å 7.5 Å 12.0 Å 8 (5) 10 6 (33%)

All 745 75% 7.2 Å 5.6 Å 8.3 Å 463 (365) 552 408 (55%)

*Number of the target proteins in each category and the percentage in whole benchmark.
yNumber of templates used in the TASSER assembly procedure.
zAverage alignment coverage for the best template that has the lowest RMSD to native.
§Average RMSD to native: Tali, the best template with RMSD calculated over aligned regions;Mali, the best model in top five with RMSD calculated over the

same aligned regions as that in the threading template; and Mful, the best model in top five with RMSD calculated over entire chain.
{Number of targets with RMSD to native below 6.5 Å: Tali, the best template with RMSD calculated over aligned regions. The numbers in parentheses are the

templates of the alignment coverage $70%; Mali, the best model in top five with RMSD calculated over the same aligned regions as that in the threading

template; and Mful, the best model in top five with RMSD calculated over entire chain. The value in parentheses is the fraction of targets in the specified

category.
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There are only two Hard cases (1hq0A and 1k24A) where

PROSPECTOR_3 cannot identify a suitable template.

Nevertheless, we still include the alignments of the highest

scoring templates in the folding refinement for the Hard set

targets. Although the global topology of the threading

alignments are often wrong in the Hard set targets, the local

fragments are still close to native in most cases, a fact that

can be profitably exploited by TASSER (Zhang and

Skolnick, 2004a).

Summary of folding results

The threading templates and alignments by PROSPEC-

TOR_3 are taken as the initial inputs in the TASSER

reassembly procedure. For the Easy targets, we take the two

templates of the highest Z-score as well as their consensus

substructure as an independent template. The consensus

template is calculated as an average of the commonly aligned

residues when their distances are ,5 Å after superposition.

For Medium and Hard targets, the top five and top 20

templates are taken, respectively.

Table 1 presents a summary of the PROSPECTOR_3

threading results as well as the final models produced by

TASSER. If we define a successful prediction as the one

where at least one of the top five full-length models has

a RMSD to native below 6.5 Å (a statistically significant

cutoff (Reva et al., 1998), but other cutoffs could be used as

well), there are 396 foldable cases among the 593 Easy set

targets (67%) with an average RMSD to native of 3.6 Å. Of

the 152 Medium/Hard targets, there are only 12 foldable

cases. This unfortunately shows the strong correlation

between the final outcome of TASSER modeling and

PROSPECTOR_3 threading alignments. Among these 12

foldable cases, 10 of them (all are b- or ab-proteins, i.e.,

1b5tA, 1bwzA, 1cmxA, 1e2tA, 1fs0G, 1g61A, 1gs5A,

1h8vA, 1isfA, and 1jtdB) have initial templates with incorrect

alignments (RMSD . 8 Å) or ,70% alignment coverage,

demonstrating TASSER’s ability to assemble big protein

models from rather poor and incomplete template alignments.

In Fig. 3, we show a histogram of the percentage of foldable

targets at different RMSD cutoffs where we categorize the

targets into single domain and multiple domain proteins. For

the 487 single domain proteins, in;61% of targets (296), the

best of the top fivemodels has a RMSD to native below 6.5 Å.

For the 258 multiple domain proteins, there are 112 targets

having RMSD , 6.5 Å in the top five models. However, in

172 cases, there is at least one domain with a RMSD, 6.5 Å

and whose average length is 114 residues. This highlights

aweak point of TASSER for predicting themutual orientation

of the domains even when the individual domains have

correct topology; the solution to this issue is the next major

challenge facing TASSER. In the meantime, an enlarged

template library including various domain orientations within

the same homologous subfamily will certainly be of help for

use in TASSER domain assembly (our unpublished results).

The overall folding rate for the entire benchmark set is 55%

(408/745). If we only count those targets greater than 250

residues in size, the success rate is;52%,whereas the success

rate for targets less than or equal to 250 residues is 58%. This

weak size dependence of model quality is mainly due to the

fact that the bigger targets have a higher percentage of

multiple domain proteins, (i.e., 40% of the proteins greater

than 250 residues in length have multiple domains, and 29%

of the proteins less than or equal to 250 residues in length have

multiple domains), where TASSERhas a lower success rate in

predicting the interdomain orientations.

Comparison with the initial template

In Fig. 4, for the threading aligned regions, we show

a detailed comparison between the final models and initial

FIGURE 3 Histogram of the percent

of foldable targets by TASSER for

single-domain and multiple domain

proteins.
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template alignments. As expected, the template alignments

in the Easy set have much better quality than those in the

Medium/Hard set. The majority of the template alignments

in the Easy set have a RMSD to native below 6 Å (Fig. 4 a),
whereas the alignments in Medium/Hard set have a quite

broadRMSDdistribution ranging from1 Å tomore than 20 Å.

This highlights the threading alignment problems shown by

PROSPECTOR_3 on the Medium/Hard targets, even though

the majority of templates (;90%) in this category can have

good structure alignments (Skolnick et al., 2004).

In both cases, TASSER refined models show obvious

improvements with respect to the initial templates. For

example, for the initial template alignments whose RMSD is

in the range of 4; 5 Å, in 53% of the cases, the final models

show at least a 1-Å improvement. For those templates that

have a higher RMSD to native, there tends to be relatively

larger RMSD improvements. This is due to both the

requirement of chain connectivity that converts geometri-

cally nonphysical alignments into physical models and the

optimized TASSER force field, which is a combination of

consensus tertiary restraints from multiple templates and

various statistical energy terms (Zhang et al., 2003). This

optimal force field can provide better side-chain and

backbone packing and is able to drive the template fragments

on average closer to native in the Monte Carlo simulations.

Unaligned loops/tails modeling

In Fig. 5, we show the results of TASSER modeling for the

unaligned loop and tail regions. Here, an unaligned loop

(tail) region is defined as a piece of continuous sequence that

has no coordinate assignments in the middle (terminus) of a

target protein from the PROSPECTOR_3 threading align-

ments.

There are in total 4951 unaligned loop regions ranging

from 1 to 117 residues in length in all 745 target proteins. In

Fig. 5 a, we show the distribution of the unaligned loops as

a function of loop length, where the last point includes all the

loops of length greater than or equal to 25 residues. For each

unaligned loop region, two types of modeling errors are

calculated (Fiser et al., 2000): RMSDlocal denotes the root-

mean-square deviation between the native and the modeled

loop with direct superposition of the unaligned region;

RMSDglobal is the root-mean-square-deviation between

native and the modeled loop after superposition of up to

five neighboring stem residues on each side of the loop. The

value of RMSDlocal measures the modeling accuracy of the

local conformation, whereas RMSDglobal measures both the

accuracy of the local conformation and the global orientation

of the unaligned loop regions. As shown in Fig. 5 c,
TASSER has decreased model accuracy with increasing loop

length. If we take a cutoff of 6.5 Å, TASSER can handle the

local conformation as assessed by RMSDlocal for an

unaligned loop region up to at least 25 residues long (here

we note that the last point in Fig. 5 c is an average of all the

loops having the length above 25 residues). But when con-

sidering RMSDglobal, TASSER can have an average RMSD

below 6.5 Å for the loops under 12 residues.

The accuracy of loop modeling is obviously influenced

by the accuracy of the neighboring stem backbone. For

FIGURE 4 RMSD to native of the best models in top five by TASSER

versus the RMSD to native of the best initial template by PROSPECTOR_3;

both RMSD calculated over the same aligned regions. (a) Easy set targets;

(b) Medium/Hard set targets.

FIGURE 5 (a and b) Size distribution of the unaligned loops and tails,

with the last points including all loops (tails) of length above 25 (50)

residues. The solid lines connect the data points denoting all loops and tails.

The dashed lines signify those loops with good stem backbones having

a RMSD to native below 4 Å. (c and d) Average RMSD to native of the

unaligned loops and tails by TASSER modeling as a function of the size of

the modeled regions. RMSDlocal (h) denotes the root-mean-square deviation

with direct superposition of native and the modeled regions; RMSDglobal (n)

is the root-mean-square deviation after the superposition of up to five

neighboring stem residues in both sides of the loops or in a single side of the

tails. The dashed-dotted line signifies a RMSD cutoff of 6.5 Å. The solid

lines connect the data points denoting the results for all modeled loops/tails;

the dashed lines denotes the results for the loops with good stem backbones.
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example, if the distance between the two stem backbones is

much larger than that in the native structure, the loop

conformation will tend to be extended because of the

constraint of geometric connectivity even if the force field

favors a compact loop conformation and vise versa. If we only

count those loops where the RMSD of the residues in the stem

backbones is below 4 Å, there are 3821 loop regions in total.

Themodeling results of these loop regions are shown in Fig. 5

c marked as stem filtered. They clearly have higher accuracy

than if we count all loops regions, especially for the big loops

because the bigger loops have more opportunities to be

embedded between distorted stem backbones (see Fig. 5 a).
After removing those loops of distorted stem backbones,

TASSER can have the average RMSDglobal , 6.5Å for the

unaligned loop regions up to 20 residues.

There are 785 unaligned regions at the N- or C-termini in

the PROSPECTOR_3 alignments, with lengths ranging from

1 to 173 residues. Some of the big tails include an entire

individual domain in multidomain proteins. The size

distribution of the unaligned tails is presented in Fig. 5 b,
with the last point including all tails greater than or equal to

50 residues. In comparison with loop modeling, because of

a lack of a second spatial constraint on the free end of the

tails, the orientation of the unaligned tails can be seriously

misplaced, even though the local conformation can be

correct. As shown in Fig. 5 d, TASSER has an average

RMSDglobal below 6.5 Å for tails under seven residues long.

Here, the RMSDglobal for tails is defined as the root-mean-

square deviation between the modeling region and native

after a superposition of five neighboring residues on the stem

of the tail. For local tail conformations, TASSER can

generate RMSDlocal , 6.5 Å for tails up to 35 residues long

(Fig. 5 d ).
Most of the unaligned loop and tail regions in PROS-

PECTOR_3 alignments are of small size (see Fig. 5, a and

b), which are relatively easier to model because of the limited

configuration entropy. If we only focus on the loop/tail

regions greater than or equal to four residues in size, there are

in total 1345 unaligned loops with an average length of 8.1

residues; there are 464 unaligned tails with an average length

of 52.6 residues.

We summarize in Table 2 the RMSD distribution for loops

and tails with length greater than or equal to four residues. In

;42% (561/1345) of the cases, TASSER loop modeling has

acceptable accuracy with RMSDglobal , 4 Å. The average

RMSDglobal and RMSDlocal for these 1345 loops are,

respectively, 5.03 and 1.82 Å. If we consider the loops with

good stem backbones, 59% (497/837) of loops have

a RMSDglobal , 4 Å; and the average RMSDglobal and

RMSDlocal for these 837 loops are 4.03 Å and 1.47 Å,

respectively. For the tails, 53% (246/464) of the cases have

a RMSDlocal below 4 Å. Considering the global conforma-

tion of tails, only 11% (50/464) of the tails have RMSDglobal

below 4 Å. Again, the data show much better control of local

conformation than the global orientation for tails in TASSER

modeling. This is reminiscent of the problem TASSER has

with predicting domain-domain orientations.

Membrane proteins

Membrane proteins are usually difficult to crystallize

(Baleja, 2001; Levy et al., 2001). In the PDB library

(Berman et al., 2000) only ,2% of experimental structures

belong to membrane proteins, which is much less than the

estimated fraction of membrane proteins in a given genome

(;30%) (Ikeda et al., 2003; Stevens and Arkin, 2000). The

small number of available solved structures and topologies

considerably limit the applicability of traditional compara-

tive modeling techniques to membrane protein structure

prediction. On the other hand, the increasing strength of hy-

drogen bonding (White and Wimley, 1999) in the membrane

causes the backbone to form very regular secondary struc-

tures (helices or b-sheet). The majority of conformational

variances are from the secondary structure arrangements and

various loop connections. There structural characteristics are

consistent with the TASSER methodology, which was

designed for rearranging the well-aligned rigid fragments

from threading templates and building the loop regions by

CAS ab initio modeling (see Methods).

The folding results of 18 large membrane proteins in

current benchmark set are summarized in column 3 of Table

3. In one-third of the cases, TASSER generates at least one

model in the top five that has a RMSD to native below 5.5 Å.

In column 2 of the table, we also show the TASSER folding

TABLE 2 TASSER modeling result for 1809 unaligned loop/

tail regions of length greater than or equal to four residues

Loops* Tailsy

RMSDglobal
z RMSDlocal

§ RMSDglobal
z RMSDlocal

§

Total number{ 1345 (837) 1345 (837) 464 464

NRMSD,1Å
k 55 (55) 502 (400) 3 46

NRMSD,2Å 167 (166) 887 (617) 12 133

NRMSD,3Å 338 (327) 1119 (744) 28 194

NRMSD,4Å 561 (497) 1241 (804) 50 246

NRMSD,5Å 810 (670) 1280 (819) 73 279

NRMSD,6Å 990 (773) 1314 (830) 99 304

ÆRMSDæ** 5.03 (4.03) Å 1.82 (1.47) Å 15.33 Å 6.38 Å

*Result for unaligned loop regions. The data in parentheses is for the loops

with RMSD of the stem residues below four Å.
yResult for unaligned tail regions.
zRMSD between native and the modeling loops (tails) after superposition

of up to five neighboring stem residues on both sides (single side) of the

modeling regions if applicable.
§RMSD between native and the modeling loops/tails with direct

superposition in the modeling regions.
{Total number of the modeling regions.
kNumber of targets with a RMSD to native below the specific threshold

values.

**Average values of the RMSD to native for all unaligned loop/tail regions

with length greater than or equal to four residues.
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results of 20 membrane proteins from the representative

benchmark set of smaller proteins (41 ; 200 residues),

which has a slightly better success rate of 45% because of

their smaller size. The overall folding rate in the combined

membrane benchmark is ;40% (15/38).

Among these 15 foldable cases, PROSPECTOR_3 hit at

least one other nonhomologous transmembrane template in

10 cases, and in the remaining five cases, PROSPECTOR_3

hit globular proteins but with regular secondary backbone

structures consistent with the target structures, which

provides the opportunity for TASSER to assemble the

global fold. The global alignments in PROSPECTOR_3 are

sometimes incorrect. As shown in Table 1, the average

RMSD in the PROSPETOR_3 alignments of all 18

membrane proteins with length greater than 200 residues is

10.7 Å. After TASSER refinement, the RMSD for the

membrane proteins in the aligned region is reduced to 7.5 Å.

For the 20 membrane proteins whose length is below 200

residues, the average RMSD in the aligned regions for initial

threading alignments and final refined models are 8.6 Å and

5.0 Å, respectively.

In Fig. 6, we show three typical examples of membrane

proteins predictions, 1jgjA, 1fqyA, and 1bh3_, with the well-

known GPCR rhodopsin protein 1jgjA having the highest

accuracy. The best template hits by PROSPECTOR_3 for

1jgjA, 1fqyA, and 1bh3 are 1ap9_ (1.47 Å over 96%

coverage), 1fx8A (5.20 Å over 92% coverage), and 2por_

(13.44 Å over 88% coverage). The final models in these

three cases have a RMSD to native of 1.1/0.89 Å, 3.3/3.1 Å,

and 5.3/5.2 Å with full-length/aligned regions, respectively.

These data show that TASSER has the potential to draw the

stem fragments closer to native with respect to the threading

templates and build reasonable loops for the membrane

proteins as well.

Since the homologous proteins have been exclusively

removed from our threading template library, the average

sequence identity between targets and templates is low. For

the 38 membrane proteins, the average sequence identity be-

tween the target and the template of the highest Z-score is

20.2%, below the twilight zone. There is, however, a slight

correlation between the sequence identity and the target

foldability: For the 15 foldable targets, the average sequence

identity is 23.4%; for the 23 nonfoldable cases, the average

sequence identity is 18.2%.

There is no significant difference between the loop

modeling for membrane proteins and that for nonmembrane

proteins. For the 18 big membrane proteins of size from 216

to 299 residues, there are 31 unaligned loops with length

greater than or equal to four residues. The average values of

RMSDglobal and RMSDlocal for these loops are 5.36 Å and

2.04 Å, respectively, which are comparable with the values

of 5.03 Å and 1.82 Å for all loops including both membrane

and nonmembrane proteins (see Table 2). The small

difference between the membrane and nonmembrane pro-

teins may be due to the fact that the membrane proteins on

average have a worse global quality in comparison with non-

membraneproteins. For example, ifweonlycount the19 loops

with RMSD of stem residues below 4 Å, the average values

of RMSDglobal and RMSDlocal are 4.01 Å and 1.49 Å, respec-

tively, which are almost the same as the corresponding values

for all loops in Table 2.

Comparison of TASSER predictions with
structures determined by NMR

The structures determined by either x-ray crystallography or

NMR experiments are almost always nearly identical

(Branden and Tooze, 1999). To compare the accuracy of

the models predicted by TASSER to that of protein structures

determined by NMR, we calculate the centroid of the set of

structures provided by NMR experiments and compare the

deviation of the TASSER models to the NMR structure

TABLE 3 Summary of TASSER predictions for membrane

proteins

Protein length 41–200* 201–300y All

Total number 20 18 38

NRMSD,2.0Å
z 2 2 4

NRMSD,2.5Å 2 3 5

NRMSD,3.0Å 2 3 5

NRMSD,3.5Å 4 5 9

NRMSD,4.0Å 5 5 10

NRMSD,4.5Å 5 5 10

NRMSD,5.0Å 6 5 11

NRMSD,5.5Å 8 6 14

NRMSD,6.0Å 9 6 15

ÆRMSDæ§ 6.99 Å 12.01 Å 9.37 Å

*Result taken from previous TASSER performance on the representative

benchmark with length from 41 to 200 residues (Zhang and Skolnick,

2004a).
yResult of current runs for the representative benchmark with length from

201 to 300 residues.
zNumber of targets that have the best model in top five with RMSD to

native below specific threshold values.
§Average values of the RMSD to native for all membrane proteins.

FIGURE 6 Three representative foldable examples of transmembrane

proteins by TASSER. The thin lines denote the Ca-backbone of

experimental structures, and the thick lines are the predicted models. Blue

to red runs from the N- to C-terminus. Below the structures are the PDB

code, RMSD between the model and native structure, and the protein size.
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centroid with that of the individual NMR structure located at

the maximal distance from the centroid. Since the set of

NMR models equally well satisfy the experimental data, the

maximal distance between the centroid and the individual

structures represents the inherent uncertainty and resolution

of the NMR structure. The reason we compare the TASSER

models to NMR data rather than x-ray structural data is that

three-dimensional structures in NMR are usually derived

from distance/contact constraints from their nuclear Over-

hauser effect (NOE) spectrum, and a collection of models

consistent with the experimental restraints is often provided.

Thus, there is an envelop of experimental structures to which

we can readily compare the quality of our predictions to as-

sess whether or not they are distinguishable.

In our complete benchmark set of 2234 proteins (including

1489 targets between 41 to 200 residues and 745 targets

between 201 to 300 residues), there are 503 targets whose

experimental structures are determined by NMR; 92% (463)

are below 150 residues, a fact due to the difficulty of

applying NMR spectroscopy to the structure determination

of larger proteins (Branden and Tooze, 1999). Among these

503 NMR targets, there are 363 proteins with 5 ; 56

individual models that simultaneously satisfy the NMR

spectra (for the other 140, the authors just provide the mini-

mized average structure).

To calculate the structure centroid, for each of the 363

proteins, we superimpose all the NMR models to the first

model in the PDB record and average the coordinates of the

corresponding residues after superposition. Then, we

calculate the maximal root-mean-square deviation of the

individual models from the structure centroid, RMSDNMR.

For the 363 NMR targets, the average value of RMSDNMR ¼
2.64 Å. For the models predicted by TASSER, we also

calculate the RMSD of the theoretical models from the NMR

structure centroid. The resultant average value for the

TASSER models is 4.84 Å, which is considerably higher

than that of NMR experiments. In 72 cases (27 a-proteins,

23 b-proteins, and 22 ab-proteins), however, the RMSD of

the theoretical models from the NMR centroid is smaller than

RMSDNMR. Among the 72 cases, seven cases (i.e., 1cw5A,

1g9pA, 1h9fA, 1i5jA, 1imuA, 2prp_, and 3lriA) are

classified by PROSPECTOR_3 as Medium targets, with

the best templates having an average RMSD to native 6.9 Å

and an average alignment coverage of 60.6%. All other 65

cases are Easy targets, with PROSPECTOR_3 templates

having average RMSD to native 4.1 Å and 83.9% alignment

coverage.

In Fig. 7, we present three typical examples of the

superposition of TASSER models on the NMR structures for

1adr_ (an a-protein), 2fnbA (a b-protein), and 1dbyA (an

ab-protein). The maximal RMSD of NMR models from

their centroid for the 1adr_, 2fnbA, and 1dbyA are 3.6 Å,

2.3Å, and 1.3 Å, respectively, whereas the RMSD of the

TASSER models to the centroids are 1.6 Å, 1.9 Å, and 1.1 Å,

respectively. These results show that, in ;20% of cases,

TASSER generates models of accuracy comparable to the

NMR experimental methods where the predicted structures

are closer to the NMR centroid structure than that of the

farthest NMR structure.

CONCLUDING REMARKS

TASSER’s ability to fold medium to large size proteins is

systematically examined using a comprehensive benchmark

protein test set that covers all PDB structures from 201 to

300 residues at the level of 35% sequence identity; including

487 big single domain proteins, 258 multiple domain

proteins, and 18 transmembrane proteins.

For approximately three-fifths of larger single domain

proteins, TASSER can generate models ranked in the top five

that have a RMSD to native below 6.5 Å. For multidomain

proteins, the success rate drops to approximately two-fifths;

although in two-thirds of the multiple domain proteins, the

individual domains of the complex are correctly predicted.

Further development of the TASSER force field to control

the interdomain orientation is required to improve the quality

of the predictions for multiple domain complexes. Keeping

in mind that many multidomain proteins with high sequence

identity have different domain orientations, an immediate

follow-up project will be the construction of an extended

multidomain orientation library, which allows TASSER

simulations to select suitable domain orientations among the

homologous templates. For membrane proteins that have

a very limited number of solved template structures, ;40%

of such transmembrane proteins from 41 to 300 residues can

be folded to a RMSD below 6 Å. Finally, when TASSER

models are compared with the set of experimental structures

determined by NMR, ;20% of the TASSER models are

closer to the centroid of the set of NMR structures than the

farthest NMR structure consistent with experimental data.

FIGURE 7 Three representative examples of TASSER predicted models

that are structurally closer to the NMR structure centroid than some of

individual NMR structures. The thick backbone shows the rank-one models

predicted by TASSER; the wire frame presents the structures satisfying the

NMR distance constraints equally well. Blue to red runs from the N- to

C-terminus. The RMSD of TASSER models to the NMR centroid for 1adr_

(a-protein), 2fnbA (b-protein), and 1dbyA (ab-protein) are 1.6 Å, 1.9 Å,

and 1.1 Å, respectively; the maximal RMSD of NMRmodels to the centroid

are 3.6 Å, 2.3 Å, and 1.3 Å, respectively.
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For all the categories of the target proteins, TASSER

models show obvious improvement with respect to the initial

threading templates from PROSPECTOR_3 (Skolnick et al.,

2004). Over the same aligned regions, the average RMSD of

all 745 proteins is reduced by TASSER modeling from an

initial average RMSD of 7.2 to 5.6 Å, and the number of

cases with a RMSD to native , 6.5 Å increases from 463 to

552.

For the unaligned loop regions with good stem backbone

conformations (where the RMSD of the stem residues is

below 4 Å), the TASSER ab initio modeling approach can

generate reasonable loop models with an average RMSD

global , 6.5 Å for loops up to 20 residues long. For the loops

of size greater than or equal to four residues (8.1 residues on

average), 59% (497/837) have a global RMSD below 4 Å.

For the unaligned tail regions with an average length of

52.6 residues, although in most cases the correct global

orientation of the tails are not reproduced, TASSER

generates tails whose RMSDlocal is below 4 Å in 53%

(246/464) of the cases.

One purpose of this work is to focus on proteins greater

than 200 residues in length, a size range where most enzymes

and other functionally important proteins are often found.

Although there is still considerable room for improvement of

TASSER methodology, especially for multiple domain

complexes and membrane proteins, the results of the large-

scale benchmark test reported here suggest that reliable

predicted structures by automated computational approaches

is becoming a reality for at least a subset of non-/weakly

homologous large size proteins.
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