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ABSTRACT We have applied the TOUCH-
STONE structure prediction algorithm that spans
the range from homology modeling to ab initio
folding to all protein targets in CASP5. Using our
threading algorithm PROSPECTOR that does not
utilize input from metaservers, one threads against
a representative set of PDB templates. If a template
is significantly hit, Generalized Comparative Model-
ing designed to span the range from closely to
distantly related proteins from the template is done.
This involves freezing the aligned regions and relax-
ing the remaining structure to accommodate inser-
tions or deletions with respect to the template. For
all targets, consensus predicted side chain contacts
from at least weakly threading templates are pooled
and incorporated into ab initio folding. Often,
TOUCHSTONE performs well in the CM to FR cat-
egories, with PROSPECTOR showing significant
ability to identify analogous templates. When ab
initio folding is done, frequently the best models are
closer to the native state than the initial template.
Among the particularly good predictions are T0130
in the CM/FR category, T0138 in the FR(H) category,
T0135 in the FR(A) category, T0170 in the FR/NF
category and T0181 in the NF category. Improve-
ments in the approach are needed in the FR/NF and
NF categories. Nevertheless, TOUCHSTONE was
one of the best performing algorithms over all cat-
egories in CASP5. Proteins 2003;53:469-479.
©2003 Wiley-Liss, Inc.
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INTRODUCTION

As typified by the CASP5 target categories, there are
three basic protein structure prediction approaches: com-
parative modeling, CM, threading or fold recognition, FR,
and ab initio folding or New Folds, NF. In CM, the target
sequence has a clear evolutionary relationship to another
protein (template) whose structure has already been
solved.! Here, the goal is to predict structures with a root
mean square deviation, RMSD, of 1-2 A from native. The
next more difficult protein structure prediction method is
fold recognition,?® where one attempts to find the closest
matching structure in a library of solved structures. The
challenge is to recognize not only homologous but also
analogous proteins where the target and template proteins
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are not necessarily evolutionarily related, but adopt very
similar structures perhaps by convergent evolution.® Both
threading and comparative modeling suffer from the limi-
tation that structure of the homologous or analogous
protein must have been solved. To address this, the most
difficult and general approach is ab initio folding, where
one attempts to fold a protein from a random conforma-
tion.'%13 As expected, models in the FR/NF categories
tend to be of lower resolution. To be successful, a structure
prediction method must be able to span the range from the
CM to NF categories. In this paper, we describe our
automated TOUCHSTONE protein structure predic-
tion approach that has partially achieved this goal. Further-
more, to establish its applicability, large scale benchmark-
ing is required. CASP5 partly addresses this need as the
predictions are blind, but it is also important to know
beforehand how the algorithm should behave. If similar
results as under the stress of truly blind predictions are
found, the validation protocols can be used with greater
confidence to improve the methods. Finally, a key goal of
our participation in CASP5 was to identify the strengths
and weaknesses of the current TOUCHSTONE algo-
rithm.

METHOD

An overview of the TOUCHSTONE methodology is
shown in Figure 1(A). First, one uses PSIPRED, to
predict secondary structure that is fed into our threading
algorithm PROSPECTOR.? PROSPECTOR provides pre-
dicted side chain contacts, sets of local distances and when
applicable, a predicted template [see Fig. 1(B), for a more
detailed discussion see Section a. below]. If there is at least
one predicted template, then Generalized Comparative
Modeling (see Section b below) in the vicinity of the
template is done. In all cases, ab initio folding is done
using predicted contacts and secondary structure in the
context of a new lattice protein model, CABS (Zhang et al,
2003 submitted). All structures are clustered using SCAR.'¢
On the basis of cluster population and related parameters,
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Fig. 1. The flowcharts show the TOUCHSTONE methodology (A) and
the PROSPECTOR algorithm (B). For details, see METHODS.

fold selection is done and the top five models submitted to
CASP (see Section d).

Overview of PROSPECTOR

As shown in Figure 1(B), PROSPECTOR is an iterative
threading algorithm that combines near (between 35%-
90% sequence identity) and distant sequence profiles
(sequences from FASTA'” with an E-value <10) to gener-
ate alignments from which the partners for the evaluation
of pair interactions are extracted and used in subsequent
threading iterations. For each of the four scoring functions
(near/distant sequence profiles, and the corresponding set
of near/distant sequence profiles plus predicted secondary
structure plus pair interactions), the top 5 scoring struc-
tures are selected. If a contact is present in at least 5/20
alignments, this constitutes a predicted contact that is
converted into a pair potential for use in subsequent
threading. Contacts are predicted for a total of three
iterations and pooled for use in subsequent Generalized
Comparative Modeling and ab initio folding. PROSPEC-
TOR also provides a set of local distance predictions
(between residues separated by no more that 5 residues). If
the Z-score of a predicted template is >7, then the target
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sequence is assigned as having the structure of the tem-
plate. No metaservers are used in PROSPECTOR; apart
from predicted secondary structure and sequence profiles
generated by FASTA,'" it is stand-alone.

Generalized Comparative Modeling

In Generalized Comparative Modeling, depending on
the sequence identity between the target and template,
different protein models were used. When the sequence
identity of was <40%, we used an algorithm that could
improve the model while retaining the accuracy of the well
aligned regions. Thus, using the CABS protein model [for
additional details see Section ¢ and (Zhang et al, 2003
submitted)], we kept the well-aligned regions fixed and
built an initial model from the PROSPECTOR identified
template. When a gap in the template is physically con-
nectible, we perform a random walk that connects one
extremity to the other. When the specified number of
unaligned residues cannot close the gap, we release the
neighboring aligned residues until the gap can be spanned;
then, a random walk procedure builds the initial model.
Residues having identical spatial coordinates in the ini-
tially built model as the template are frozen and the rest
are moveable, but since the two residues at the end of the
aligned regions are often unreliably predicted, these are
also moveable. The conformational space of the movable
regions is explored using our Parallel Hyperbolic Sam-
pling (PHS) Monte Carlo approach,'® with the energy
calculated for the whole chain. Depending on the number
of the movable residues, we use 20~30 replicas and submit
the structures from the 8 lowest temperature replicas to
SCAR clustering and choose the final clusters according to
cluster density, the similarity to the template, and the
combination of energy and free energy (see Section d
below).

When the sequence identity of the target to the template
is >40%, a continuous space C_ - model with side groups
represented by 1-3 united atoms was used to avoid loss of
resolution due to lattice discretization. Short and long-
range interactions were controlled by a statistical poten-
tial, similar to the CABS model. Conformational space was
searched by Replica Exchange Monte Carlo.'®?° Small
insertions or deletions were allowed in the alignment
provided by PROSPECTOR, with the template and tar-
get always very close. A similar gap-closing algorithm was
used as above. Usually, after short simulations, conforma-
tions very close to the target protein’s native structure are
obtained.

Ab Initio Folding

The CABS model describes the protein as a set of Cas,
CBs and where appropriate the center of mass of the
remaining side chain heavy atoms (Zhang et al, 2003
submitted). The force field consists of a set of short-range
interaction terms describing local, protein like conforma-
tional stiffness, hydrogen bonds, predicted secondary struc-
ture from PSIPRED,'® and threading based local distance
restraints. The long-range potential is comprised of terms
describing side chain burial and contact environment, pair
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interactions, Debye-Hiickel electrostatic interactions, a
bias towards predicted contact order and number, and
threading based side chain restraints whose accuracy
strongly biases the likelihood of success. To allow for
template refinement, ab initio folding is done over all
non-CM targets, and the resulting best cluster is included
as one of the choices.

Depending on protein length, from 30-80 replicas at
temperatures that span the conformational transition
region are used in PHS, with different replicas starting
from different structures. Half of the initial structures are
random and half start from structures selected from the
PDB using gapless threading. At the simulation end,
structures from the 12 lowest temperature replicas are
subjected to SCAR and subsequent structure selection.

Best Cluster Selection

A number of quantities were previously used to select
the best cluster obtained from the clustering program
SCAR. In a benchmark test,?! we tried to rank the clusters
based on their energy, E, or cluster population, M. How-
ever, these were not optimal. One of the quantities, which
turned out more sensitive to the correctness of structures,
is a combination of the energy and free energy, Y,

Y =E — kTlog(M). (1)

A more sensitive quantity found in the benchmark test is
the ratio of the structure population in a cluster to the
average RMSD of the structures to the cluster centroid,
ie.,

D = M/MLQL<RMSD>cluster (2)

where M,,, is the total number of structures submitted to
the cluster processes. The normalization by M,, is neces-
sary when we compare the clusters from multiple simula-
tions using different sets of restraints. The idea of the
quality D is that the cluster density reflects the coordina-
tion between the threading-based restraints and general
force field of CABS model. The higher the cluster density is
and the more convergent the trajectory is, the more likely
the cluster is to be correct.

For target selection in CASP5, we first sort the simula-
tions of different restraint sets according to D; and then
select and submit the structures according to Y for a given
set of clusters.

BENCHMARK TESTING

Prior to CASP5, we undertook extensive benchmark
calculations. For PROSPECTOR, we considered a repre-
sentative set of all solved protein structures (<35% iden-
tity) 200 residues or shorter in length. At the time, there
were 2186 protein domains. These are a subset of the
representative PDB library of 3990 proteins no pair of
which has greater than 35% sequence identity and ex-
cludes coiled coils and chains from multimers that are very
open. Of the 2186 proteins, 1317 (60%) are matched to
templates with an average sequence identity of 25.5%.
Thus, PROSPECTOR can identify weakly evolutionarily
related proteins. There are 899 (68%) proteins with a
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coordinate RMSD <6.5 A over the aligned region (this
threshold was chosen because based on the relative RRMSD
defined previously,?? statistically significant structures
are predicted). The average RMSD from native of the best
template with average rank 1.2 (ranked on the basis of the
template’s Z-score) is 3.7 A, and the average coverage is
89% of the target sequence. If we identify good local
regions even though the global RMSD may be above 6.5 A,
then there are 1090 (83%) proteins with an average RMSD
0f2.03 A and 70% coverage. 96% of the 1317 proteins have
a correct structural alignment to the template (RMSD
<6.5 A). Thus, there are problems with 177 proteins in
generating better alignments with an additional 50 pro-
teins whose templates were incorrectly selected. The
sources of both errors are under examination.

For the 1317 threaded proteins, the average side chain
contact prediction accuracy is 41%, with 64% correctly
predicted within =1 residue; their average contact order is
31.6 and an average number of contacts/residue, f, of 2.3.
For nonthreaded proteins, the average contact prediction
accuracy is 17%, with 39% correctly predicted within =1
residue; their average contact order is 16.2, and £, is 0.8.
In Figure 2, in the solid histogram, we plot the cumulative
fraction of structures having an RMSD <6.5 A as a
function of f, for the 1317 threaded proteins. If f, >1.5,
then more than half of the predicted structures are likely
to have an RMSD <6.5 A; if f, <1 then only about 1/3 of the
templates are of this quality.

TOUCHSTONE was applied to the ab initio folding of
125 test proteins (36-174 residues in length) representing
all secondary structural classes. 83/125 (66%) had a pre-
dicted structure with a RMSD below 6.5 A in the top five
clusters when predicted tertiary restraints are used. In the
absence (with) of predicted tertiary restraints, 41/100
(70/100) small proteins (36~120 residues) have one of the
top five lowest energy clusters with a RMSD below 6.5 A.
On average, inclusion of predicted contacts enhances the
yield. If the goal is to select the single best cluster, then
min E, max M, and min Y identifies 58 (61), 60 (67), and 65
(73), structures with an RMSD <6.5 A (the best cluster
independent of any RMSD threshold) respectively. Clearly,
Y is the most sensitive.

RESULTS
Overview of Results

Structure predictions were made on all CASP5 targets
with a total of 327 models submitted. With the exception of
errors in submitting T0130 and T0150, five models were
submitted for each target. A more detailed analysis of all
our CASP5 predictions may be found at http://bioinformat-
ics.buffalo.edu/casp5/. Included on our website are all
models and fleshed out Tables.

In Table I, we summarize our results for all categories in
terms of the length of the protein, the global RMSD,
coverage and rank, the best structural alignment, cover-
age and rank, the best contiguous fragment, coverage and
rank, the GDT_TS (Global Distance Test Total Score)*3
and rank, and the selected template, length and sequence
identity to the target. For each category, as ranked by the
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Fig. 2. Comparison of the cumulative distribution for the fraction of structures with an RMSD below 6.5 A
versus f, (number of predicted contacts per residue) for 1317 benchmark structures (solid histogram) and 84

CASP5 targets/domains (open histogram).

GDT_TS, we present our best prediction relative to all
other groups, the best among our predictions and the
average of all our predictions. For those cases where the
two criteria coincide, we also present the second best
target among our predictions.

In Table II, for each category as ranked by RMSD, we
present a summary of our contact predictions along with
the results on the target corresponding to our best predic-
tion relative to all other groups, the best of our predictions
among our all predictions and the average of all our
predictions. The average contact prediction accuracy for
all 84 domains considered (for which structures are avail-
able), is 35% with 59% correct within *=1 residue, an
average contact order of 33.9 and an average of 2.0
contacts/residue predicted. This is comparable to our aver-
age benchmark performance, where the corresponding
values over the entire set of 2186 test proteins is 32%, 55%,
25.5 and 1.7 respectively. Figure 2 (open histogram) shows
the cumulative fraction of all structures with an RMSD
<6.5 A as a function of f,. Very similar trends as in the
benchmark (solid histogram) are evident.

Table III summarizes the improvement of all available
targets from the initial template in the CM and FR
categories. Often on building a physically realistic model,
the alignment to the template improves, sometimes with a
significant decrease in the alignment length (e.g. see
T0134_2). The average RMSD of the initial template
alignment over 84 targets is 9.9 A; after physically realis-
tic molecules are built, it improves to 6.7 A. Hence, core
alignment regions can be identified by building a physi-
cally realistic (but shorter) molecule. In only four cases,
T0141, T0147, T0165, and T0190 are the RMSDs of the
continuous models worse, going from 7.4 to 7.8 A, 11.3 to
11.7 A, 17.5 to 19.6 A and 1.8 to 1.9 A, respectively. A

particularly interesting and encouraging case is T0191_2,
whose initial RMSD is 28 A over 128 residues and whose
rebuilt model has an RMSD of 2.9 A over 75 residues, with
a final global RMSD of 2.7 A.

Another important conclusion is that in only 7/84 cases
does our methodology do harm (by comparing the global
RMSD of the originally aligned residues to the initial
aligned region template RMSD, and even then only by no
more than 0.25 A), and in a significant fraction of the cases,
the models are considerably improved, a trend seen for all
ranges of RMSD of the initial models. This represents a
significant improvement in our methodology over CASP4.24

Particularly interesting are those cases in Table III,
where ab initio folding yielded the best model (labeled by A
in the method column). Using ab initio folding, in the CM
category, the average RMSD for the threading template
aligned residues improves from 6.1 A to 3.6 A. In the
CM/FR(H) category, the average RMSD improvement is
13.0 A to 8.7 A. In the FR(H), category, the average RMSD
improves from 10.6 A to 8.4 A, with an improvement in the
FR(A) category from 14.4 A to 6.4 A. Finally in the
FR(A)/NF and NF categories, when a template has been
identified, the average improvement is from 15.2 A to
11.3A and 14.0 A t0 9.7 A respectively. We now focus on
some specific cases that show significant improvements.
In T0133, the RMSD in the aligned regions improves
from 15.7 A to 6.9 A with a global RMSD of 6.7 A. T0135
has an alignment that improves from 6.3 A to 4.0 A over
the residues given by the threading template, with a
global RMSD of 4.8A, T0170 alignment improves from
10.8 A t0 5.0 A, with a global RMSD of 5.3 A, and T0188
alignment improves from 3.2 A to 2.2 A with a global
RMSD of 2.2 A.
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TABLE II. Evaluation of Contact Prediction Accuracy

Accuracy
Allowed shift Re
Category Ne Target Length Npc® (o]0 fd 0 1 2 A
CM 167_0f 180 434 514 241 0.71 0.86 0.93 2.9
CM 137_08 133 556 38.5 4.18 0.57 0.77 0.87 1.0
CM 26 average 165.2 529.3 40.0 3.10 0.56 0.75 0.85 3.8
CM/FR(H) 185_3f 130 466 36.4 3.58 0.41 0.77 0.87 3.3
CM/FR(H) 185_18 101 272 26.4 2.69 0.41 0.80 0.92 2.6
CM/FR(H) 20 average 200.1 404.0 38.9 1.96 0.36 0.64 0.77 8.3
FR(H) 157_0F 120 182 40.0 1.52 0.42 0.64 0.88 44
FRH) 193_18 74 142 24.1 1.92 0.35 0.58 0.72 3.9
FRH) 9 average 166.6 176.2 22.9 1.23 0.25 0.44 0.60 10.3
FRA) 135_0F 106 138 38.6 1.30 0.35 0.68 0.74 4.8
FR(A) 148 28 91 218 21.3 2.40 0.24 0.50 0.73 2.6
FRA) 7 average 147.1 3114 29.8 2.30 0.23 0.48 0.64 8.7
FR(AY/NF 146_0F 299 380 319 1.27 0.10 0.25 0.43 18.1
FR(A)/NF 170_08 69 84 195 1.22 0.33 0.62 0.71 5.3
FR(A)/NF 10 average 127.8 123.2 21.2 0.82 0.15 0.39 0.57 12.0
NF 129 0f 170 154 21.5 0.91 0.14 0.38 0.56 11.9
NF 139_08 62 88 30.3 1.42 0.16 0.21 0.36 4.7
NF 5 average 106.2 89.6 21.3 0.88 0.15 0.38 0.56 9.8

“Number of targets in the specified category.
*Number of predicted contacts.

“Contact order.

9Number of predicted contacts/number of residues.
°*RMSD of the best model.

fOur best ranked prediction after comparison of all models for all targets submitted by all predictors. This model selection for each category is
made as follows. 1) For each target in the specified category, we first collect the best model submitted for each predictor (based on RMSD), and
then we rank the models, assigning as rank 1 the one with the lowest RMSD. 2) The best ranked prediction made by our group is selected; if more
than one of our models for different targets satisfies this criterion, the decision is based on the lower RMSD.

g0ur best prediction (based on RMSD) after comparison of all our models for all targets in the specified category.

CM Results

As shown in Table I, the average RMSD, (GDT_TS) is
41A (74.1), with a best model rank of 2.9 (2.5) for a total of
31/37 (37/37) available targets. The relatively high aver-
age RMSD is due to three targets: T0140 has about 52% of
its residues with a RMSD under 4 A, but the global RMSD
is poor, 13.6 A, with the predicted C-terminus in error. In
T0184, we get each domain correct, but their mutual
orientation is wrong (the RMSD is 12.8 A for the entire
molecule, while the RMSD to native of T0184_1 and
T0184 2 are 4.4 A and 2.7 A), a persistent problem.
T0193_2 is also problematic; the alignment was driven by
the N-terminal domain alignment, with the C- terminus
weakly hit. Note that for the C-terminal domain, the
fraction of predicted contacts/residue, f., = 0.7 where only
about 28% of the threading templates have good align-
ments to the target.

T0137

In Figure 3(A), we display the coordinate superposition
of the best predicted and native structures of T0137. The
template is 1lpmpA, 130/133 aligned residues with a
sequence identity of 45%. The average contact prediction
accuracy is 57%, with 4.2 contacts/residue predicted. A
good model would be expected, and the resulting full-
length structure has a RMSD from native of 1.0 A for
model 3.

CM/FR(H) Results

The 20 protein domains where structures are available
were analyzed. The average RMSD is 8.4 A, with the best
structures having a mean rank of 2.5, and 10 (8) domains
having a RMSD below 6.8 (6.5) A. Examining structural
alignments, the average RMSD is 3.8 A with 77% average
coverage. Even when the global alignment is in error,
threading identifies significant fragments. Similarly, when
we search for the longest continuous fragment, for 20
proteins, the average RMSD for the longest continuous
piece is 5.0 A with 76% coverage. Thus, better methods for
identifying the correctly aligned regions need to be devel-
oped.

FR(H) Results

As shown in Table I, we analyzed 10 proteins, where
T0138 is the best of our predictions compared to all groups
according to the GDT_TS score, and T0193_1 is the best
among all our predictions for the FR(H) category. The
average RMSD is 10.4 A, with the average RMSD from the
best structural alignment of 4.4 Aandan average coverage
of 76%. The average RMSD of the best continuous frag-
ment is 7.6 A with 72% coverage. Somewhat disappoint-
ingly, we only generated good structures in 3/10 cases:
T0138, T0157, and T0193_1. Of the failures, T0134 and
T0156 did not thread, T0174_1 was not recognized by our
FASTA based profiles, but rather only by PSIBLAST
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TABLE III. Summary of Templates Hit by PROSPECTOR and Models Generated by Ab Initio Approach

Category M® Target SIP L, LA L, Rf RS RP R ARS
cM A T0184_ 2~ 0.27 72 66 58 2.3 2.1 24 28  —01
cM A T0193_2" 022 130 64 47 117 9.6 42 9.9 74
cM A average (4™ 023 1630 1365 1068 6.1 5.1 3.6 54 25
cM F TO155 034 117 115 107 0.8 0.7 1.0 11 02
cM F T0191_2" 021 143 128 75 28.1 2.9 2.7 32 24
cM F average 22/ 034 1656 1520 1295 3.7 2.0 2.3 35 14
CM/FR(H) A T0130% 014 100 70 31 5.1 2.8 3.7 45 14
CM/FR(H) A T0133! 015 293 220 178 157 156 69 6.7 8.9
CM/FR(H) A average (6)™ 013 2037 1272 727 130 9.6 8.7 9.8 42
CM/FR(H) F T0159_2~ 007 142 102 40 5.0 46 5.1 71 —01
CM/FR(H) F T0165' 014 318 293 212 175 195 115 118 6.1
CM/FR(H) F average (14> 015 1986 1673 98.4 8.3 6.7 65 7.7 18
FR(H) A T0138! 017 135 105 59 42 3.1 3.9 5.2 0.2
FR(H) A T0134_2* 025 106 80 14 128 7.3 86 9.0 42
FR(H) A average (5) 019 1442 96.2 368 106 6.6 84 9.8 2.2
FR(H) F T0174% 021 352 120 36 145 123 126 142 1.9
FR(H) F T0174_2" 021 155 103 30 140 108 94 104 46
FR(H) F average (4™ 021 1945 75.0 288 117 74 85 108 3.2
FR(A) A T0135* 013 106 74 38 6.3 42 40 48 2.3
FR(A) A T0148_1" 0.18 71 44 6 176 0.6 2.2 26 154
FR(A) A average (6)™ 017 1485 97.0 447 144 75 6.4 8.2 8.0
FR(A) F T0191_1% L™ 021 139 125 50 170 154 111 115 59
FRA/NF A T0146_3* 0.16 56 60 13 117 5.7 94 100 2.3
FR(A)/NF A TO170" 0.25 69 63 33 108 6.6 5.0 5.3 5.8
FRA/NF A average (8™ 018 1419 1067 439 152 95 113 122 3.9
FRA/NF F T0146_3* 016 107 34 7 86 3.2 87 132  —01
FR(A)/NF F T0186_3" 0.17 36 28 10 12.0 7.6 9.0 94 3.0
FRA/NF F average (2™ 0.17 715 31.0 85 103 54 89 113 14
NF A T0129_1* 0.11 89 73 52 122 122 89 9.0 3.3
NF A T0139" 0.24 62 43 6 12.0 3.0 48 47 71
NF A average (5)™ 015 1062 86.8 460 140 9.0 9.7 9.8 43

aMethod used to generate the best model, “F” indicates that the well-aligned template regions in our simulations are frozen; “A” means that ab

initio folding is done.

*Sequence identity between target and best template over the whole aligned region (L,).
“Total number of residues in the native structure whose coordinates can be compared with our best model.

9Length of aligned template regions hit by PROSPECTOR.

°Length of the well-aligned template regions, which are physically connectible.

RMSD (A) to native for the template over the entire aligned region (L,).

#RMSD (A) to native for the template over the well-aligned region (L,).

PRMSD (A) to native for the best model over the whole aligned region (L,).

IRMSD (A) to native of the best model over all the residues in the native structure whose coordinates can be compared with our best model (L,,).

JRMSD improvement by the CABS modeling simulation over the original template hit by PROSPECTOR (i.e., AR = R, — R,).

kTarget showing the minimum AR in the specified category.
'Target showing the maximum AR in the specified category.

™Average values (number of targets) for the specified category and method.

profiles that are prone to false positives. Thus, all failures
reflect the inability of PROSPECTOR to recognize tem-
plates with corresponding very low contact predictions.
Those proteins that threaded, T0138, T0157, and T0193_1,
yielded acceptable models.

T0138

In Figure 3(B), we show T0138, where the RMSD of
model 1, obtained from ab initio folding, over all residues is
5.2 A. Interestingly, the RMSD of the best contiguous
fragment is 1.9 A over 83 residues. The sequence identity
to the template, 1b00A, is 17% and the initial RMSD over
105 residues is 4.2 A. Here, the average contact prediction
accuracy is 53% with on average 2.1 restraints/residue
predicted. The results are acceptable.

T0193_1

As shown in Figure 3(C), for T0193_1, the global coordi-
nate RMSD of model 5 to native is 3.9 A. The template is
1fseA, which has 22% sequence identity to the target over
the aligned 65-residue region. Interestingly, the RMSD of
the corresponding template and target is 6.5 A, and ab
initio folding significantly improved alignment quality.
The contact prediction accuracy for this model is 35% with
on average 1.9 restraints per residue predicted, a range
where 55% of the templates in the benchmark have an
acceptable RMSD. Again, the key to successful ab initio
folding is have predicted contacts of reasonable number
and accuracy. This coupled with the force field of the CABS
model can produce significantly improved models.
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A T0137

Model 3 (133/133aa)
CM, RMSD=1.0A

B T0138

Model 1 (135/135aa)
FR(H), RMSD=5.2A

C TO0193_1

it

Model 5 (74/74aa)
FR(H), RMSD=3.9A

s Native structure

D T0135

Model 2 (63/71aa)
FR(A). RMSD=2.6A FR(A), RMSD=2.6

H T0170 |

E T0135

Model 1 (106/106aa) Model 1 (106/106aa)
FR(A), RMSD=4.8A FR(A), RMSD=4.8A

F T0148 1

G T0148 1

Model 2 (63/71aa

T0181

Model 4 (69/69aa)

~Model 2 (111/111aa)
FR(A)/NF, RMSD=5.3A NF, RMSD=8.3A

e Model

Fig. 3. Ca trace of our best models for selected CASP5 targets/domains. In all cases the model rank, model
length, target/domain length, CASP category and RMSD to native are shown. A-H: coordinate superposition of
the predicted and native structures of the indicated targets. E and G: same superposition as in D and F
respectively, with the regions aligned to the template highlighted in yellow. I: best model for T0181 (the native

structure of this target is unreleased). Blue to red runs from the N to C-terminus.

FR(A) Results

Next, we turn to the FR(A) category. There are 9 targets,
with 7 available PDB structures. The average RMSD of
these 7 targets is 8.7 A. 3/7 have an RMSD below 6.5 A.
The average RMSD of the best structural alignments is 4.4
A, with 74% coverage, and the best average continuous
fragment coordinate superposition has an average RMSD
of 5.1 A with 66% coverage. All 7 have identified threading

templates. The average RMSD of the best structural
alignment to the best threading template (assigned on the
basis of its Z-score) is 6.2 A with an average coverage of
52%. 4/7 proteins have significant structural alignments,
with T0148, T0187_2 and T0191 being problematic. The
second (first) best template chosen for T0148 has a struc-
tural alignment over 28% (56%) of the molecule with an
RMSD of 4.6 (11.0) A. T0187_2 has over 50% of the
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sequence aligned with a RMSD of 7 A, a poor result. f,
=0.9, a value where good alignments are only generated in
28% of the cases. T0191_1 has f, =1.7, a value where about
50% of the selected templates have good alignments but an
average contact prediction accuracy of only 19%. We did
not identify two domains, rather a global alignment on the
entire molecule is chosen. T0191_2 is a CM target; thus we
incorrectly chose the wrong template for the C-terminus. If
the second best (best) template is chosen, then a structural
alignment with 35% (41%) of the molecule aligned and an
RMSD from native of 5.8 (10.2) A is generated.

T0135

Shown in Figure 3(D) is the best coordinate superposi-
tion to the native state of model 1 for T0135. Using the
GDT_TS score, T0135 is the best of our models (and is the
best model) as compared to all other groups. The global
RMSD of model 1 is 4.8 A for the entire 106-residue
molecule. Figure 3(E) shows the same superposition as in
Figure 3(D), but with the regions aligned to the template
(1h6kX, sequence identity of 13%) shown in yellow. The
raw target template alignment has a RMSD from native of
6.3 A over 74 residues. The average contact prediction
accuracy is 35%, with 138 contacts predicted. These re-
sults clearly demonstrate that PROSPECTOR can iden-
tify analogous global templates at least in some cases and
that our ab initio folding algorithm can improve the global
RMSD over that of the template.

T0148_1

Another interesting case is T0148_1 shown in Figure
3(F), which is the best of our FR(A) models ranked against
each other by the GDT_TS score. The initial threading
alignment has an RMSD from native of 17.6 A over 44
residues. The global RMSD for model 2 over 71 residues is
2.6 A, has a sequence identity to the template (1b9kA) of
21%, and the aligned region to the template is shown in
yellow in Figure 3(G). This model is produced by ab initio
folding, again showing the improvement over the initial
alignments. The average contact prediction accuracy is
30%, with 95 contacts predicted.

FR(A)/NF Results

There are 10 proteins, and as shown in Table I, T0170 is
the best of our predictions as assessed by the GDT_TS,
both in terms of the our relative performance to other
groups as well as the best performance among our predic-
tions. We analyze this molecule in further detail below.
The average RMSD of all 10 targets is poor, 12.0 A, but the
average RMSD obtained from structural alignments is
considerably better, namely 6.1 A, with the best continu-
ous piece having an average RMSD of 7.4 A. 9/10 proteins
have acceptable structural alignments to their selected
best template, with an average RMSD of 4.9 A and 50%
coverage. The one problematic protein is T0172_2 that has
a best structural alignment RMSD of 7.6 A over 55/101
residues.

Based on the expected likelihood of success shown in
Figure 2 given the fraction of predicted contacts/residue,
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f., we would have anticipated that T0146 (f, =1.3), T0173
(f, =1.1), T0187_1(f, =0.78), T0146_3 (f, =0.79), for
T0146_1 (f, =0.51), T0146_4 (f, =0.47) and T0172_2(f,
=0.3) would have low resolution predictions. f, =1.66 for
T0146_2, a score which for the threading validation set
provides good coordinate alignments in about 40% of the
cases. Thus, with the possible exception of T0146_2, these
results are consistent with our benchmark.

T0170

The superposition of model 4 of T0170 onto its native
structure is shown in Figure 3(H), where the RMSD is 5.3
A. Interestingly, our best threading template is 1gln_
which has the mirror image topology. Thus, the RMSD of
the target to this topological mirror image is 10.9 A.
Nevertheless, the contact prediction accuracy is 33% with
f.= 1.3, where about 1/3 of identified templates have good
alignments. Our ab initio folding algorithm assembles
both topologies. This again points out the utility of using
Generalized Comparative Modeling and ab initio folding
for proteins not in the CM category.

NF Results

There are a total of 10 targets of which the structures of
7 are available for analysis. For T0161, we had identified a
template (1hv8A) but apparently this model is incorrect as
no structure is available for comparison. For T0162_3,
again no structure is available, but our threading tem-
plate, 1ac7A, would predict some contacts between T0162_1
and T0162_3. For T0129, T0129_1, T0129_2, we identified
these as NF targets (PROSPECTOR does not find any
template), and £,=0.9, 0.6 and 0.9, respectively indicative
of low foldability, and only 14%, 23% and 11% of the
contacts are correct. PROSPECTOR did not identify a
template for T0149_2; £.=0.6 with only 12% of the pre-
dicted tertiary contacts are correct. Thus, this was a pure
ab initio target that we failed to adequately treat.

T0139 is very interesting. In our CASP5 submission, we
used PSIPRED [15] to predict secondary structure and
found that a B-strand was incorrectly assigned to an
a-helix, thereby giving for the best prediction, model 2, an
RMSD of 9.9 A. If either the correct secondary structure or
the consensus of the CAFASP predictions is used, then the
resulting best model RMSD from native is 4.7 A without
predicted tertiary restraints. This points out the impor-
tance of pooling secondary structure prediction schemes; if
they give contradictory assignments for a given secondary
structural element, both predictions should be done. This
we failed to do during CASP5.

Of the 5 domains for which structural information is
available, 4/5 had significant structural alignments with
an average RMSD of 4.8 A, and an average fraction of
aligned residues of 54%, thereby indicating that some
significant fragments are correctly predicted, even though
the global fold is wrong. For one of the domains, T0149_2,
the best continuous fragment has an RMSD of 6.1 A.

At the December, 2002 CASP5 meeting, we were asked
to talk about T0181. Shown in Figure 3(I) is model 2, which
is topologically correct but which has an RMSD from
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native of 8.3 A. The first and third models (both wrong)
have the same topology, but the latter was generated
without any tertiary restraints. There are 72 contacts
predicted, (f,=0.65), for this molecule, no template is
identified, so we would have expected this to be a low-
resolution prediction; this is what happened.

DISCUSSION

We have presented an overview of the performance of
our TOUCHSTONE algorithm on all targets/domains in
all categories. TOUCHSTONE performed reasonably well
in the CM, CM/FR(H), FR(H) and FR(A) categories, with
significant improvement needed in the FR(A)/NF and NF
categories. The overall performance can be predicted on
the basis of the ratio of the number of predicted side chain
contacts/number of residues. If a significant number of
side chain contacts are predicted, this is indicative that
there are strongly aligned regions and folding is likely to
be successful. In the absence of predicted contacts, unfortu-
nately our success rate is low.

For non NF categories, we use a two pronged approach:
In one case, we apply Generalized Comparative Modeling
where a significant portion of the template aligned regions
identified by PROSPECTOR is frozen and the gaps filled
in. An interesting result is that the process of building a
continuous chain identifies the better aligned regions and
in most cases, the global RMSD of the resulting model is
lower that the RMSD in the original PROSPECTOR
provided alignment. Second, we employ the predicted
contact restraints in ab initio folding. In almost all cases,
the global RMSD of the submitted models improves,
sometimes significantly. The combination of the ab initio
force field when guided by predicted contacts can give
better results than the input threading based information.
For all classes of non NF targets, the RMSD of the final
model is often better than that of the initial template
alignment. This represents a significant improvement
over our past results.

For the FR(A) category, we demonstrated that PROS-
PECTOR can identify analogous templates that cover a
significant fraction of the entire target sequence. In con-
trast to fragment assembly algorithms, global templates
are identified. Whether these are analogous or distantly
homologous proteins is difficult to establish. What is very
encouraging is that PROSPECTOR as well as a number
of other threading algorithms have gone beyond the PSI-
BLAST?® barrier in fold recognition ability, this repre-
sents qualitative improvement over previous CASPs. With
respect to PROSPECTOR, it is important to reemphasize
that it does not use any input from metaservers (the only
input information is predicted secondary structure from
PSIPRED' and FASTA'" sequence alignments), rather
it is a stand-alone algorithm. But we could readily see
improvements in PROSPECTOR if input from metaserv-
ers were employed to generate the initial alignments used
for subsequent contact prediction/template identification.
Finally, at least for the FR(A) and easier categories,
PROSPECTOR side chain contact prediction has become
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sufficiently accurate that it is of use in structure predic-
tion.

The clear weaknesses of TOUCHSTONE are as follows.
First, for about 30% of the cases the raw alignments from
PROSPECTOR are of high RMSD, even though a good
template has been identified. Sometimes structure refine-
ment using Generalized Comparative modeling or ab initio
folding can significantly improve the alignments, but
better alignments need to be generated in the first place.
The use of metaservers as suggested above may assist in
this regard. Second, we need to significantly improve our
procedure in fold selection. It is clear that we often had
very good models, but failed to rank them as number 1.
Our fold selection process could perhaps be improved by
building atomic models and ranking them with better
knowledge based?® or molecular mechanics potentials.2”
Alternatively, perhaps a neural network could be trained
to recognize good from bad folds.?® Along these lines,
algorithms that can refine structures from 3-4 A to 2-3 A
from native are still wanting. Third, we need to develop
better domain parsing algorithms, and where the domains
are well identified, develop procedures for predicting their
mutual orientation. Fourth, the ab initio component of
TOUCHSTONE relies too heavily on the accuracy of side
chain contact prediction. The inherent potentials of the
CABS protein model need improvement. We are attempt-
ing to do this by performing ab initio simulations on all
representative PDB structures = 200 residues in length.
This will establish, on a very large scale NF set, the
strengths and weaknesses of the algorithm and provide
sufficient statistics to suggest means of improving the
model. Concomitantly, we need to improve the accuracy of
contact prediction in the NF regime. Sixth, we need a
better way of combining secondary structure prediction
schemes so that inconsistent predictions of secondary
structural elements (e.g. as for T0139) are handled. This
may be done either by folding with different secondary
structure predictions and then selecting among the result-
ing predicted structures and/or by differential weighting of
various secondary structure predictions according to their
reliability. Seventh, for NF, TOUCHSTONE needs to be
extended to treat larger proteins.

Overall, the current generation of TOUCHSTONE rep-
resents a considerable improvement over our CASP4 gen-
eration. The reasons for this improvement are that the
current version of PROSPECTOR is a much more sensi-
tive threading algorithm and the resulting alignments are
longer and the contact predictions are more numerous and
more accurate, we have implemented a continuous space
model to treat close CM proteins so that there is no loss of
accuracy due to lattice artifacts, and the CABS lattice
model has a better conformational sampling scheme and
its potentials are better tuned. Thus, while major improve-
ments are necessary, the issues are well defined, and there
is reason to hope for additional progress in the near future.
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